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Abstract

Just-in-Time Adaptive Interventions (JITAIs) are
a class of personalized health interventions devel-
oped within the behavioral science community. JI-
TAIs aim to provide the right type and amount of
support by iteratively selecting a sequence of inter-
vention options from a pre-defined set of compo-
nents in response to each individual’s time varying
state. In this work, we explore the application of
reinforcement learning methods to the problem of
learning intervention option selection policies. We
study the effect of context inference error and par-
tial observability on the ability to learn effective
policies. Our results show that the propagation of
uncertainty from context inferences is critical to
improving intervention efficacy as context uncer-
tainty increases, while policy gradient algorithms
can provide remarkable robustness to partially ob-
served behavioral state information.

1 INTRODUCTION

Just-in-Time Adaptive Interventions (or JITAIs) are a class
of personalized health intervention developed within the
behavioral science community [Nahum-Shani et al., 2018,
Hardeman et al., 2019, Battalio et al., 2021, Yang et al.,
2023, Perski et al., 2022]. The primary goal of JITAIs is to
provide the right type and amount of support for each indi-
vidual as their personal and environmental context varies
over time [Nahum-Shani et al., 2018]. JITAIs aim to ac-
complish this goal by using decision rules to select from
among a collection of possible intervention options based on
observed and inferred dimensions of an individual’s state.

While current JITAI’s and related adaptive intervention de-
signs leverage increasingly sophisticated wearable sensors
and machine-learning based context inference methods [Bat-
talio et al., 2021], JITAI decision rules are still largely de-

veloped using an expert systems approach [Perski et al.,
2022]. In this work, we investigate the application of neu-
ral network-based reinforcement learning (RL) methods
[Williams, 1992, Mnih et al., 2013] to the problem of learn-
ing intervention option selection policies for JITAIs using a
novel simulation environment that captures key behavioral
concepts including habituation and risk of disengagement
with an intervention.

We focus on two foundational issues with the application of
RL algorithms to JITAIs. First, we investigate the impact of
context inference error on the performance of learned poli-
cies. Second, we investigate the impact of non-observability
of psychological state variables on policy learning. We
note that neither of these issues has received attention in
prior work and current JITAIs routinely leverage machine
learning-based context inferences that discard prediction
uncertainty.

Our primary contributions are: (1) the development of a
physical activity JITAI simulation environment that captures
key aspects of the dynamics of behavior in the context of
adaptive interventions; and (2) the quantitative evaluation
of the impact of context inference error, context inference
uncertainty and partial observability on the performance of
policies learned using different categories of reinforcement
learning approaches including policy gradient methods and
value function methods.

Our results show that policies that leverage context infer-
ence probabilities as features can significantly outperform
policies that use only the most likely context value. Sec-
ond, our results show that non-observability of psycholog-
ical state variables has a drastic impact on the quality of
policies learned using value function methods, but a sig-
nificantly more modest effect on policy gradient methods.
These results have important implications for the design of
RL methods for use in JITAI applications. 1

1Code for this project is available at: https://github.com/reml-
lab/rl_jitai_simulation
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The remainder of this paper is organized as follows. In Sec-
tion 2 we provide background on JITAIs and reinforcement
learning methods. In Section 3 we present the methods used
in our experiments including the description of the phys-
ical activity JITAI simulation environment. In Section 4
we present experiments and results. We conclude with a
discussion in Section 5.

2 BACKGROUND AND RELATED WORK

In this section we provide a brief overview of research on
JITAIs and background on reinforcement learning methods.

2.1 JUST-IN-TIME ADAPTIVE INTERVENTIONS

As noted in the introduction, JITAIs are a class of person-
alized health intervention developed within the behavioral
science community that aims to provide the right type and
amount of support for each individual as their personal and
environmental context varies over time [Nahum-Shani et al.,
2018]. JITAI’s and related adaptive study design have been
applied in multiple critical health domains including phys-
ical activity [Hardeman et al., 2019], smoking cessation
[Battalio et al., 2021, Yang et al., 2023] and addiction [Per-
ski et al., 2022].

JITAIs are comprised of three main parts: a set of interven-
tion components that can be provided to an individual and
the specific intervention options within each component; a
set of decision time points that determine when intervention
components can be provided to an individual; and a policy
that determines which intervention option to select for a
given individual in a given context. Many current JITAIs
are sophisticated cloud-supported mobile software appli-
cations that leverage a variety of intervention components
from planning to goal setting to contextually tailored mes-
saging and content delivered from auxiliary apps (such as
mindfulness and stress reduction exercises) [Perski et al.,
2022, Spruijt-Metz et al., 2022].

While early JITAIs were largely based on self-report of
context information, current JITAIs are increasingly making
use of machine learning-based context inferences derived
from data collected from smart phones and wearable sensors.
For example, recent work in adaptive intervention design for
smoking cessation support [Battalio et al., 2021] leverages
customized wearables [Ertin et al., 2011, Kwon et al., 2021]
and machine learning models for the detection of stress
[Hovsepian et al., 2015] as well as smoking lapse [Saleheen
et al., 2015].

Despite the sophistication of JITAIs as software applica-
tions, the complexity of component and option selection
policies has remained relatively limited. While the policies
are adaptive in the sense of selecting different content in
different contexts, the context-to-content mappings are of-

ten hand-specified by the intervention designers. While this
allows intervention designers to build selection policies that
are based on behavioral theory, there is significant need for
methods that can refine expert policies as well as learn novel
policies from data.

To this end, a number of domains where JITAIs are being
deployed admit meaningful and continuously measurable
proximal outcomes that can be used to form reward signals
for reinforcement learning algorithms. For example, in the
physical activity domain, wearable activity tracking devices
such as FitBit devices and smart watches can be used to
detect both the duration of sedentary episodes as well as
steps [Spruijt-Metz et al., 2022]. We turn next to a brief
review of reinforcement learning and return to a discussion
of the challenges of applying RL methods in the JITAI
context at the end of this section.

2.2 REINFORCEMENT LEARNING

The goal of reinforcement learning (RL) methods is to learn
a policy that optimizes the selection of actions in a sequen-
tial decision making problem [Sutton and Barto, 1998]. A se-
quential decision making problem is formalized as a Markov
decision process or MDP (S,A, P,R) where S is the state
space, A is the action space, P defines the state transition
probability distribution P (s′|s, a) and R defines the reward
function R(s, a, s′) for taking action a in state s and then
transitioning to state s′. A policy π is a function that maps
states into actions. An episode in an MDP consists of a se-
quence of state, action, reward tuples (st, at, rt). Starting
from an initial state s0, an episode proceeds according to
the policy, state transition distribution and reward function
until an absorbing state is reached [Sutton and Barto, 1998].

In this work, we focus on two classes of reinforcement
learning methods: policy gradient methods and value func-
tion methods. Policy gradient methods learn a probabilistic
model πθ mapping states into a probability distribution over
actions. Value function methods instead learn the value of
states or state-action pairs. The domain that we focus on in
this work has a factorized state space that includes continu-
ous dimensions, thus we focus on value function methods
that can accommodate continuous state variables. We briefly
review both classes of methods.

Policy Gradient Methods: The goal of policy gradient
methods is to select the parameters θ of the policy πθ
to maximize the expected return of the policy: J(πθ) =

Eτ∼πθ
[
R(τ)

]
. Here R(τ) is the return over a trajectory

τ . A trajectory is a sequence of states and actions: τ =
(s0, a0, s1, a1, ...sT−1, aT−1, sT ) where T is the episode
length.

Different policy gradients methods use different definitions
of the return R(τ). In this work we focus on the basic RE-
INFORCE algorithm, which uses a return based on the
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discounted sum of rewards to go. Policy gradient methods
learn the parameters of the policy using a Monte Carlo ap-
proximation to the gradient of the expected return function
using M sampled trajectories per gradient update [Sutton
et al., 1999, Williams, 1992] as shown below where γ is the
discount rate and Gt(τ (i)) is the reward to go function.

θt+1 ← θt + α∇̂J(πθ) (1)

∇̂J(πθ) =
1

M

M−1∑
i=0

T−1∑
t=0

∇θ log πθ(a
(i)
t |s

(i)
t )Gt(τ

(i))

(2)

Gt(τ
(i)) =

T−1∑
k=t

γt−krt (3)

One of the interesting properties of REINFORCE as a pure
Monte Carlo policy gradient method is that the correctness
of the above learning rule and the convergence of the learn-
ing algorithm hold in the case where both the policy πθ is
modeled using a non-linear function approximator and we
only have access to partially observed state vectors s′t rela-
tive to the full MDP state st. While REINFORCE is known
to have high variance, more sophisticated policy gradient
methods such as Actor-Critic methods do not have conver-
gence guarantees in continuous state spaces with partially
observed state. We also note that while methods like the use
of a baseline in the return formulation can also decrease vari-
ability, we do not see convergence issues in our experiments
when using sufficiently large M .

Value Function Methods: While policy gradient methods
aim to directly learn an optimal policy, value function meth-
ods such as Q-learning aim to learn the value of state-action
pairs and derive a policy by selecting actions that have maxi-
mal value in each state [Sutton and Barto, 1998]. In classical
Q-learning for discrete state spaces, the state-action value
function Q(s, a) is simply a lookup table. More generally,
Q-learning can be applied using a function approximator for
Q(s, a), which allows Q-learning to be extended to continu-
ous state spaces. For example, the Deep Q Network (DQN)
approach uses a deep neural network to approximateQ(s, a)
[Mnih et al., 2013].

DQN approaches learn using backpropagation applied to a
regression loss `(δt) that is a function of the temporal differ-
ence error δt = rt + γ ·maxa′∈AQ(st+1, a

′)−Q(st, at).
Fully online learning can be applied after taking each ac-
tion, but performance can be improved in a number of ways
including minimizing the loss applied to the temporal differ-
ence computed from a batch of examples sampled from a
replay buffer and using a second copy of the Q network that
is updated more slowly in place of Q(st+1, a

′) [de Bruin
et al., 2015, Schaul et al., 2016].

In this work we use the Dueling DQN variant with a replay
buffer as an example approach of this class. In the Dueling
DQN approach, the Q network is split into two compo-

nents: a state value function V (s) and a state-dependent
advantage function A(s, a). The Q(s, a) value is com-
puted by summing the state value and the advantage value:
Q(s, a) = V (s) + A(s, a). The average advantage value
Ā(s) = 1

|A|
∑
a∈AA(s, a) can also be subtracted from

the raw advantage value A(s, a) to improve identifiability
[Wang et al., 2016]. The model is again learned by minimiz-
ing a loss on the temporal difference error. This approach
also uses more slowly updated copies of these networks
when computing the target Q(st+1, a

′) values.

We note that unlike standard Monte Carlo policy gradient
methods, Q-learning methods including the Dueling DQN
have the ability to learn from trajectories that were not
sampled from the current model parameters. This off-policy
learning ability allows Q-learning methods to use a replay
buffer and provide better sample efficiency. However, Q-
learning methods have the significant drawback that their
convergence is not guaranteed in a setting where the state
is partially observed and state-action values are represented
using non-linear function approximators, including neural
networks.

2.3 RL FOR JITAIS

Prior work on RL methods for JITAIs has largely focused
on contextual bandit methods [Paredes et al., 2014, Rabbi
et al., 2015, Tewari and Murphy, 2017, Yom-Tov et al.,
2017]. These methods aim to select actions that maximize
the immediate expected reward, thus discounting longer
term effects of actions. However, adaptive health interven-
tion domains can have significant long term and delayed
effects. To address this challenge Liao et al. [2020, 2022]
develop an extended bandit-like algorithm that uses a model-
based proxy reward to imitate the longer term effect of ac-
tions. Gönül et al. [2021] propose an RL method that uses
modified eligibility traces that aim to credit intervention
components that the participant actually engaged with. The
core RL algorithm used is based on Q-learning, but assumes
that discrete states are provided by an auxiliary state classi-
fier.

While both Liao et al. [2020] and Gönül et al. [2021] repre-
sent improvements over contextual bandit methods in terms
of their ability to model longer term effects of actions, both
approaches condition on context variables as if they are
known without uncertainty, which is the specific issue we
study in this work. Further, through the use of the auxiliary
state classifier, Gönül et al. [2021] avoid issues that arise
when composing Q-learning methods with function approx-
imation under partial observability, which we also address
directly.

Finally, we note that Liao et al. [2020] articulate multiple
important practical challenges with the deployment of RL
methods for JITAIs including the need for methods that
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Table 1: Actions Values

Action Value Description

a = 0 do not send a message
a = 1 send a non-tailored message
a = 2 send a message tailored to context 0
a = 3 send a message tailored to context 1

can learn quickly from limited interactions with single in-
dividuals. In this work our primary goal is to quantify the
fundamental limits imposed by context inference error and
partial observability. As a result, we do not consider restric-
tions on the number of simulated interactions with a user
or restriction on the number of episodes of training. Our re-
sults should be interpreted as establishing upper bounds on
the performance achievable by methods that impose further
constraints.

3 METHODS

In this section we describe the physical activity JITAI simu-
lation environment that we use in this work as well as the
context error and partial observability conditions that we
study. We also describe in detail the reinforcement learning
agents used in our experiments.

3.1 PHYSICAL ACTIVITY JITAI SIMULATION
ENVIRONMENT

We design a JITAI simulation environment taking inspira-
tion from recent work in the area of contextualized messag-
ing based intervention studies for promoting walking as a
form of physical activity [Hardeman et al., 2019, Spruijt-
Metz et al., 2022]. Below we describe the state, action, and
dynamics of the physical activity JITAI simulation.

State and Actions: A contextualized messaging interven-
tion leverages a pool of messages that aim to provide sup-
port in different contexts. The choice of whether and what
type of message to send at each time step depends on the
individual’s context ct. We select stressed/not stressed as
an example binary context variable in our simulation. As
discussed in the previous section, such context variables
are often derived from sensor-based inferences [Hovsepian
et al., 2015]. To reflect the fact that the true context is not
known to the reinforcement learning agent, we use pt to
denote an inferred probability distribution over the context,
and lt to represent the most likely context value according
to pt.

In addition to the stressed/not stressed context variable, we
model two additional psychological state variables: habitua-
tion ht and disengagement risk dt. Intuitively, habituation
models the extent to which the effect of the intervention is

Table 2: Simulation Variables

Variable Description Values

ct true context {0, 1}
pt context probabilities ∆1

lt most likely context {0,1}
dt disengagement risk level [0, 1]
ht habituation level [0, 1]
st number of steps N

attenuated through prior exposure to the intervention. Dis-
engagement risk facilitates modeling a common problem
with adaptive interventions: in response to factors such as
perceived lack of utility, intervention participants sometimes
completely abandon the use of an intervention. We discuss
the dynamics of these variables in the next section.

We summarize the variables in the simulation and their value
ranges in Table 2 (note that ∆1 indicate the probability
simplex for a binary variable). The simulation includes a
total of four actions as summarized in Table 1. Action a = 0
is the null action where no message is sent. Action a =
1 corresponds to sending a non-context tailored message.
Actions a = 2 and a = 3 correspond to sending messages
tailored to context 0 and 1 respectively. Note that based
on the numerical context and action values, at = ct + 2
corresponds to the selection of a message that is tailored
for the correct context. In response to taking an action in a
given state at time t, we observe a reward in the form of a
step count st.

Dynamics: We focus on simulating the dynamics of ha-
bituation and disengagement and how they relate to the
effect of the intervention components. We model habitua-
tion as increasing with each message sent up to an upper
limit and decaying towards zero when messages are not
sent. We model disengagement risk as increasing only when
incorrectly contextualized messages are sent and decay-
ing towards zero only when uncontextualized or correctly
contextualized messages are sent. We provide the update
equations for these state variables below. The parameters of
the update equations are described in Table 3.

ht+1 =

{
(1− δh) · ht if at = 0

min(1, ht + εh) otherwise

dt+1 =


dt if at = 0

(1− δd) · dt if at = 1 or at = ct + 2

min(1, dt + εd) otherwise

We model the reward in terms of the surplus step count
generated beyond a potentially context dependent baseline
level µc. We model incorrectly contextualized messages and
not sending a message as generating zero surplus reward. We
model uncontextualized actions and correctly contextualized
actions as providing base surplus rewards ρ1 and ρ2 that are
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Table 3: Environment Parameter Settings.

Parameter Description Value

δh habituation decay 0.1
εh habituation increment 0.05
δd disengagement decay 0.1-0.4
εd disengagement increment 0.1-0.4
ρ1 at = 1 base reward 50.
ρ2 at = ct + 2 base reward 200.
σ feature uncertainty {0.4, ..., 2}

attenuated by the habituation level ht. Specifically, as the
habituation level increases, the fraction of the base reward
that is realized decreases. While increasing disengagement
risk does not have an immediate effect on reward, if the
disengagement risk reaches the value 1, we simulate the
occurrence of a disengagement event that terminates the
episode. This delayed effect can have a significant impact
on total reward over an episode. The maximum length of an
episode is set to 50 time steps.

st+1 =


µct + (1− ht+1) · ρ1 if at = 1

µct + (1− ht+1) · ρ2 if at = ct + 2

µct otherwise

We model the true context as a purely random Bernoulli
process. At each time step we sample ct ∼ Bernoulli(0.5).
To model a sensor-derived inference for ct, we follow a
two step process. We sample a normally distributed context-
dependent scalar feature xt ∼ N (ct, σ

2) where σ models
the uncertainty in the feature given the context. We next
compute the context probability distribution pt given the
sampled feature value xt as pct = P (Ct = c|xt) simulating
the application of a probabilistic context classifier. Finally,
we set the most likely context to lt = argmaxc pct. We vary
the feature noise standard deviation parameter σ from 0.4 to
2. This generates context inference error rates varying from
10% to 41%. Figure 1 shows the effect of the feature noise
standard deviation parameter σ on the context inference
error rate.

3.2 CONTEXT INFERENCE AND PARTIAL
OBSERVABILITY CONDITIONS

We consider six different scenarios in terms of the obser-
vations that are provided to the RL agent during learning.
The full state consists of the triple (ct, ht, dt). We consider
the case where ct is not directly observed and we instead
provide the agent with either the most likely inferred context
lt as an input, and the case where ct is not directly observed
and we instead provide the agent with information about the
inferred probability distribution over the context variable
pt as input. Specifically, since the distribution pt is over
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Figure 1: Context inference error rate as a function of σ.

a binary variable, we supply p0t (the probability that the
context is 0) as the feature. Further, we consider the case
where the state variables ht and dt are both observed and
the case where neither is observed. When ht and dt are not
observed we augment the state with a time indicator vari-
able it. In our experiments we use a time indicator variable
it = mod(t, k). This choice enables the agent to take dif-
ferent actions based on a cyclic notion of time within an
episode. We experimented with different values of k and
found little difference between different small values of k.
We use k = 2 in our experiments.

In our experiments, the scenarios described above are la-
beled as follows: C-H-D: ct, ht, dt observed. L-H-D: lt,
ht, dt observed. P-H-D: pt, ht, dt observed. C-T: ct, it ob-
served. L-T: lt, it observed. P-T: pt, it observed.

We expect agents learned using the C-H-D observation set
to perform the best as these agents have access to the full
MDP state space. We hypothesize that as the feature noise
increases, the P-H-D observation set will perform better
than the L-H-D feature set as access to the context infer-
ence probability distribution provides the agent with strictly
more information than the most likely context. Finally, we
hypothesize a loss in performance in the scenarios where
the habituation and disengagement variables can not be ob-
served, which is a more realistic scenario as these variables
can not be passively sensed and are problematic to obtain in
practice even via direct self report.

3.3 REINFORCEMENT LEARNING AGENTS

In our experiments, we compare a policy gradient method
to a value function method. For the value function method
we select the Dueling DQN method. We use a multilayer
perceptron with two hidden layers for both the state value
and advantage functions. We perform a hyper-parameter
search over hidden layers sizes [32, 64, 128, 256], batch
sizes [16, 32, 64], Adam optimizer learning rates from 1e-6
to 1e-2, and epsilon greedy exploration rate decrements
from 1e-6 to 1e-3. We report the results with 128 neurons in
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Figure 2: Top row: results δd = 0.1, εd = 0.4. Bottom row: results for δd = 0.2, εd = 0.3. First column: effect of learning
with most likely context and context probabilities for DQN. Second column: effect of learning with most likely context and
context probabilities for REINFORCE. Third column: effect of learning with most likely contexts and partial observability
for REINFORCE and DQN. Fourth column: effect of learning with context probabilities and partial observability for
REINFORCE and DQN.

each hidden layer, Adam optimizer learning rate lr = 5e-4,
epsilon linear decrement δε = 0.001, decaying ε from 1 to
0.01, batch size 64, and 1000 learning episodes. The target
Q network parameters are replaced every K = 1000 steps.

For the REINFORCE policy network, we use a multi-
layer perceptron with one hidden layer. We perform hyper-
parameter search over hidden layer sizes [32, 64, 128, 256],
and Adam optimizer learning rates from 1e-6 to 1e-2. We
report results using 128 neurons, and Adam optimizer learn-
ing rate lr = 6e-4. We set the number of trajectory samples
per gradient step to M = 50 and the number of episodes
used for learning to 15, 000.

Since episodes in the JITAI simulation domain are termi-
nated if they exceed a predetermined amount of time (50
steps), the underlying Markov process is time inhomoge-
neous. To accommodate this, we apply both REINFORCE
and DQN methods in a non-discounted mode (e.g., γ = 1)
and augment the state with a one-hot vector encoding of the
time step.

4 EXPERIMENTS AND RESULTS

In this section we present experiments and results using
the physical activity JITAI simulation domain and the rein-
forcement learning agents and scenarios introduced in the
previous section. We repeat each experiment 10 times with
different random seeds. In all the experiments and for all
random seeds, we first learn a policy and then compute the
performance of the policy using the average over 1000 test
episodes of the per-episode non-discounted total reward. We

report the average performance over ten seeds as well as the
standard deviation of the performance over ten seeds.

The Effect of Learning with Most Likely Contexts: We
begin by quantifying the impact of learning policies given
the most likely context lt instead of the true context ct un-
der the assumption that the habituation and disengagement
variables are fully observed. In this experiment we vary
the value of feature uncertainty parameter σ from 0 to 2
resulting in variation in context inference error from 0% to
approximately 40%. As described in the previous section,
we repeat this experiment ten times for ten random seeds
for both DQN and REINFORCE and report performance
in terms of average per-episode total reward. The results
are shown as the orange lines in Figure 2 for the DQN and
REINFORCE agents. As we can see, the best performing
policies are obtained when the context inference error rate
is 0 so that lt = ct. As the context inference error rate
increases, the performance of both the DQN and REIN-
FORCE agents drops quickly. We can see that at a context
inference rate of 40%, both agents experience a drop in
reward due to using most likely contexts, of approximately
50% relative to using true contexts.

The Effect of Learning with Context Probabilities: We
next quantify the impact of learning policies given access to
context inference probabilities pt instead of the true context
ct under the assumption that the habituation and disengage-
ment variables are fully observed. We contrast access to
context inference probabilities with access only to most
likely inferred contexts. We use the same experimental pro-
cedure as for the previous experiment. The results are shown

1052



0 1 2 3
action value

0

25000

50000

75000

100000

REINFORCE P-H-D ( =0.6)
action hist for p0 >= 0.8

0 1 2 3
action value

0

25000

50000

75000

100000

REINFORCE P-H-D ( =0.6)
action hist for p0 in ]0.8, 0.6]

0 1 2 3
action value

0

25000

50000

75000

100000

REINFORCE P-H-D ( =0.6)
action hist for p0 in ]0.6, 0.4]

0 1 2 3
action value

0

25000

50000

75000

100000

REINFORCE P-H-D ( =0.6)
action hist for p0 in ]0.4, 0.2]

0 1 2 3
action value

0

25000

50000

75000

100000

REINFORCE P-H-D ( =0.6)
action hist for p0 < 0.2

0 1 2 3
action value

0

25000

50000

75000

100000

REINFORCE L-H-D ( =0.6)
action hist for p0 >= 0.8

0 1 2 3
action value

0

25000

50000

75000

100000

REINFORCE L-H-D ( =0.6)
action hist for p0 in ]0.8, 0.6]

0 1 2 3
action value

0

25000

50000

75000

100000

REINFORCE L-H-D ( =0.6)
action hist for p0 in ]0.6, 0.4]

0 1 2 3
action value

0

25000

50000

75000

100000

REINFORCE L-H-D ( =0.6)
action hist for p0 in ]0.4, 0.2]

0 1 2 3
action value

0

25000

50000

75000

100000

REINFORCE L-H-D ( =0.6)
action hist for p0 < 0.2

Figure 3: The top row of plots shows the distribution of actions selected by REINFORCE when given access to context
probabilities. The bottom row of plots shows the distribution of actions selected by REINFORCE when given access only to
the inferred most likely context.

Table 4: Unpaired t-tests on performance for scenarios P-H-
D vs. L-H-D, for different error rates, for δd = 0.1, εd = 0.4.
Effect is the difference of the average returns.

P-H-D vs. L-H-D σ Error Rate Effect p-value

DQN 0.4 10% 502.43 1.20e-19
DQN 0.6 18% 792.72 4.88e-14
DQN 0.8 27% 501.39 7.12e-08
DQN 1.0 31% 195.99 1.66e-03
DQN 2.0 41% -11.32 7.22e-01

REINFORCE 0.4 10% 240.49 3.11e-08
REINFORCE 0.6 18% 576.24 2.37e-12
REINFORCE 0.8 27% 218.59 1.42e-07
REINFORCE 1.0 31% 44.27 2.96e-02
REINFORCE 2.0 41% -74.13 2.91e-05

as the blue lines in Figure 2 for the DQN and REINFORCE
agents. As expected, the best performing policies are again
obtained when the feature uncertainty level is σ = 0 and
the context inference error rate is 0 so that pt effectively
carries the same information as ct. As the context inference
error rate increases, the performance of both the DQN and
REINFORCE agents using pt again decreases.

However, as we can see from the figures, the performance of
the agents with access to pt generally dominates the perfor-
mance of agent with access to lt until the context inference
error rate approaches the maximum value considered. This
gap is generally larger for moderate values of the context
inference error rate, lower values of δd and larger values εd.

To formally assess the differences between agents with ac-
cess to pt vs lt, we perform unpaired t-tests over the ten
repetitions for each context inference error rate. We show
the results for δd = 0.1, εd = 0.4 in Table 4. A p-value

< 0.05 indicates a statistically significant difference. The
unpaired t-tests confirm that access to pt results in statisti-
cally significant improvements in total reward compared to
access to lt up to a context error rate of approximately 30%.
The corresponding results for δd = 0.2, εd = 0.3, shown in
Table 2 of the supplemental material, exhibit similar trends.

We provide more insight into the effect of access to con-
text inference probabilities compared to most likely context
inferences in Figure 3. The top row of plots shows the dis-
tribution of actions selected by REINFORCE when given
access to context probabilities. The bottom row of plots
shows the distribution of actions selected by REINFORCE
when given access only to the inferred most likely context.
Each plot in each row corresponds to the distribution of
actions in a specific range of context inference probabilities.
All results are for a context inference error rate of 18%,
δd = 0.1 and εd = 0.4.

As we can see, when given access to context inference proba-
bilities, REINFORCE increasingly avoids taking the contex-
tualized message actions 2 and 3 as the context uncertainty
increases, instead preferring to take action 0. When the con-
text inference uncertainty is low, it takes contextualized
actions most of the time. By contrast, when given only the
most likely inferred context as input, REINFORCE takes
a larger proportion of actions 2 and 3 when the context is
uncertain, resulting in a higher rate of disengagement events.
Figure 2 in the supplemental material shows similar results
for the DQN agent.

Finally, we further examine the effect of access to con-
text inference probabilities compared to most likely context
inferences as a function of the disengagement increment
parameter εd and disengagement decay parameter δd. Fig-
ure 5 correspond to a context inference error rate of 18%
(σ = 0.6) with fully observed state. Additional results are
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Figure 4: Learning curves of DQN and REINFORCE (only first 4.5k episodes are shown).

presented in the supplemental material in Figures 3 and 4.
These results show that context probabilities improve on
most likely contexts over a wide range of disengagement
dynamics. As noted above, performance difference tends to
be larger in cases that lead to a greater chance of disengage-
ment events occurring. This corresponds to larger values of
the disengagement risk increment parameter εd and smaller
values of the disengagement risk decay parameter δd, for a
context inference error rate up to 27%.

The Effect of Partial Observability: To study the effect
of partial observability, we repeat the primary experiments
presented in the previous two sections but under the scenario
where the agents do not have access to the ht and dt state
variables. Instead, the agents are given access to either the
most likely context lt and the time indicator variable it, or
the context inference probability pt and the time indicator
variable it. We again vary the value of the feature uncertainty
parameter σ from 0 to 2 resulting in variation in context
inference error from 0% to approximately 40%. The results
when using the most likely context and the results when
using context inference probabilities are given in Figure 2,
third and fourth columns.

First, we can see that the performance of the DQN method
suffers drastically under partial observability. At a context in-
ference error rate of 0, the DQN method achieves an average
total reward of approximately 1500 under partial observabil-
ity compared to an average total reward of 3000 with fully
observed state. Further, regardless of whether most likely
contexts or context probabilities are used, the performance
of the DQN agent decays similarly toward an average total
reward of approximately 500 at a context inference error
rate of approximately 40%.

We can see a significant contrast when comparing the DQN
agent to the REINFORCE agent. The REINFORCE agent
experiences only a small drop in performance under the 0%
context inference error condition compared to the same con-
dition with fully observed state, thus vastly outperforming
the DQN agent. Further, we can see that the REINFORCE
agent maintains better performance when using context in-

ference probabilities compared to when using most likely
context under partial observability.

We again perform unpaired t-tests to formally contrast the
DQN agent with the REINFORCE agent for each context
inference error rate. The performance differences are highly
statistically significant with large differences in mean perfor-
mance across all context inference error rates. These results
are presented in Tables 3 and 4 in the supplemental material.

Sample Complexity of Learning: In this experiment, we
compare learning curves of the DQN and REINFORCE
agents for scenarios C-H-D, P-H-D and P-T to illustrate
their convergence properties as a function of the number
of episodes of training. The results are shown in Figure
4 using a moving average window of 100 episodes. As
expected, REINFORCE exhibits higher variability during
learning and takes much longer to converge than the DQN
agent. In general, policy gradient methods are known to be
less sample efficient than value function methods, which
can benefit from off-policy learning using a replay buffer.
However, REINFORCE converges at a similar rate and to
similar performance in both the P-H-D and P-T scenarios
while the DQN method converges at a similar rate but to
much worse performance under the P-T scenario.

5 CONCLUSIONS

In this paper we have investigated the impact of context
inference error and partial observability on the ability to
learn intervention option selection policies for Just-In-Time
adaptive interventions using RL methods. We have intro-
duced a novel simulation environments that captures key
aspects of messaging-based JITAIs including habituation
and disengagement risk as well as uncertainty and error in
context inferences. We have investigated learning policies
which rely on most likely inferred context (as is typically
the case in current JITAIs), and have shown that the use
of context probabilities significantly outperforms the use
of most likely context inferences. We have further shown
that there is a stark difference in performance between pol-
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Figure 5: Performance as a function of the disengagement increment εd and decay parameters δd, for REINFORCE (top
row) and DQN (bottom row).

icy gradient methods and Q-learning methods under partial
observability.

As noted in Section 2.3 this work has a number of important
limitations. First, our primary goal is to quantify the funda-
mental limits of policy learnability under context inference
error and uncertainty as well as partial observability using
policy gradient and Q-learning methods. In doing so we
have not constrained the RL methods to a realistic number
of episodes during learning. As a result, our findings should
be interpreted as providing upper bounds on performance in
these important and previously unexplored settings.

Going forward, more work is required to compose the find-
ings of this paper with regard to the use of probabilistic
context inference representations with prior work such as
Liao et al. [2020], which focuses on sample efficiency of
learning. We also note that the drastic loss of performance
experienced by traditional Q-learning methods in our experi-
ments may be addressable using state augmentation methods
such as the addition of memory or the use of recurrent neu-
ral networks that have been proposed in prior work to deal
with partial observability. Another potentially interesting
possibility is the incorporation of probabilistic dynamic la-

tent variable models to provide beliefs over the full state
including psychological latent variables.

Finally, we note that while the simulation environment was
designed to model key issues with context uncertainty and
delayed effect of actions, it is limited in other aspects. Never-
theless we believe that the findings we report have important
implications for the development of RL methods that can be
applied to improve the effectiveness of real-world JITAIs.

Acknowledgements

This work was supported by National Institutes of Health
National Cancer Institute, Office of Behavior and Social
Sciences, and National Institute of Biomedical Imaging
and Bioengineering through grants U01CA229445 and
1P41EB028242 and by the National Science Foundation
through grant IIS-1722792. The authors would like to thank
multiple collaborators for helpful discussions related to this
work including Donna Spruijt-Metz, Misha Pavel, Daniel
Rivera, Eric Hekler, Steven De La Torre, Mohamed El Mist-
iri and Philip Thomas.

1055



References

Samuel L Battalio, David E Conroy, Walter Dempsey,
Peng Liao, Marianne Menictas, Susan Murphy, Inbal
Nahum-Shani, Tianchen Qian, Santosh Kumar, and Bon-
nie Spring. Sense2stop: a micro-randomized trial us-
ing wearable sensors to optimize a just-in-time-adaptive
stress management intervention for smoking relapse pre-
vention. Contemporary Clinical Trials, 109:106534,
2021.

Tim de Bruin, Jens Kober, Karl Tuyls, and Robert Babuška.
The importance of experience replay database composi-
tion in deep reinforcement learning. In Deep Reinforce-
ment Learning Workshop, Advances in Neural Informa-
tion Processing Systems, 2015.

Emre Ertin, Nathan Stohs, Santosh Kumar, Andrew Raij,
Mustafa Al’Absi, and Siddharth Shah. Autosense: un-
obtrusively wearable sensor suite for inferring the onset,
causality, and consequences of stress in the field. In
Proceedings of the 9th ACM conference on embedded
networked sensor systems, pages 274–287, 2011.

Suat Gönül, Tuncay Namlı, Ahmet Coşar, and İsmail Hakkı
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