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Abstract

For the stable optimization of deep neural net-
works, regularization methods such as dropout
and batch normalization have been used in various
tasks. Nevertheless, the correct position to apply
dropout has rarely been discussed, and different
positions have been employed depending on the
practitioners. In this study, we investigate the cor-
rect position to apply dropout. We demonstrate that
for a residual network with batch normalization,
applying dropout at certain positions increases the
performance, whereas applying dropout at other
positions decreases the performance. Based on the-
oretical analysis, we provide the following guide-
line for the correct position to apply dropout: apply
one dropout after the last batch normalization but
before the last weight layer in the residual branch.
We provide detailed theoretical explanations to sup-
port this claim and demonstrate them through mod-
ule tests. In addition, we investigate the correct
position of dropout in the head that produces the
final prediction. Although the current consensus
is to apply dropout after global average pooling,
we prove that applying dropout before global av-
erage pooling leads to a more stable output. The
proposed guidelines are validated through experi-
ments using different datasets and models.

1 INTRODUCTION

Deep neural networks have demonstrated remarkable per-
formance across a range of fields including computer vision
and natural language processing. Previously, training a deep
neural network using a large number of parameters was
known to be difficult owing to the overfitting problem. To
address this issue, several regularizers such as dropout, batch
normalization (BN), and label smoothing have recently been

proposed [Ioffe and Szegedy, 2015, Srivastava et al., 2014,
Szegedy et al., 2016]. They have made significant contribu-
tions to the stable optimization of deep neural networks and
have been widely used in various tasks.

For the architectural design of modern neural networks, the
[BN–ReLU–Weight] pipeline has been widely used, where
dropout can be added. However, there remains a lack of con-
sensus regarding the correct position for applying dropout,
and practitioners have chosen different positions. For ex-
ample, Pham and Le [2021], Isola et al. [2017], Romera
et al. [2018], Yan et al. [2018] applied dropout after every
BN; however, in the studies of Cai et al. [2019], Qi et al.
[2017], Pavllo et al. [2019], Li et al. [2019], Zagoruyko
and Komodakis [2016], Zhan et al. [2020], dropout was
applied after each ReLU. Furthermore, Castro et al. [2021],
Ghiasi et al. [2018] used dropout after the weight layers
and Ravi and Larochelle [2017], Lim et al. [2016], Liu et al.
[2020] applied dropout after every MaxPool layer. Based
on these practices, we highlight the need for further research
to determine the correct position to apply dropout.

In fact, He et al. [2016b] empirically found that applying
dropout at the output of the residual block decreased the
performance, whereas Zagoruyko and Komodakis [2016]
reported that applying dropout inside the residual branch
improved the performance. These observations highlight
the importance of selecting the correct position for dropout.
That is, choosing the incorrect order of layers implies a
potential performance decrease, and if dropout is placed in
the correct position, a potential performance improvement
can be obtained at little extra cost.

Moreover, there is a lack of theoretical analysis to deter-
mine the correct position to apply dropout. As an exception,
only the study by Li et al. [2019] theoretically discussed
the position of applying dropout. Their analysis advocated
using dropout before each weight layer to harmonize the
dropout and BN. However, we present the limitations and
a reinterpretation of their study. For example, starting from
their analysis and considering residual networks, we derive
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a different conclusion regarding the correct position for the
dropout.

In this study, we investigate the correct position of dropout.
First, we analyze the different dropout operations in the
training and test phases, which are harmful to the normal-
ization step of BN. We quantify the different behaviors of
dropout in the training and test phases as an inconsistency
ratio and argue that the inconsistency ratio is influenced
by the order of the layers. Considering this phenomenon,
we discuss the best order of layers to mitigate the inconsis-
tency ratio. Our conclusions suggest that dropout and ReLU
are permutable (Proposition 1); using dropout before the
weight layer resolves the inconsistency ratio under certain
weight conditions (Proposition 2); and residual blocks miti-
gate the inconsistency ratio better than non-residual blocks
for certain positions (Propositions 3 and 4). Based on these
analyses, we propose applying one dropout after the last
BN but before the last weight layer in the residual branch
(Guideline 1).

In addition, we analyze the use of dropout in the head that
outputs the final prediction. Although the current consensus
is to apply dropout after global average pooling (GAP), we
prove that using dropout before GAP leads to a more stable
output (Proposition 5). Based on this analysis, we propose
the use of dropout before GAP (Guideline 2).

The validities of Guidelines 1 and 2 are verified through ex-
periments on different datasets including CIFAR-{10, 100},
Caltech-101, Oxford IIIT-Pet, and ImageNet. We observed
that the performance of the model improved with dropout
when the guidelines were followed.

2 THEORETICAL ANALYSIS

Notation In this paper, we use the notations E[xi] and
Var[xi] to denote the mean and variance of the ith element
xi of vector x over the mini-batch. To represent Var[xi] for
an arbitrary index i, we use the abbreviation Var[x].

2.1 BACKGROUND

Dropout is an operation that randomly drops certain features
in the target layer during training [Srivastava et al., 2014].
First, we define the Dropout operation as follows.

Definition 1. Operation Dropout with a keep probability
p ∈ (0, 1) is defined as follows:

Dropouttrain(x) :=
1

p
Mx, (1)

Dropouttest(x) := x, (2)

where x is an n-dimensional vector and M is an n×n diago-
nal matrix with mij = 0 for i 6= j and mij ∼ Bernoulli(p)
for i = j.

According to the Bernoulli distribution, mi,i is either one
with keep probability p or zero with drop probability
1 − p, and is independent of x. Thus, we have E[m2

i,i] =

E[mi,i] = p and E[mi,imj,j ] = p2 for i 6= j. This property
ensures mean consistency in the training and test phases,
i.e., E[ 1pMx] = E[x].

However, dropout does not provide variance consistency in
the training and test phases. To investigate this phenomenon,
we introduce the following inconsistency ratio:

Definition 2. Let f(x) be the output feature of an operation
f . The inconsistency ratio ∆(f(x)) is defined as the ratio of
the variance of f(x) between the training and test phases.

∆(f(x)) :=
Var[ftest(x)]

Var[ftrain(x)]
. (3)

For example, ∆(f(x)) = 0.5 indicates that the variance
of f(x) during the training phase is twice as large as that
during the test phase. To obtain variance consistency, we
should achieve ∆(f(x)) = 1.

Li et al. [2019] state that the use of dropout yields variance
inconsistency in a neural network. During the training phase,

Var[Dropouttrain(x)] (4)

= E[
1

p2
m2
i,ix

2
i ]− (E[

1

p
mi,ixi])

2 (5)

=
1

p
Var[xi] +

1− p
p

(E[xi])
2, (6)

which is greater than Var[Dropouttest(x)] = Var[xi] for
p < 1. Thus, ∆(Dropout(x)) < 1.

The variance inconsistency of dropout causes a problem
when we use dropout with BN. Although subsequent BN
anticipates receiving the same mean and variance during
the training and test phases, the variance inconsistency of
dropout provides different variances to BN during the train-
ing and test phases. For example, consider an input fea-
ture h to BN where Var[htrain] = 10, Var[htest] = 2,
E[htrain] = 0, and E[htest] = 0. The normalization step
of BN uses the mean and variance of the training phase to
produce h√

10
, which is also used in the test phase because

BN assumes the same mean and variance. After the normal-
ization step, we obtain Var[htrain√

10
] = 1 during the training

phase. However, during the test phase, the BN receives a fea-
ture with a different variance, resulting in Var[htest√

10
] = 0.2.

Thus, the variance inconsistency breaks the consistent be-
havior of the subsequent BN during the training and test
phases. This phenomenon explains the decrease in perfor-
mance when dropout and BN are used simultaneously.

2.2 ORDER OF OPERATIONS

A modern neural network is composed of numerous opera-
tions such as ReLU, weight layer, BN, and skip connection,
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whose output feature map is a potential position for apply-
ing dropout. Here, we claim that the position of applying
dropout influences the inconsistency ratio. The goal of this
study is to investigate the best position for applying dropout
that offers a ∆(f(x)) close to one, which harmonizes the
dropout with BN. First, we discuss the order of the opera-
tions.

Order of Dropout and ReLU Some practitioners have
applied dropout before ReLU, whereas others have applied
dropout after ReLU (Section 1). Here, we claim that the
influence of the order of ReLU and dropout is insignificant.

Proposition 1. ReLU and dropout operations are per-
mutable:

ReLU(Dropout(x)) = Dropout(ReLU(x)). (7)

Proof. First, during the test phase, dropout operates as an
identity function that satisfies Eq. 7. Secondly, we claim
that, even during the training phase, the influence of the
order of ReLU and dropout is insignificant. Consider that
we sampled matrix M to denote DropoutMtrain(x). Because
matrix M is a diagonal matrix, the ith element of vector
ReLU(DropoutMtrain(x)) can be written as

[ReLU(DropoutMtrain(x))]i = ReLU
(1

p
mi,ixi

)
. (8)

Here, the coefficient mi,i/p is a non-negative scalar. For
ReLU(x) = max(0, x), we know that ReLU(kx) =
kReLU(x) for a non-negative scalar k. Thus, we obtain

ReLU
(1

p
mi,ixi

)
=

1

p
mi,i ReLU(xi) (9)

= [DropoutMtrain(ReLU(x))]i. (10)

Therefore, we conclude that ReLU(DropoutMtrain(x)) =
DropoutMtrain(ReLU(x)).

In summary, the order in which dropout and ReLU opera-
tions are applied to vector x does not influence the result.
In the remainder of this paper, we do not consider applying
dropout before ReLU unless specified otherwise.

However, commutativity with dropout does not hold for
other operations such as weight layer and BN. We further
investigate the effects of the order of these operations.

Order of Dropout and Weight We refer to dropout be-
fore the weight layer as PreDropout. For PreDropout, we
have WDropouttrain(x) = 1

pWMx and can interpret the
two operations using another weight WM/p. Similarly,
for the PostDropout order, we write Dropouttrain(Wx) =
1
pMWx. The difference between PreDropout and Post-
Dropout occurs because WM 6= MW for p < 1. These

matrices can be represented as

WM =

 | | |
m1,1w1 · · · mn,nwn
| | |

 ,
MW =

— m1,1w1 —
— · · · —
— mm,mwm —

 .
The diagonal element mi,i is either zero or one. Thus, Pre-
Dropout is equivalent to dropping columns in the weight
matrix W with 1/p constant scaling, whereas PostDropout
is equivalent to dropping rows in the weight matrix W with
1/p constant scaling. Thus, the characteristics of PreDropout
and PostDropout differ for p < 1.

The question then arises as to which is more effective in
reducing variance inconsistency. Li et al. [2019] suggest that
for the PreDropout order, increasing the width alleviates
variance inconsistency, assuming a certain condition on
weight. However, we find that increasing the width does not
solve the variance inconsistency for other weight conditions
such as He initialization [He et al., 2015]. Although Li et al.
[2019] emphasized increasing the width, we focus more on
the weight condition. Our reinterpretation of their study is
as follows.

Proposition 2. PreDropout exhibits less variance inconsis-
tency than PostDropout

∆(Dropout(Wx)︸ ︷︷ ︸
PostDropout

) < ∆(WDropout(x)︸ ︷︷ ︸
PreDropout

) < 1, (11)

where the first inequality holds if and only if∑n
j=1

∑n
k 6=j wi,jwi,k E[xjxk] > 0.

According to Proposition 2, the advantage of PreDropout
depends on the weight condition. For example, if the weight
has a nonzero mean and x comes from ReLU output, the con-
dition holds and PreDropout is advantageous. However, for
zero-mean weight, the inconsistency ratios of PostDropout
and PreDropout can be indistinguishable. A detailed proof
can be found in the Appendix.

Empirical Observation We measured the two inconsis-
tency ratios, ∆(Dropout(Wx)) and ∆(WDropout(x)).
The [BN–ReLU–Weight–BN–ReLU] pipeline, which is
commonly deployed in the residual branch, produced output
x. The input to the pipeline was sampled fromN (0, 1) with
a mini-batch size of 105. We tested five cases of width n
from {128, 256, 512, 1024, 2048}. We used a keep prob-
ability of 0.5 for dropout. For the weight condition, we set
Var[W] = 2/n, similar to the He initialization but varied
E[W].

The results are summarized in Figure 1. We observed
that ∆(Dropout(Wx)) < ∆(WDropout(x)) < 1 for
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Figure 1: Empirical validation on Proposition 2. We ob-
served ∆(Dropout(Wx)) < ∆(WDropout(x)) < 1 for
E[W] 6= 0.

E[W] 6= 0. The advantage of using PreDropout is vis-
ible in both E[W] > 0 and E[W] < 0. This is be-
cause E[xjxk] ≥ 0 for x from the ReLU output and∑n
j=1

∑n
k 6=j wi,jwi,k ≈ n(n − 1)(E[W])2 > 0 for large

|E[W]|. A large width has little effect if E[W] = 0.
Thus, we found that the advantage of PreDropout requires
E[W] 6= 0 and intensifies as the width increases.

Therefore, the advantage of the PreDropout is dependent on
the weight condition. For example, if the weight is polar-
ized to a large |E[W]| through training, the accumulation
of its products becomes positive, allowing us to enjoy the
advantage of PreDropout. Li et al. [2019] empirically ob-
served that the trained weight satisfies a certain condition
to advocate PreDropout. We conjecture that the condition
holds and validate the superior performance of PreDropout
over PostDropout through experiments (Section 3).

However, we later demonstrate cases where neither Pre-
Dropout nor PostDropout improves performance. Rather
than comparing PreDropout and PostDropout, we find that
the properties of residual networks have a greater influence
on the alleviation of variance inconsistency.

2.3 DROPOUT IN RESIDUAL BLOCK

A residual network is composed of residual blocks, which
consist of a residual and skip branch. PreResNet, also known
as ResNetV2, is a variant that applies BN first in the residual
branch [He et al., 2016b]. In this section, we provide an anal-
ysis of PreResNet, which can be extended to other variants
of residual networks such as ResNetV1 [He et al., 2016a].
We examine eight possible positions to apply dropout, la-
beled P0–P7 (Figure 2).

Figure 2: Residual block of PreResNet.

First, we consider applying dropout at P1. As mentioned
earlier, the use of dropout causes inconsistency in the input
variance of the next BN. If we apply dropout at P1, it di-
rectly influences the input variance of the first BN of the lth
residual block. Similarly, applying dropout at one of (P2,
P3, or P4) results in an inconsistency in the input variance
of the second BN of the lth residual block. Furthermore,
applying dropout at P0 causes variance inconsistency in the
first BN of the lth residual block.

However, applying dropout at one of (P5, P6, or P7) has
distinct characteristics. The use of dropout at one of (P5, P6,
or P7) causes inconsistency in the input variance of the BN
at the next residual block, i.e., the first BN of the (l + 1)th
residual block. Because the output of the residual branch is
merged with the skip connection, the variance inconsistency
in the next residual block behaves differently compared to
the other positions. From this observation, we investigate
the inconsistency ratio of dropout at (P5, P6, or P7) in detail.

First, we analyze the output fl(xl) of the [BN–ReLU–
Weight–BN–ReLU–Dropout–Weight] pipeline from the in-
put feature map xl of lth block, considering dropout at P6.
Note that BN outputs γx̂+β from the normalized feature x̂.
For the lth residual block, let the output of the second BN
be zl ∼ N (0, γ2l ).1 This feature map passes through ReLU,
weight, and skip connection. First, we know

E[ReLU(zl)] =
1√
2π
γl, (12)

Var[ReLU(zl)] =
π − 1

2π
γ2l . (13)

1At initialization, BN has γ = 1 and β = 0. During training,
although γ becomes a specific value, β stays close to zero. We
conjecture that β near zero is advantageous to preserving zero-
centered ReLU input. From this observation, we allow a degree of
freedom in γ; however, we use β = 0.
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See the Appendix for details of the above equations. Now,
we apply dropout. During the training phase,

E[Dropouttrain(ReLU(zl))] =
1√
2π
γl, (14)

Var[Dropouttrain(ReLU(zl))] =
π/p− 1

2π
γ2l . (15)

Finally, we apply weight that is initialized from He initial-
ization N (0, 2/n). Then, we have

E[WDropouttrain(ReLU(zl))] = 0, (16)

Var[WDropouttrain(ReLU(zl))] =
π/p− 1

π
γ2l , (17)

which represents the variance of the residual branch fl(xl):

Var[fl,train(xl)] =
π/p− 1

π
γ2l , (18)

Var[fl,test(xl)] =
π − 1

π
γ2l . (19)

The same result can be obtained when applying dropout at
P5 (Proposition 1) and P7 (Proposition 2 for the zero-mean
weight). Now, consider two choices for the building blocks:
non-residual block fl(xl) and residual block xl + fl(xl).
We begin by investigating the case where l = 0.

Proposition 3. For the 0th very first block, choosing a resid-
ual block alleviates variance inconsistency from dropout
when compared with a non-residual block

∆( f0(x0)︸ ︷︷ ︸
Non-residual

) < ∆(x0 + f0(x0)︸ ︷︷ ︸
Residual

) < 1, (20)

if we apply dropout at one of (P5, P6, or P7) in PreResNet.

Proof. Note that for x > 0, y > 0, and c > 0, if x
y < 1,

then x
y <

x+c
y+c . Using this inequality, we obtain

∆(f0(x0)) =
Var[f0,test(x0)]

Var[f0,train(x0)]
(21)

<
Var[x0] + Var[f0,test(x0)]

Var[x0] + Var[f0,train(x0)]
(22)

= ∆(x0 + f0(x0)) < 1. (23)

The advantage of choosing a residual block appears when
the skip connection is located after dropout but before the
subsequent BN. Thus, applying dropout at one of (P5, P6,
or P7) alleviates variance inconsistency. Others, such as (P2,
P3, or P4) correspond to non-residual blocks and do not
alleviate variance inconsistency.

The above derivation exploits the fact that, for the very first
block, the input feature map x0 exhibits no variance in-
consistency. However, when we choose a residual block,
subsequent blocks receive the input feature map xl, which
exhibits variance inconsistency due to dropout. Nonethe-
less, even in this scenario, choosing a residual block is still
advantageous for reducing variance inconsistency.

Proposition 4. For the lth block, if all l′th blocks for l′ < l
are residual blocks, then choosing a residual block alleviates
variance inconsistency from dropout when compared to a
non-residual block

∆( fl(xl)︸ ︷︷ ︸
Non-residual

) < ∆(xl + fl(xl)︸ ︷︷ ︸
Residual

) < 1, (24)

if we apply dropout at one of (P5, P6, or P7) in PreResNet.

Proof. The skip connection adds the result of the residual
branch as xl+1 = xl + fl(xl). As De and Smith [2020],
Brock et al. [2021] describe, the residual block accumulates
its variance:

Var[xl+1] = Var[xl] + Var[fl(xl)]. (25)

Thus, xl is the accumulation of the residual branches from
0 to l − 1. For the training and test phases,

Var[xl,train] = Var[x0] +
π/p− 1

π

l−1∑
i=0

γ2i , (26)

Var[xl,test] = Var[x0] +
π − 1

π

l−1∑
i=0

γ2i . (27)

First, if we choose a non-residual block for the lth block,
we obtain fl(xl) and its inconsistency ratio as

∆(fl(xl)) =
Var[fl,test(xl)]

Var[fl,train(xl)]
(28)

=
π−1
π γ2l

π/p−1
π γ2l

=
π − 1

π/p− 1
. (29)

Second, if we choose a residual block for the lth block, we
obtain xl + fl(xl) and its inconsistency ratio as

∆(xl + fl(xl)) = ∆(xl+1) =
Var[xl+1,test]

Var[xl+1,train]
(30)

=
Var[x0] + π−1

π

∑l
i=0 γ

2
i

Var[x0] + π/p−1
π

∑l
i=0 γ

2
i

< 1. (31)

Finally, it is known that for x > 0, y > 0, and c > 0, if
x
y < 1, then x

y <
x+c
y+c . Using this inequality, we obtain

∆(xl + fl(xl)) >
π−1
π

∑l
i=0 γ

2
i

π/p−1
π

∑l
i=0 γ

2
i

=
π − 1

π/p− 1
(32)

= ∆(fl(xl)), (33)

which concludes the proof of this proposition.

The difference between the two inconsistency ratios is due
to Var[x0]. Next, we empirically test the effect of Var[x0].
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Figure 3: Empirical validation on Propositions 3 and 4.

Empirical Observation We measured the two inconsis-
tency ratios, ∆(fl(xl)) and ∆(xl + fl(xl)). We tested five
different keep probabilities {0.5, 0.6, 0.7, 0.8, 0.9} for
dropout. We applied dropout at P6 to construct the [BN–
ReLU–Weight–BN–ReLU–Dropout–Weight] pipeline. We
used a mini-batch size of 105 with a width n of 128. We ini-
tialized the weights using the He initialization N (0, 2/n).
We varied Var[x0] and observed two inconsistency ratios.

The results are summarized in Figure 3. We observed that
∆(fl(xl)) < ∆(xl + fl(xl)) < 1. Note that we do not say
that we should achieve Var[x0]→∞; our claim is that as
long as Var[x0] is nonzero, ∆(xl + fl(xl)) obtains a gain
closer to one compared to the non-residual block.

Finally, we discard P7, which corresponds to PostDropout
(Proposition 2). In summary, based on Propositions 1–4
and the above analyses, we conclude with the following
guideline.

Guideline 1. For each residual block of PreResNet, apply
one dropout after the last BN but before the last weight layer,
e.g., at P5 or P6.

2.4 DROPOUT IN HEAD

So far, we have discussed the use of dropout in residual
blocks. Additionally, we consider applying dropout in the
head, which takes the output of the last residual block as
the input and outputs the final prediction. Indeed, Bello
et al. [2021] observed improved performance when apply-
ing dropout after the GAP but before the fully connected
layer. This practice has been adopted in several neural net-
works such as MobileNetV2, EfficientNet, EfficientNetV2,
MnasNet, NASNet, and Inception-v4 [Sandler et al., 2018,
Tan and Le, 2019, 2021, Tan et al., 2019, Zoph et al., 2018,
Szegedy et al., 2017].

Figure 4: Seven possible positions in head to apply dropout.
The composition of the head can vary depending on the
model; we illustrate the head commonly deployed in models
such as MobileNetV2 and EfficientNet.

In light of this practice, we theoretically investigate the
best position in the head to apply dropout. We examine
seven possible positions to apply dropout, labeled H1 to H7
(Figure 4). First, owing to the presence of BN in the head,
the use of dropout at H1 and H2 should be avoided. For the
remaining positions, because there is no subsequent BN, we
do not discuss the inconsistency ratio further.

For the head, we now emphasize preventing dropout from
resulting in an unstable output. The cross-entropy loss with a
one-hot encoded label is− log ŷc, where ŷc is the probability
on the correct class. For example, applying dropout at H6
or H7 directly drops the predictions, which can result in a
lower ŷc and a significantly larger loss. This large loss can
occur even with a correct prediction, resulting in an unstable
gradient descent. To obtain a stable loss, it is favorable to
have a small variance at the output of the head, thus avoiding
H6 and H7. Therefore, we are left with (H3, H4, or H5).
Existing practices have preferred to apply dropout at H5;
however, we claim that applying dropout at H3 or H4 results
in a smaller variance and thus is more advantageous than
H5.

Proposition 5. Applying dropout before GAP (H4) in the
head exhibits less variance compared to after GAP (H5):

Var[GAP(Dropouttrain(x))︸ ︷︷ ︸
H4

] (34)

< Var[Dropouttrain(GAP(x))︸ ︷︷ ︸
H5

]. (35)

The difference arises from the fact that dropout before
the GAP masks each element of the feature map, whereas
dropout after the GAP masks each channel of the feature
map. A detailed proof can be found in the Appendix.
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Table 1: Test accuracy on CIFAR dataset. All accuracies in this paper are expressed in percentage units. The difference from
baseline performance is presented to the right. ∗ indicates applying dropout following Guideline 1.

CIFAR-10 CIFAR-100
PreResNet-50 PreResNet-110 PreResNet-50 PreResNet-110

Accuracy Difference Accuracy Difference Accuracy Difference Accuracy Difference

No Dropout 93.6633 - 94.0300 - 71.3900 - 73.5367 -

P0 84.2500 (-9.4133) 70.9433 (-23.0867) 52.6200 (-18.7700) 18.3467 (-55.1900)
P1 92.9167 (-0.7467) 93.5467 (-0.4833) 70.2000 (-1.1900) 71.2733 (-2.2633)
P2 93.1933 (-0.4700) 93.6867 (-0.3433) 71.1433 (-0.2467) 72.4133 (-1.1233)
P3 93.5833 (-0.0800) 93.8133 (-0.2167) 71.0767 (-0.3133) 72.3967 (-1.1400)
P4 93.2167 (-0.4467) 93.8933 (-0.1367) 70.4800 (-0.9100) 72.1400 (-1.3967)
P5∗ 93.8333 (+0.1700) 94.4367 (+0.4067) 72.3633 (+0.9733) 73.6300 (+0.0933)
P6∗ 93.6767 (+0.0133) 94.2200 (+0.1900) 72.4267 (+1.0367) 73.9800 (+0.4433)
P7 93.7800 (+0.1167) 94.2667 (+0.2367) 72.0833 (+0.6933) 73.5633 (+0.0267)

Table 2: Experimental results on other conditions.

Weight Decay 10−3 Weight Decay 10−5 Bottleneck ELU
Accuracy Difference Accuracy Difference Accuracy Difference Accuracy Difference

No Dropout 93.2100 - 92.3733 - 93.7667 - 92.6100 -

Guideline 1 93.3567 (+0.1467) 92.8133 (+0.4400) 93.7933 (+0.0267) 92.7433 (+0.1333)

In summary, we conclude with the following guideline:

Guideline 2. In the head, apply one dropout after the BN
but before the GAP layer, e.g., at H3 or H4.

3 EXPERIMENTS

3.1 DROPOUT IN RESIDUAL BLOCK

CIFAR Dataset We conducted experiments to observe
the performance differences due to the dropout position.
First, we compared the performance of PreResNet trained
without and with dropout at one of (P0, · · · , P7). We trained
PreResNet-{50, 110} on a multi-class classification task
using the CIFAR-{10, 100} datasets [Krizhevsky, 2009].
See the Appendix for details such as the hyperparameters
used. An average of three runs was reported for each result
(Table 1).

The experimental results were in agreement with our claims.
The greatest accuracy was observed when dropout was ap-
plied at P5 or P6, confirming the validity of Guideline 1.
Applying dropout at (P5, P6, or P7) resulted in improved
accuracy, whereas applying dropout at (P0, P1, P2, P3, or
P4) decreased accuracy. This observation implies that the
placement of dropout after the second BN matters more
than whether it is applied after weight or ReLU. That is,
when dropout was applied before the second BN, neither
PreDropout nor PostDropout improved the accuracy. An
explanation for this phenomenon requires Propositions 3

and 4, and is unique to our analysis compared to the existing
literature.

Other Conditions We further validated Guideline 1 using
other experimental setups. To test different weight condi-
tions, we varied the weight decay from 10−4 to 10−3 or
10−5. We also experimented with PreResNet using a bottle-
neck block, which had three [BN–ReLU–Weight] pipelines,
unlike the basic block. In this case, to follow Guideline 1,
we applied dropout after the third ReLU but before the third
weight layer. We also tested our guideline with ELU [Clev-
ert et al., 2016] to replace ReLU. For the four experimental
setups, we observed an improved accuracy for CIFAR-10
and PreResNet-50 (Table 2). Note that applying dropout did
not always improve and could actually degrade the perfor-
mance (Table 1); however, applying dropout in accordance
with Guideline 1 consistently and successfully improved
performance.

Other Models In addition, we experimented with Guide-
line 1 using the original ResNetV1, whose residual branch
had two [Weight–BN–ReLU] pipelines. In this case, to fol-
low Guideline 1, we applied dropout at the end of the resid-
ual branch. We used the ResNetV1-{50, 110} and CIFAR-
{10, 100} datasets. Again, we observed improved accuracy
from dropout using Guideline 1 (Table 3).

Other Datasets We further validated our claim using
other datasets. Two datasets were targeted, Caltech-101 and
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Table 3: Experimental results using the ResNetV1.

CIFAR-10 CIFAR-100
ResNetV1-50 ResNetV1-110 ResNetV1-50 ResNetV1-110

Accuracy Difference Accuracy Difference Accuracy Difference Accuracy Difference

No Dropout 93.2700 - 93.7067 - 70.6200 - 71.8833 -

Guideline 1 93.4600 (+0.1900) 93.9500 (+0.2433) 71.4867 (+0.8667) 73.1133 (+1.2300)

Table 4: Test accuracy on Caltech-101 and Oxford-IIIT Pet datasets.

Caltech-101 Oxford-IIIT Pet
PreResNet-50 PreResNet-101 PreResNet-50 PreResNet-101

Accuracy Difference Accuracy Difference Accuracy Difference Accuracy Difference

No Dropout 83.3212 - 83.8074 - 83.8147 - 84.5668 -

Guideline 1 83.7831 (+0.4620) 84.1964 (+0.3890) 83.9049 (+0.0903) 85.5897 (+1.0229)

Table 5: Experimental results on dropout at the head. “P”
represents PreResNet. ∗ indicates applying dropout follow-
ing Guideline 2.

Dataset Model No Dropout H4∗ H5

Cal P-50 83.321 83.978 83.005
P-101 83.807 84.999 83.662

Pet P-50 83.815 84.988 84.416
P-101 84.567 85.229 85.259

Oxford-IIIT Pet [Fei-Fei et al., 2007, Parkhi et al., 2012].
We used PreResNet-{50, 101} with bottleneck block. See
the Appendix for details such as the hyperparameters used.
On the two datasets and two PreResNets, we observed that
applying dropout following Guideline 1 improved the test
accuracy (Table 4).

3.2 DROPOUT IN HEAD

Caltech-101 and Oxford-IIIT Pet We experimented with
dropout in the head. We compared three cases: training with-
out dropout and with dropout at one of (H4, H5). We trained
PreResNet-{50, 101} on the Caltech-101 and Oxford-IIIT
Pet datasets. The average of three runs was reported for each
result (Table 5). We observed that applying dropout at H4
demonstrated greater accuracy than H5. Applying dropout
at H5, which is the current consensus in existing studies,
improved the accuracy on Oxford-IIIT Pet, yet decreased
accuracy on Caltech-101.

ImageNet We further validated our claim using another
dataset and models. We targeted ImageNet, a widely used
large-scale dataset. See the Appendix for details such as
the hyperparameters used. Because our analysis on the

Table 6: Top-1 accuracy on ImageNet.

Model No Dropout H4∗ H5

MobileNetV2 (1.4) 75.714 75.820 75.718
EfficientNet-B0 77.156 77.240 76.976
ResNet-50 78.834 78.932 78.546
DenseNet-169 79.066 79.152 79.036

head is applicable to any model that employs GAP, we
targeted other models: MobileNetV2, EfficientNet, ResNet,
and DenseNet. We observed that applying dropout at H4 con-
sistently improved Top-1 accuracy on the ImageNet dataset
(Table 6). Note that MobileNetV2 and EfficientNet origi-
nally employed dropout at H5; however, we found that it
could only marginally influence or even decrease accuracy.

4 CONCLUSION

In this study, we investigated the correct position for ap-
plying dropout. We demonstrated that the dropout position
influences the variance inconsistency and sought the best
position that provides an inconsistency ratio close to one. By
analyzing the theoretical properties of the residual networks,
we discovered the correct position to apply dropout was
after the last BN but before the last weight layer. In several
experiments, we observed increased and decreased accuracy
depending on the position of dropout, explaining the reason
for the performance change using our analysis. In addition,
we provided a guideline on applying dropout at the head
and validated the improved performance through experi-
ments. We hope that these findings will help practitioners
understand and benefit from dropouts.
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