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A PROOF OF PROPOSITION 2

Proof. The variances of PostDropout and PreDropout are represented as follows:

Var[Dropouttrain(Wx)] = E[(Dropouttrain(Wx))2]− (E[Dropouttrain(Wx)])2, (1)

Var[WDropouttrain(x)] = E[(WDropouttrain(x))
2]− (E[WDropouttrain(x)])

2. (2)

We note that E[Dropouttrain(Wx)] = E[WDropouttrain(x)]. Thus, we investigate the difference between the first terms in
Eqs. 1 and 2.

First, as PostDropout drops columns, we have
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Secondly, as PreDropout drops rows, we obtain
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Note that this difference arises from the fact that E[m2
i,i] = p and E[mi,imj,j ] = p2 for i ̸= j. Intuitively, PostDropout

uses a single mask; therefore, the multiplication of the two masks is equivalent to the original. However, PreDropout uses
multiple masks, and the multiplication of the two masks results in a new mask with Bernoulli(p2).

In summary, the difference between Eqs. 5 and 9 comes from the second term and is 1−p
p

∑n
j=1

∑n
k ̸=j wi,jwi,k E[xjxk].

Thus, we have

E[(Dropouttrain(Wx))2] > E[(WDropouttrain(x))
2], (10)
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if and only if
∑n

j=1

∑n
k ̸=j wi,jwi,k E[xjxk] > 0. This proves the first inequality ∆(Dropout(Wx)) <

∆(WDropout(x)).

Next, we investigate the second inequality. We know that

Var[WDropouttest(x)] = E[(Wx)2]− (E[Wx])2. (11)

We compare these two terms with those in Eq. 2. The second term is equal to the second term in Eq. 2. Note that
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Thus, Var[WDropouttest(x)] < Var[WDropouttrain(x)], proving that ∆(WDropout(x)) < 1.

B PROOF OF PROPOSITION 5

Proof. GAP averages the feature map x in the spatial direction as [GAP(x)]k = 1
HW

∑H,W
i,j xk,i,j . For simplicity, we

regard the i, j axis as the a axis and denote kth element of GAP from x ∈ RK×A as

[GAP(x)]k =
1

A

A∑
a

xk,a, (15)

where A = HW . In vector form, GAP(x) = 1
Ax · 1⊤ where 1 = [1, 1, · · · , 1] ∈ RA. Now, dropout at H4 and H5 can

be, respectively, written as:
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The two equations indicate that dropout before the GAP masks each element of the feature map x, whereas dropout after the
GAP masks each channel of the feature map x. This property enables a similar derivation in the proof of Proposition 2 as
follows:
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of an activation function such as ReLU or ReLU6, the condition holds. This proves that the variance at H4 is smaller than at
H5.



C DESIGN OF OTHER DROPOUT OPERATION

In our analysis, we used the properties of the Bernoulli distribution and corresponding mask matrix M. One could think that
if we design another mask matrix using a different distribution and employ it to modify dropout, then the dropout would not
demonstrate variance inconsistency. For example, rather than a simple turn-off operation, using attenuation and amplification
would have more degrees of freedom, which could enable us to find dropout without any inconsistency. Considering this, we
seek a new general design for the Dropout operation.

Definition 3. For an n-dimensional vector x, we define the DropoutAr operation as:

DropoutArtrain(x) = Ax, (22)
DropoutArtest(x) = x, (23)

where A is an n × n diagonal matrix of ai,j = 0 for i ̸= j and ai,j is sampled from the arbitrary distribution for i = j,
independent of x.

DropoutAr is a generalization of Dropout; Dropout is a special case of DropoutAr obtained by choosing A = M/p. For
example, we could choose a Gaussian distribution to generate real numbers that serve as attenuation and amplification for
each element of the vector x. From this generalization, we investigate the form of a mask matrix that exhibits consistency in
the training and test phases.

However, we find that this is unrealistic.

Proposition 6. DropoutAr cannot exhibit both mean and variance consistencies simultaneously for any A, except for the
identity matrix.

Proof. We prove this proposition by observing that mean consistency results in variance inconsistency. If DropoutAr has
a mean consistency, we obtain E[Ax] = E[x]. Because each element of A is sampled independently of x, we obtain
E[A] = 1. Now, we investigate the variance of DropoutAr:

Var[Ax] = E[(Ax)2]− (E[Ax])2 (24)

= E[A2] E[x2]− (E[A])2(E[x])2 (25)

= (Var[A] + (E[A])2) E[x2]− (E[A])2(E[x])2 (26)

= (Var[A] + 1)E[x2]− (E[x])2 (27)

> E[x2]− (E[x])2 (28)
= Var[x]. (29)

Note that if A is not an identity matrix for E[A] = 1, then Var[A] > 0. Thus, we obtain Var[Ax] > Var[x]. Therefore, we
conclude that ∆(DropoutAr(x)) < 1; hence, DropoutAr cannot exhibit variance consistency as long as it is not the identity
operator.

One could think that this simple linear equation lacks sufficient degrees of freedom. We now consider using a polynomial
function.

Definition 4. For an n-dimensional vector x, we define the DropoutArPoly operation as:

[DropoutArPolytrain(x)]i =

d∑
k=0

ai,kx
k
i , (30)

DropoutArPolytest(x) = x, (31)

where ai,k is sampled from an arbitrary distribution and is independent of x.

DropoutArPoly is a further generalization of DropoutAr. Similarly, we propose the following:

Proposition 7. DropoutArPoly cannot exhibit both mean and variance consistencies simultaneously as long as DropoutAr-
Poly is not the identity operator.



Proof. We prove this proposition by observing that having both mean and variance consistencies simultaneously leads to the
identity operator. First, during the training phase, the mean of DropoutArPoly is

E[ai,0 + ai,1xi + ai,2x
2
i + · · ·+ ai,dx

d
i ] = E[ai,0] + E[ai,1] E[xi] + E[ai,2] E[x

2
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d
i ]. (32)

For DropoutArPoly, obtaining the mean consistency on an arbitrary x requires

E[ai,1] = 1, (33)
E[ai,0] = E[ai,2] = · · · = E[ai,d] = 0. (34)

Secondly, to investigate variance, we compute the mean of the square.
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To obtain variance consistency, this result should be equal to E[x2
i ] for an arbitrary x. This requires

E[a2i,1] = 1, (39)

E[a2i,0] = E[a2i,2] = · · · = E[a2i,d] = 0. (40)

Eqs 33, 34, 39, and 40 indicate that DropoutArPoly becomes the identity operator; hence, there is no other possible operation
that can satisfy both mean and variance consistencies at the same time.

In summary, for a dropout-like operation, variance inconsistency is a universal phenomenon and is not unique to the
Bernoulli distribution.

D MEAN AND VARIANCE AFTER RELU

For x ∼ N (0, σ2), we compute the mean and variance of ReLU(x), which are used in the main text. We use p(x) =
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)
to denote the probability density function of x. First, we know that
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The last equation can be derived using the properties of a half-normal or truncated normal distribution. Secondly, using the
symmetry of p(x), we derive
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Thus, we obtain

Var[ReLU(x)] =

(
1

2
− 1

2π

)
σ2 (49)

=
π − 1

2π
σ2. (50)

1 import torch
2

3 len_x = int(1e+8)
4 std_x = 1.0
5 x = torch.normal(mean=torch.zeros((len_x)), std=std_x)
6

7 ReLU = torch.nn.ReLU()
8 ReLU_x = ReLU(x)
9

10 print(ReLU_x.mean().item())
11 print(ReLU_x.var(unbiased=False).item())

Listing 1: PyTorch example to measure the mean and variance after ReLU.

The mean and variance after ReLU can also be empirically measured using the above Python code. We used a sufficiently
large number of samples, 108 and σ = 1. From this code, we obtained the following:
0.3989197611808777
0.34079989790916443

Indeed, 1√
2π

≈ 0.3989 and π−1
2π ≈ 0.3408.

E LIMITATION

One potential disadvantage of applying dropout before the GAP is that it could require an additional feature map that
expands on the spatial axis, which leads to increased GPU memory consumption. However, modern libraries such as PyTorch
provide an option called inplace that allows features to be dropped directly without generating an additional feature map.
This option eliminates the potential disadvantage of applying dropout before the GAP.

F HYPERPARAMETERS FOR EXPERIMENTS

Notes on Module Tests When measuring the variance, certain libraries apply Bessel’s correction by default. To ensure
correct results, this feature must be turned off. For example, in PyTorch, torch.var(input, unbiased=False)
should be used to apply a biased estimator. In fact, unbiased=False is specified when the BN of PyTorch computes the
standard deviation.

CIFAR Dataset The CIFAR-{10, 100} dataset consists of 60K images of {10, 100} classes. For data augmentation,
we used 32 × 32 random cropping with 4-pixel padding, a random horizontal flip with a probability of 0.5, and mean-
std normalization using dataset statistics. For training, the number of epochs of 164, stochastic gradient descent with a
momentum of 0.9, learning rate of 0.1, learning rate decay of 0.1 at {81, 122} epochs, weight decay of 0.0001, mini-batch
size of 128, and dropout with a keep probability of 0.8 were used.

Oxford-IIIT Pet and Caltech-101 Datasets The Oxford-IIIT Pet dataset consists of 7K pet images from 37 classes; the
Caltech-101 dataset includes 9K object images from 101 classes with a background category. Each dataset was split into
training, validation, and test sets at a ratio of 70:15:15. All experiments were conducted at a resolution of 224× 224 using
standard data augmentation, including random resized cropping to 256 pixels, random rotations within 15 degrees, color
jitter with a factor of 0.4, random horizontal flip with a probability of 0.5, center cropping with 224-pixel windows, and
mean-std normalization based on ImageNet statistics. To better observe the performance difference, we trained the model
from scratch and did not use pretrained weights. For training, stochastic gradient descent with a momentum of 0.9, learning
rate of 0.1, cosine annealing schedule with 200 iterations, weight decay of 0.002, mini-batch size of 128, and dropout with a
keep probability of 0.8 were used. The model with the highest validation accuracy was obtained for 200 training epochs.



ImageNet Dataset The ImageNet dataset consists of 1.2M images for 1,000 classes. For ImageNet experiments, we used
the pytorch-image-models library, which is also known as timm. We used the hyperparameter recipe described in the official
documentation. For training, stochastic gradient descent with momentum 0.9, learning rate 0.6, epochs 240, warm-up epochs
5, warm-up learning rate 10−5, cosine annealing schedule, weight decay 10−4, label smoothing 0.1, random erasing with
probability 0.4 and count 3, RandAugment of magnitude 7 and noise-std 0.5 with increased severity (rand-m7-mstd0.5-inc1),
and dropout with a keep probability of 0.8 were used.

G ADDITIONAL EXPERIMENTAL RESULTS

Dropout at Two Positions One could attempt to apply two dropouts in the residual block to combine the ad-
vantages of (P5, P6, or P7). However, according to Proposition 1, applying dropout at both P5 and P6 results in
Dropout(ReLU(Dropout(x))) = Dropout(ReLU(x)), which is meaningless. We experimented by applying dropout
at both P6 and P7 and observed that for PreResNet-{50, 110}, the accuracy was {93.4867, 94.1833}% for CIFAR-10 and
{72.04, 73.6667}% for CIFAR-100, which is worse than applying one dropout.

On Width We discussed that the advantage of PreDropout comes from the weight condition, which is intensified by the
width. Here, we experimented with different widths to test whether a small width could improve the accuracy. We used
WideResNet with a depth of 28. We varied the widen factor k that determines the number of channels {16, 16k, 32k, 64k}
for each stage. For k = 1, 2, 5, 10, we observed improved accuracy from dropout (Table 1), which implies that the widen
factor 1 is sufficient to realize an advantage from dropout.

Table 1: Experimental results on WideResNet-{Depth}-{Width} with varying width.

WideResNet-28-10 WideResNet-28-5 WideResNet-28-2 WideResNet-28-1
Accuracy Difference Accuracy Difference Accuracy Difference Accuracy Difference

No Dropout 96.1667 - 95.7733 - 94.9100 - 93.0433 -

Guideline 1 96.2433 (+0.0767) 96.1233 (+0.3500) 94.9367 (+0.0267) 93.2433 (+0.2000)

Regression Task Although our main experiments focused on image classification tasks, our findings on the position of
Dropout are not restricted to image classification and are expected to be seamlessly applicable to other tasks, including
regression tasks. Here, we target a regression task using the AgeDB dataset. The AgeDB dataset contains 16K images with
corresponding ages from 1 to 101. We use images as input and ages as labels to formulate regression tasks. For training,
PreResNet-101, stochastic gradient descent with momentum 0.9, learning rate 0.001, epochs 200, mini-batch size 128, and
weight decay 0.1 were used. For Dropout, we chose the position before the last weight layer in the residual branch. We
measured the mean absolute error (MAE) on validation and test sets. We observed that following Guideline 1 improved the
regression performance.

Table 2: Experimental results on AgeDB dataset.

MAE No Dropout With Dropout* Difference

Val 6.1261 6.0272 -0.0989
Test 6.3082 6.2291 -0.0791
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