
Phase-shifted Adversarial Training (Supplementary Material)

Yeachan Kim1 Seongyeon Kim*2 Ihyeok Seo*3 Bonggun Shin*4

1Deargen Inc., Seoul, Republic of Korea
2School of Mathematics, Korea Institute for Advanced Study, Seoul, Republic of Korea

3Department of Mathematics, Sungkyunkwan University, Suwon, Republic of Korea
4Deargen USA Inc., Atlanta, GA

1 FILTERING METHOD FOR FREQUENCY ANALYSIS

Motivated by the examination of F-principle [Xu et al., 2020], we use the filtering method to analyze the behavior of the
neural networks in adversarial training. The idea is to split the frequency domain into two parts, i.e., low-frequency and
high-frequency parts. However, the Fourier transform for high-dimensional data requires high computational costs and large
memory footprints. As an alternative, we use the Fourier transform of a Gaussian function Ĝ.

Let the original dataset be {xj , yj}N−1
j=0 , and the network output for xj be Tj . The low frequency part of the training dataset

can be derived by

ylow,δ
j =

1

Cj

N−1∑
m=0

ymGδ(xj − xm) (1.1)

where Cj =
∑N−1

m=0 G
δ(xj − xm) is a normalization factor, and δ is the variance of the Gaussian function (we fix δ to 3).

The Gaussian function can be represented as

Gδ(xj − xm) = exp(−|xj − xm|2/(2δ)). (1.2)

Then, the high-frequency part can be derived by yhigh,δj =∆ yj − ylow,δ
j . We also compute the frequency components for

the networks, i.e, T low,δ
j , T high,δ

j by replacing yj with the outputs of networks, i.e., Tj . Lastly, we calculate the errors to
quantify the convergence in terms of low- and high-frequency.

elow =


∑

j

∣∣∣ylow,δ
j − T low,δ

j

∣∣∣2∑
j

∣∣∣ylow,δ
j

∣∣∣2


1
2

(1.3)

ehigh =


∑

j

∣∣∣yhigh,δj − T high,δ
j

∣∣∣2∑
j

∣∣∣yhigh,δj

∣∣∣2


1
2

(1.4)

2 ITERATIVE-VERSION OF PHASEAT

For training efficiency, we design PhaseAT as a non-iterative method based on the FGSM perturbation [Wong et al., 2020].
To confirm the effect of stronger attacks in the training process of PhaseAT, we additionally introduce an iterative version of
PhaseAT. Since PhaseAT is not closely related to the perturbation generation, we replace the FGSM perturbation with the
perturbation generated from PGD [Madry et al., 2018]. The overall algorithm is shown in Algorithm-1.

*Co-corresponding authors who equally contributed to this work.

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<yeachan@deargem.me>?Subject=Your UAI 2023 paper
mailto:<synkim@kias.re.kr>?Subject=Your UAI 2023 paper
mailto:<ihseo@skku.edu>?Subject=Your UAI 2023 paper
mailto:<bonggun.shin@deargem.me>?Subject=Your UAI 2023 paper

Algorithm 1 Phase-shifted Adversarial Training (Iterative version)

Require: Training epochs T , Dataset size N , PGD steps P , Perturbation size ϵ, Perturbation step α, Trainable networks T ,
Cosine similarity function CS(·, ·)

1: for t = 1 ... T do
2: for j = 1 ... N do
3: δ = Uniform(−ϵ, ϵ)
4: for k = 1 ... P do ▷ Multiple updates of perturbations
5: if j % 2 == 0 then ▷ Alternate training on mini-batches
6: δ = δ + α· sign(∇δℓ(T (xj + δ), yj))
7: else
8: δ = δ + α· sign(∇δℓ(T0(xj + δ), yj))
9: end if

10: δ = max(min(δ, ϵ), −ϵ)
11: end for
12: θ = θ −∇θ[ℓ(T (xj + δ), yj) + CS(T (xj + δ), T0(xj + δ))]
13: end for
14: end for

3 DETAILS ABOUT EVALUATION

3.1 ATTACK CONFIGURATION

In our work, we mainly adopt the projected gradient descent (PGD) [Madry et al., 2018] and auto-attack (AA) [Croce and
Hein, 2020b] to evaluate baselines. PGD is constructed by multiple updates of adversarial perturbations, and AA is the
ensemble of strong attacks including the variants of PGD. Typically, AA is considered one of the strongest attacks. The
details about each attack of AA are as follows:

• Auto-PGD (APGD) [Croce and Hein, 2020b]: This is parameter-free adversarial attack that adaptively changes the
step size by considering the optimization of the perturbations. APGD has three variations depending on loss functions:
APGDce, APGDdlr, and APGDt

1.

• FAB [Croce and Hein, 2020a]: This attack minimizes the norm of the perturbation necessary to achieve a misclassifica-
tion. FAB has two variants, FAB and FABt.

• Square [Andriushchenko et al., 2020]: Compared to others, this attack belongs to the black-box attacks and is also known
as score-based attack. This attack iteratively inserts an artificial square to the inputs to search optimal perturbations
causing huge changes on predictions.

We set the hyper-parameter settings for each attack based on standard version of AA in robust-bench framework [Croce
et al., 2021]. Note that we exclude Square attack from the AA because the stochastic process in PhaseAT can be robust
against Square [Qin et al., 2021], which prevents the fair comparison with other baselines which do not include stochastic
process. We thus move the results of Square attack to the Supplementary Section 4.2.

3.2 DATASET INFORMATION

We evaluate each baseline on two benchmark datasets, CIFAR-10 and ImageNet. CIFAR-10 [Krizhevsky et al., 2009] consist
of 60,000 images of 32×32×3 size for 10 classes, and ImageNet contains 1.2M images of 224×224×3 size for 1,000 classes.
Instead of existing ImageNet, we use the smaller version of ImageNet which used in recent baselines [Sriramanan et al.,
2020, 2021], which contains 120K images of 224×224×3 size for 100 classes 2.

1Subscript ce and dlr on APGD indicates the cross-entropy loss and difference of logits ratio, respectively, and t stands for targeted
attacks. The attacks without t subscripts are non-targeted attacks.

2Selected classes are listed in https://github.com/val-iisc/GAMA-GAT

https://github.com/val-iisc/GAMA-GAT

Table 1: Performance evaluation on CIFAR-10 dataset. The backbone networks are WideResNet-34-10. Best and second
best results are highlighted in boldface and underline, respectively.

Method Standard accuracy PGD50 AA

FBF [Wong et al., 2020] 82.1 54.4 51.3
GAT [Sriramanan et al., 2020] 84.7 56.1 52.1
NuAT [Sriramanan et al., 2021] 85.1 54.6 53.4
PhaseAT (Ours.) 88.8 62.3 59.2

Table 2: Performance evaluation on CIFAR-10 dataset against two different black-box attacks.

Method Standard accuracy Transfer-based attack Score-based attack
VGG-11 ResNet-18

FBF [Wong et al., 2020] 84.0 80.5 80.6 53.5
GAT [Sriramanan et al., 2020] 80.5 79.8 80.3 54.1
NuAT [Sriramanan et al., 2021] 81.6 79.5 80.5 56.7
PhaseAT (Ours.) 86.2 83.8 85.0 76.5

3.3 BASELINE SETTING

PhaseAT is compared to both non-iterative (FBF, GAT, and NuAT) and iterative (FBF, GAT, and NuAT) methods (PGD,
TRADES, and AWP). The hyper-parameter settings of each baseline are listed in Table 3. Since the evaluation results on
ImageNet come from previous works [Sriramanan et al., 2020, 2021], the table only includes the parameters reported in
these works (unknown parameters are denoted with −.).

4 ADDITIONAL EVALUATION

4.1 DIFFERENT ARCHITECTURES

We conduct additional experiments by scaling the PhaseAT backbone networks to verify the effectiveness of PhaseAT on
different architectures. We use WideResNet-34-10 architecture instead of PreActResNet-18 to evaluate each baseline on
CIFAR-10.The comparison results are listed in Table 1. Similar to the main experiment, we see that PhaseAT achieves the
best results amonst all non-iterative methods, demonstrating that PhaseAT can be well scaled to the larger networks.

4.2 ADVERSARIAL ROBUSTNESS AGAINST BLACK-BOX ATTACKS

As DNN models are often hidden from users in real-world applications, the robustness against black-box attacks is also
crucial. Among the different kinds of black-box attacks, we consider transfer-based [Liu et al., 2016, Papernot et al., 2017]
and score-based attacks. For transfer-based attacks, we use VGG-11 and ResNet-18 as substitute models and construct the
attacks using seven steps of PGD [Madry et al., 2018]. For score-based attacks, we adopt square attack [Andriushchenko
et al., 2020] with 5,000 query budgets, which is a gradient-free attack and one of the strongest attacks in black-box attacks.

Table 2 shows the robust accuracy against black-box attacks. Similar to white-box attacks, PhaseAT shows better accuracy
against both transfer-based and score-based attacks in comparison to other non-iterative methods. In score-based attacks, the
difference in performance between others and PhaseAT is particularly noticeable. This can be explained by the stochastic
process of PhaseAT because Qin et al. [Qin et al., 2021] demonstrate that randomized defense (e.g., Gaussian noise in the
inputs) can robustly prevent the model from score-based attacks. This is why we exclude square attack from the AA attack
for a fair comparison with other baselines that do not include the stochastic process. Note that the stochastic property can
not be circumvented in the black-box scenario because it is infeasible to design adaptive attacks (i.e., EOT attacks) as in the
white-box scenario. Comprehensive results show that PhaseAT could be a robust defense strategy against both white-box
and black-box attacks.

5 PROOFS OF THEOREMS 3.1 AND 3.2

5.1 PRELIMINARIES

Before proving Theorems 3.1 and 3.2 in this section, we start with a detailed explanation of DNNs, and then introduce the
mathematical tools required for proof which can be found in standard references (e.g. [Stein and Weiss, 1971, Wolff, 2003,
Muscalu and Schlag, 2013, Evans, 2010]).

Deep Neural Networks. A DNN with K-hidden layers and general activation functions is a vector-valued function Tθ(x) :
Rd → RmK+1 where mk denotes the number of nodes in the k-th layer. For 1 ≤ k ≤ K + 1, we set W (k) ∈ Rmk×mk−1

and b(k) ∈ Rmk as the matrices whose entries consist of the weights and biases called parameters. The parameter vector θ is
then defined as

θ =
(
vec(W (1)), vec(b(1)), · · · , vec(W (K+1)), vec(b(K+1))

)
∈ RM ,

where M =
∑K+1

k=1 (mk−1 + 1)mk is the number of the parameters. Given θ ∈ RM and an activation function σ : R → R,
the DNN output T (K+1)

θ (x) : Rd → RmK+1 is expressed in terms of composite functions; setting T (0)
θ (x) = x, T (k)

θ (x) :
Rd → Rmk is defined recursively as

(T (k)
θ (x))i = σ

(
(W kT k−1

θ + bk)i
)
, 1 ≤ i ≤ mk, 1 ≤ k ≤ K.

We denote the DNN output T (K+1)
θ (x) = W (K+1)T (K)

θ + b(K+1) by Tθ(x).

The Basic Properties of Fourier Transforms. Let f ∈ L1(Rd). The Fourier transform of f is defined by

f̂(ξ) =

∫
Rd

e−2πix·ξf(x)dx.

Then clearly
∥f̂∥L∞ ≤ ∥f∥L1 . (5.1)

Additionally if f̂ ∈ L1(Rd), the Fourier inversion holds:

f(x) =

∫
Rd

e2πix·ξ f̂(ξ)dξ. (5.2)

If f, g ∈ L1(Rd), then f ∗ g ∈ L1(Rd) and
f̂ ∗ g = f̂ ĝ. (5.3)

For an n-tuple α = (α1, · · · , αd) of nonnegative integers, we denote

Dα =
d∏

j=1

∂αj

∂
αj
xj

and |α| =
d∑

j=1

αj .

Then, if Dαf ∈ L1(Rd) whenever 0 ≤ |α| ≤ s,

D̂αf(ξ) = (2πi)|α|ξαf̂(ξ). (5.4)

Sobolev Spaces and Gaussian Weights. For s ∈ N, the Sobolev space W s,∞(Rd) is defined as

W s,∞(Rd) = {f ∈ L∞(Rd) : Dαf ∈ L∞(Rd) for all 0 ≤ |α| ≤ s}

equipped with the norm
∥f∥W s,∞(Rd) =

∑
|α|≤s

∥Dαf∥L∞(Rd).

We also introduce a Gaussian weight Gε(x) = ε−de−πε−2|x|2 for any ε > 0 on which the Fourier transform has an explicit
form,

Ĝε(ξ) = e−πε2|ξ|2 . (5.5)

The final observation is that Gε is an approximate identity with respect to the limit ε → 0 as in the following well-known
lemma:

Lemma 5.1. Let f ∈ C(Rd) ∩ L∞(Rd). Then

lim
ε→0

∫
Rd

Gε(x− y)f(y)dy = f(x) (5.6)

for all x ∈ Rd.

5.2 PROOF OF THEOREM 3.1

In what follows we may consider a compact domain Ω instead of Rd because the input data {xj}N−1
j=0 used for training is

sampled from a bounded region.

For a discrete input data {xj}N−1
j=0 , we now recall the total loss in adversarial training from Section 3.1:

L(θ) =
1

N

N−1∑
j=0

ℓ(Tθ ◦ A, g)(xj). (5.7)

From the continuity of Tθ and g in the compact domain Ω, we note that ℓ(Tθ ◦A, g) is continuous and bounded for general
loss functions such as mean-squared error loss and cross-entropy loss. Then we can apply Lemma 5.1 to deduce

L(θ) = lim
ε→0

1

N

N−1∑
j=0

∫
Rd

Gε(xj − x)ℓ(Tθ ◦ A, g)(x)dx

= lim
ε→0

1

N

N−1∑
j=0

(
Gε ∗ ℓ(Tθ ◦ A, g)

)
(xj). (5.8)

Using the properties Gε ∈ L1(Rd) and ℓ(Tθ ◦ A, g) ∈ L1(Rd), we then derive from Eq. 5.3 and Eq. 5.5 that

Gε ∗ ℓ(Tθ ◦ A, g) ∈ L1(Rd)

and
Gε ∗ ℓ(Tθ ◦ A, g)̂(ξ) = e−πε2|ξ|2 ℓ(Tθ ◦ A, g)̂(ξ). (5.9)

Note here that by Eq. 5.1

∥e−πε2|ξ|2 ℓ(Tθ ◦ A, g)̂(ξ)∥L1 ≤ ∥ℓ(Tθ ◦ A, g)̂∥L∞∥e−πε2|ξ|2∥L1 ≤ C∥ℓ(Tθ ◦ A, g)∥L1 < ∞.

Hence the Fourier inversion Eq. 5.2 together with Eq. 5.9 implies(
Gε ∗ ℓ(Tθ ◦ A, g)

)
(xj) =

∫
Rd

e2πixj ·ξe−πε2|ξ|2 ℓ(Tθ ◦ A, g)̂(ξ)dξ. (5.10)

Substituting Eq. 5.10 into the right-hand side of Eq. 5.8, we immediately obtain

L(θ) = lim
ε→0

1

N

N−1∑
j=0

∫
Rd

e2πixj ·ξ e−πε2|ξ|2ℓ
(
Tθ ◦ A, g

)̂
(ξ)dξ, (5.11)

as desired. This completes the proof.

5.3 PROOF OF THEOREM 3.2

Representing ∇θL(θ) in the frequency domain. To begin with, we represent ∇θL(θ) in the frequency domain in the
same way as in Section 5.2. By differentiating both sides of Eq. 5.7 with respect to θ and using Lemma 5.1, we first see

∇θL(θ) =
1

N

N−1∑
j=0

∇θℓ(Tθ ◦ A, g)(xj)

= lim
ε→0

1

N

N−1∑
j=0

∫
Rd

Gε(xj − x)∇θℓ(Tθ ◦ A, g)(x)dx (5.12)

if ∇θℓ(Tθ ◦ A, g) is continuous and bounded. Since ℓ(Tθ ◦ A, g) is differentiable with respect to the first argument (as
mentioned in Section 3.1) and Tθ is differentiable with respect to θ for general activation functions such as ReLU, eLU,
tanh and sigmoid, the continuity is generally permissible, and thus the boundedness follows also from compact domain. In
fact, the ReLU activation function is not differentiable at the origin and neither is Tθ on a certain union of hyperplanes; for
example, when considering 1-hidden layer neural network with m1 nodes and 1-dimensional output, the output is

Tθ(x) =
m1∑
i=1

w
(2)
i σ(W

(1)
i · x+ b

(1)
i), w

(2)
i , b

(1)
i ∈ R, W (1)

i ∈ Rd

and the set of non-differentiable points is a union of hyperplanes given by {x ∈ Rd : W
(1)
i · x+ b

(1)
i = 0, 1 ≤ i ≤ m1}.

But the d-dimensional volume of such thin sets is zero and thus they may be excluded from the integration region in Eq. 5.6
when applying Lemma 5.1 to obtain Eq. 5.12 for the case of ReLU.

Just by replacing L(θ) with ∇θL(θ) in the argument employed for the proof of Eq. 5.11 and repeating the same argument, it
follows now that

∇θL(θ) = lim
ε→0

1

N

N−1∑
j=0

∫
Rd

e2πixj ·ξ e−πε2|ξ|2∇θℓ
(
Tθ ◦ A, g

)̂
(ξ)dξ. (5.13)

We then pull ∇θ to the outside of the integration in Eq. 5.13, and recall L≤η(θ) and L≥η(θ) from Section 3.1, contributed
by low and high frequencies in the loss, to see

∇θL(θ) ≈ ∇θL≤η(θ) +∇θL≥η(θ). (5.14)

This approximation is more and more accurate as ε diminishes smaller in Eq. 5.13, and the size of ε will be later determined
inversely proportional to the number of dataset N or dimension d to consider a natural approximation reflecting the discrete
experimental setting.

Estimating ∇θL≥η(θ) in terms of η. Now we show that for the i-th element of ∇θL≥η(θ)∣∣∣∂L≥η(θ)

∂θi

∣∣∣ ≤ Cmax(N, dd) η−2s (5.15)

which implies

|∇θL≥η(θ)| =
(∑

θ

∣∣∣∂L≥η(θ)

∂θi

∣∣∣2)1/2

≤ Cmax(N, dd) η−2s.

By Eq. 5.14 and this bound, we get

|∇θL(θ)−∇θL≤η(θ)| ≈ |∇θL≥η(θ)| ≤ Cmax(N, dd) η−2s

which completes the proof of Theorem 3.2.

To show Eq. 5.15, we first use the chain rule to calculate

∂L≥η(θ)

∂θi
=

1

N

N−1∑
j=0

∫
|ξ|≥η

e2πixj ·ξe−πε2|ξ|2∇Tθ
ℓ(Tθ ◦ A, g) · ∂(Tθ◦A)

∂θî
(ξ)dξ.

Since η ≤ ⟨ξ⟩ :=
√

1 + |ξ|2 for all 0 < η ≤ |ξ|, we then see that for s ∈ N∣∣∣∣∂L≥η(θ)

∂θi

∣∣∣∣ ≤ 1

N

N−1∑
j=0

η−2s

∫
|ξ|≥η

e−πε2|ξ|2
∣∣∣⟨ξ⟩2s∇Tθ

ℓ(Tθ ◦ A, g) · ∂(Tθ◦A)
∂θî

(ξ)
∣∣∣dξ

≤ 1

N

N−1∑
j=0

η−2s
∥∥∥⟨ξ⟩2s∇Tθ

ℓ(Tθ ◦ A, g) · ∂(Tθ◦A)
∂θî

(ξ)
∥∥∥
L∞

∥e−πε2|ξ|2∥L1 . (5.16)

By a change of variables εξ → ξ, we note

∥e−πε2|ξ|2∥L1 = ε−d

∫
Rd

e−π|ξ|2dξ ≤ Cε−d.

Hence, if we show that the L∞-norm in Eq. 5.16 is finite, then∣∣∣∣∂L≥η(θ)

∂θi

∣∣∣∣ ≤ Cη−2sε−d.

Finally, if we take ε = min{1/ d
√
N, 1/d} for large N, d, we conclude∣∣∣∣∂L≥η(θ)

∂θi

∣∣∣∣ ≤ Cmax{N, dd}η−2s (5.17)

as desired.

Now all we have to do is to bound the L∞-norm in Eq. 5.16. Using the simple inequalities

⟨ξ⟩ ≤ 1 + |ξ|, (1 + |ξ|)M ≤ C
∑

|α|≤M

|ξα|,

and Eq. 5.4, Eq. 5.1 in turn, we first see∥∥∥⟨ξ⟩2s∇Tθ
ℓ(Tθ ◦ A, g) · ∂(Tθ◦A)

∂θî

∥∥∥
L∞

≤
∥∥∥(1 + |ξ|)2s∇Tθ

ℓ(Tθ ◦ A, g) · ∂(Tθ◦A)
∂θî

∥∥∥
L∞

≤ C
∑

|α|≤2s

∥∥∥ξα∇Tθ
ℓ(Tθ ◦ A, g) · ∂(Tθ◦A)

∂θî

∥∥∥
L∞

≤ C
∑

|α|≤2s

∥∥∥Dα
(
∇Tθ

ℓ(Tθ ◦ A, g) · ∂(Tθ◦A)
∂θi

)̂∥∥∥
L∞

≤ C
∑

|α|≤2s

∥∥∥Dα
(
∇Tθ

ℓ(Tθ ◦ A, g) · ∂(Tθ ◦ A)

∂θi

)∥∥∥
L1
.

By Leibniz’s rule we then bound the L1-norm in the above as∥∥∥Dα
(
∇Tθ

ℓ(Tθ ◦ A, g) · ∂(Tθ ◦ A)

∂θi

)∥∥∥
L1

≤ C
∑

|α1|+|α2|
=|α|

∥∥∥Dα1∇Tθ
ℓ(Tθ ◦ A, g) ·Dα2

∂(Tθ ◦ A)

∂θi

∥∥∥
L1
.

When |α| ≤ s − 1, |α1| ≤ s and |α2| + 1 ≤ s, and then the L1-norm in the right-hand side is generally finite since
σ ∈ W s,∞(R), g ∈ W s,∞(Rd), and the L1-norm may be taken over the compact domain Ω; for example, ℓ(Tθ ◦A, g)(x) =
|(Tθ ◦ A)(x)− g(x)|2 and

∇Tθ
ℓ(Tθ ◦ A, g)(x) = 2((Tθ ◦ A)(x)− g(x))

for mean-squared error loss. Since (Tθ ◦ A)(x) is expressed as compositions of σ, the regularity of ∇Tθ
ℓ(Tθ ◦ A, g)(x) is

exactly determined by that of σ and g. Namely,

∇Tθ
ℓ(Tθ ◦ A, g)(x) ∈ W s,∞(Rd), (Tθ ◦ A)(x) ∈ W s,∞(Rd), (5.18)

from which the L1-norm taken over the compact domain Ω is finite since |α1| ≤ s and |α2|+ 1 ≤ s.

On the other hand, when s ≤ |α| ≤ 2s we set |α| = s+ j with 0 ≤ j ≤ s. Firstly, if 0 ≤ |α1| ≤ s (and so j ≤ |α2| ≤ s+ j
since |α| = |α1|+ |α2|), then we bound∥∥∥Dα1∇Tθ

ℓ(Tθ ◦ A, g)·Dα2
∂(Tθ ◦ A)

∂θi

∥∥∥
L1

≤
∥∥Dα1∇Tθ

ℓ(Tθ ◦ A, g)
∥∥
L∞

∥∥∥Dα2
∂(Tθ ◦ A)

∂θi

∥∥∥
L1
.

Here, by Eq. 5.18, the L∞-norm in the right-hand side is finite since |α1| ≤ s, while the finiteness of L1-norm follows from
the fact that Dβσ ∈ L1(R) where |β| = |α2|+ 1. This fact is indeed valid for general activation functions such as ReLU,
eLU, tanh and sigmoid since the L1-norm may be taken over the compact domain Ω. Finally, if s+ 1 ≤ |α1| ≤ s+ j (and
so 0 ≤ |α2| ≤ j − 1), then we bound this time∥∥∥Dα1∇Tθ

ℓ(Tθ ◦ A, g)·Dα2
∂(Tθ ◦ A)

∂θi

∥∥∥
L1

≤
∥∥Dα1∇Tθ

ℓ(Tθ ◦ A, g)
∥∥
L1

∥∥∥Dα2
∂(Tθ ◦ A)

∂θi

∥∥∥
L∞

.

Here, the L∞-norm in the right-hand side is finite by Eq. 5.18 since |α2|+1 ≤ j ≤ s. The finiteness of L1-norm also comes
from Dβσ ∈ L1(R) and Dβg ∈ L1(Rd) with s+ 1 ≤ |β| ≤ 2s. Here, the condition Dβσ ∈ L1(R) is valid generally as
above, and the bound Eq. 5.17 is still valid with η−s even if the condition Dβg ∈ L1(Rd) is not required. This is the case
j = 0 in the proof.

References

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square attack: a query-efficient
black-box adversarial attack via random search. In Proc. the European Conference on Computer Vision (ECCV), 2020.

Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast adaptive boundary attack. In Proc.
the International Conference on Machine Learning (ICML), 2020a.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free
attacks. In Proc. the International Conference on Machine Learning (ICML), 2020b.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flammarion, Mung Chiang,
Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial robustness benchmark. In Proc. the Advances
in Neural Information Processing Systems (NeurIPS), 2021.

Lawrence C. Evans. Partial differential equations. Second edition. Graduate Studies in Mathematics. American Mathematical
Society, 2010.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial examples and black-box
attacks. arXiv preprint arXiv:1611.02770, 2016.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. 2018.

Camil Muscalu and Wilhelm Schlag. Classical and multilinear harmonic analysis. Vol. I. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 2013.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram Swami. Practical black-
box attacks against machine learning. In Proceedings of the ACM on Asia conference on computer and communications
security, 2017.

Zeyu Qin, Yanbo Fan, Hongyuan Zha, and Baoyuan Wu. Random noise defense against query-based black-box attacks. In
Proc. the Advances in Neural Information Processing Systems (NeurIPS), 2021.

Gaurang Sriramanan, Sravanti Addepalli, Arya Baburaj, et al. Guided adversarial attack for evaluating and enhancing
adversarial defenses. In Proc. the Advances in Neural Information Processing Systems (NeurIPS), 2020.

Gaurang Sriramanan, Sravanti Addepalli, Arya Baburaj, et al. Towards efficient and effective adversarial training. In Proc.
the Advances in Neural Information Processing Systems (NeurIPS), 2021.

Elias M. Stein and Guido Weiss. Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, 1971.

Thomas H. Wolff. Lectures on harmonic analysis. American Mathematical Society, 2003.

Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training. In Proc. The International
Conference on Learning Representations (ICLR), 2020.

Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yan Xiao, and Zheng Ma. Frequency principle: Fourier analysis sheds light on
deep neural networks. Communications in Computational Physics, 2020.

Table 3: Hyper-parameter setting for all baselines.

Method Hyper-parameters CIFAR-10 (PreActResNet-18) ImageNet-100 (ResNet-18)

FBF

perturbation ϵ 0.031 0.031
perturbation step size 0.039 0.039
learning rate 0.1 -
epoch 30 -
batch size 256 -

GAT

perturbation ϵ 0.031 0.031
perturbation step size 0.031 0.031
learning rate 0.1 0.1
epoch 100 100
batch size 64 64

NuAT

perturbation ϵ 0.031 0.031
perturbation step size 0.031 0.031
learning rate 0.1 0.1
epoch 100 100
batch size 64 64

PGD

perturbation ϵ 0.031 0.031
perturbation step size 0.039 0.039
number of iterations 7 -
learning rate 0.1 -
epoch 30 -
batch size 256 -

TRADES

perturbation ϵ 0.031 0.031
perturbation step size 0.007 -
beta 6.0 -
learning rate 0.1 -
epoch 100 -
batch size 128 -

PhaseDNN

perturbation ϵ 0.031 0.031
perturbation step size 0.039 0.039
frequency range [0, 50000) [0, 50000)
number of heads 3 3
learning rate 0.1 0.1
epoch 30 50
batch size 256 128

	Filtering Method for Frequency Analysis
	Iterative-version of PhaseAT
	Details about Evaluation
	Attack Configuration
	Dataset Information
	Baseline Setting

	Additional Evaluation
	Different Architectures
	Adversarial Robustness against Black-box Attacks

	Proofs of Theorems 3.1 and 3.2
	Preliminaries
	Proof of Theorem 3.1
	Proof of Theorem 3.2

