On Identifiability of Conditional Causal Effects
(Supplementary Material)

Yaroslav Kivva/ Jalal Etesami'- 3 Negar Kiyavash'?

ISchool of Computer and Communication Sciences, EPFL, Lausanne, Switzerland
2College of Management of Technology, EPFL, Lausanne, Switzerland
3TUM School of Computation, Information and Technology, Technical University of Munich

1 TECHNICAL PROOFS

1.1 NON C-GID CAUSAL EFFECTS

For proving Lemma|[I] Lemma[d]and Lemma[7] it suffices to introduce two models that agree on the known distributions but
disagree:

* on the causal effect Q[L'|L"] (for Lemmall)),
* on the causal effect Py (d|s\d) (for Lemma 4),

« on the causal effect Py (d|s\d) (for Lemma 6).

To do so, we require a result from [Kivva et al.,[2022]] and couple of definitions and notations which we present in the next
section.

1.1.1 Baseline Models

In this section, we present two models which we use as our baseline models for proving the non-identifiability parts.

Theorem 1. Theorem 1 |Kivva et al.|[2022)] Suppose ScVisa single c-component. Q[ | is gID from (A, G) if and only if
there exists A € A such that S = A and Q[S] is ID in G[Al.

To introduce the baseline models, we use | the models from the proof of Theorem 1 in [Kivva et al.,[2022]. Note that in the
proof of Lemma@ and L we use S; and S interchangeably, i.e., S = S;.

Suppose that Q[S] is not gID from (A, G) and there exists i € [0, m], such that S = A,;. Without loss of generality, let
ScA;forie [0, %] and S ¢ A, forie [\I% + 1, m]. This allows us to define a particular graph which we use throughout
our proof. More precisely, under these assumptions, Lemmaand the above theorem guarantee that for each i € [0, %], there
exists a S-rooted c-forest F; over a subset of observed variables B; (S C B; = A,) such that 7,[S] = F; [S] for j € [1, E]
In words, induced subgraphs of F;s over the set S are the same. We define graph G’ as the union of all the subgraphs in
{F: } _o with the observed variables V= Ul o Bi and the unobserved variables which we denoted by U.

To properly define a SEM M over a causal graph G, it suffices to define the domain set of each node X in G with its

associated conditional distribution P(X|Pag(X)). Note that if for some variable X in G, its domain X (X) or P(X |Pag(X))
are not specified, then by default, we assume X (X)) := {0} and P(X = 0|Pag(X)) = 1.

Let Uy be an unobserved variable from subgraph F that has one child in S and one child in T := \vf\é In high-level, our
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Figure 1: An illustration of the definitions B;, Uy, A, § and JV“Z

baseline models M; and M have the same distributions over all variables in graph G except the variable Uj. Especially,

PM(V[Pag(V)) = PM2(V|Pag(V)), Ve V,V (1)
1
PM(U) = PM(U) = ;YU € U\{Uo}, @
X (U)]
where | - | denotes the cardinality of a given set. For the sake of brevity, we drop the superscripts M; and M, for the

distributions in Equations (1)) and . We denote the domain of variable Uy to be X(Up) := {71, ...,7a}, where ;s are
vectors and d is an integer number to be defined later. In model M, we define Uy to have uniform distribution over X (Uy),
ie., PMi(Uy = v;) = 1/d. In model My, we define P2 (Uy = ~;) := p;, where j € [1 : d] and

Forie [0:m], je[1:d], up =, and any v € X(V), we define:

0,;v):= >, [] PlwlPag(X)) ] Plu),

U\{Up} XeA; UeU\{Uo} 3)
n(v):= Y [[P@lPg(x)) [ Pw.

U\{Uo} xeS§ UeU\{Uo}

Note that in the above equations, 1o = y; may appear as a parent of an observed variable. Using the above definitions, we
can re-write the Q-notation in Equation (3)) as follows

d
QYA = Y 2005, @
j=1
d
QM2[A](v) = Z it (v), ©)
4,
QMSIV) = D Zni(v), (©)
j=1
d
QISI(v) = 3 pimi(v). @)

Denote the set of unobserved variables in G’ [§] by US and its complement set in U\(US v {Up}) by UT. For each
i € [0: k], let T; be a node in B;\S such that Chr, (1;) # . Node T; exists because F; is a S-rooted c-forest. Flgurel
illustrates an example of the above definitions.



We define the domains of X € V U U as follows. Note that V = § U T and U = US L UT | {Uo}.

X(X):=[0:K], VX€S,

(X):=[0:k], ¥XeUS,
X(X):={0,1}*T  vxeT,
(X)
(X)

X):=[0:x] x {0,1}*W0)=1 " X = 1,

where £ is an odd number greater than 4. Function «(X) is only defined for X € TuUTU {Uy} and it denotes the number

of subgraphs in {F;} 5?:0 that contains X . From the above definition, it is clear that d, the domain size of Uy is equal to
(k + 1)20Wo)=1,

Suppose that X € TuUT U {Uv} and X belongs to F;,, Fi,, -+ - s Fixy» Where ip < iy < --+ < ig(x). We use

(XT[i1], X[i2], ..., X[iax]) to represent X. Note that depending on where X belongs to, its vector size is different. If

3
X € UT U {Uy}, both its distribution and its domain are specified above. If X € T, we define the entries of its corresponding
vector as

X[ij] = Z Y[i;]| (mod 2),

where j € [1: a(X)]. This specifies the distribution of P(X|Pag(X)) for X € T. What is left to specify is the domains
and the distributions of variables in S.

Recall that Uy has one child in S and one child in T. We denote the child in S by Sy. For each S € S\{S,} and any
realization of Pag:(.S), we define I(S) to be one if there exists i € [0 : k] such that

1. T} € Pag:(S) and T}[i] = 0, or

2. there exists X € Pag/(S)\(IvJé U {T;}) such that F; contains X and X[i] = 1,

and zero, otherwise. It is noteworthy that according to the definition of Yv}, it belongs to B,\g c T which means T, [7] is

well-defined according to the above definition. Note that the above definition holds for all S € §\{SO}. When S = Sy, we
define I(.Sp) to be one if there exists ¢ € [0 : k], such that

1. T; € Pag:/(S) and T;[i] = 0, or
2. i # 0, F; contains Uy, and Up[i] = 1, or
3. there exists X € Pag (S)\(IVJg U {T},Up}) such that F; contains X and X[i] = 1.

For each S € S, we define X(S) :={0,...,x} and for s € X(S),

LIS =1
P(S =s|Pag(S)):=41—re ifI(S)=0ands= M(S) (modk+ 1), (8)
€ ifI(S) =0and s # M(S) (mod k + 1),
where 0 < ¢ < * and
ZmePag,[é](S) T s if S'e S\{SO}’

M(S) = ©)

Uo [0] + Za:GPag/[g](S) z L if §=5.

~

Note that M (.S) is an integer number because Pag, g (S) < US and thus all terms in the summations in @) belong to
[0 : k]. With this, we finish defining the models and now we are ready to present some of their properties.

Let I denote a subset of X (Up) = {71, ..., 7a} with “F1 elements that is given by

r:= {(Qx,(),--- ,0): z€[0: /{;1]}'



Recall that for v € X(V) and i € [0 : m], 0;(v) and n(v) are two vectors in R? with j-th entry corresponding to Uy = ;.
Suppose that ' = {v;,,...,7; ., }- Next result shows that in the constructed models, all entries of 0;(v) with indices in

{71, ...,j%l} are equal.

Lemma 1 (Kivva et al.| [2022]). For any v € X(V), i € [0 : m], and both models, we have

0ij, (V) = 0ij,(V) =+ = Gi,j%ﬂ (v).

The next two lemmas are used to prove the existence of parameters € and {p; }?:1 such that the constructed models M and
M agree on the known distributions but disagree on the target causal effect.

Lemma 2 (Kivva et al.|[2022])). There exists 0 < € < % such that there exists vo € X(V)and 1 <r <t < “T’Ll such that
1, (vo) # 1, (Vo).

Lemma 3 (Kivva et al.| [2022]). Consider a set of vectors {c;}_,, where ¢; € RY. Assume ¢ € RY is a vector that is linearly
independent of {c;}1"_,, then there is a vector b € RY such that

{eiby =0, Vie[l:n],
{e,b) # 0.

1.2 PROOF OF LEMMA

Herein, we present the proof of our first lemma. But first, we need the following technical lemmas. Assume that S’ and S
are two disjoint non-empty subsets of S, such that S = S" U S”.

Let ST := V\S and 5" € %(S1). For ug = 7;, where j € [1 : d], we define
68N =) > [ P@lPag(x)) [] P, (10)
S UN\{Uo} XeS UeU\{Uo}

Note that Uy may appear as a parent of some observed variables in the above equation. Recall that T" = {v; ,...,v; .., }.
2

Lemma 4. For any 5t € X(ST) and both models, we have

¢j1 (\S/T) = ¢j2(§T) == ¢jk+1 (\S/T)

2

Proof. We fix a realization §' of St Suppose that [; and [5 are two integers, such that
v, = (22,0,...,0),
Vi, = (2¢+2 (mod k+1),0,...,0),

and z is an integer in [0 : “51]. Recall that

2
6,8 :=> > [[P@lPag(x)) [] Pw.
S’ U\{Uo} XeS UeU\{Up}

‘We consider two cases:

1. Suppose that there exists a variable S € S such that I(S) = 1. Then, there is a sequence of variables
Uy, 81,01, 82,Us, ..., Uy, S, such that Uy is a parent of S1, S € S is a children of U/; € US and U; € US is a
parent of variables S; and S for j € [1:1—1]. Let U := {Uy, ..., U;}. For a given realization u; of US, we define

up € %(Ivjé) by
wo[U;] := wi[U;] + 2(=1)7  (mod k+1), je[l:1],

g a (11)
w[U] := w[U], VU e US\U.



This implies
P(3|Pag(9))| _ = P(3|Pag(S))

(TS,Uo)=(u1,y) (08,U0)=(u2.7,)”
for any S € S and consequently, ¢;, (87) = ¢y, (37).

2. Suppose that there is no variable in S with I(-) = 1. Denote by S a node in S’ with the shortest path to the node U,
by bidirected edges Suppose § is a realization of S and the shortest path is Uy, Sl, U 1, Sg, Ug, .. Ul, S, so that U
1s a parent of Sy, Sisachild of U, € US and U cUSisa parent of variables S and S]H forj €[1:1—1] Let

— {U,...,U;}. For a given realization u; of US, we define u, € X(US) by

wo[U;] := wi[U;] + 2(=1)7  (mod k+1), je[l:1],

w5 A (12)
w[U] :=w[U], VUeUS\U,
For a given realization §; of S/ , we define S5 € .’{(g’ ) as follows
S// — S// vs// c SI S
Sl") = 5[5, \5), )

8[8] == 51[S] +2(-1)"  (mod £ +1),

Note that with the above modifications for any SeS, we get

51— M(S)=5 — M(S) (modk + 1),

St,8)=(51,5;)
P(3|Pag(S))| ..
(31Pag(5)) (TS, Us,8)=(u1.,71, :51)

for any S € S and thus ¢, (81) = ¢y, (7).

. ,and M (-) is given by Equation (9).
(818)=G6" 5) ()3 given by Bq @)

= P(3]Pag(5))

Therefore:

~ b
(US,Uo,S)=(uz2,71,,52)

To summarize, we proved that ¢y, (57) = ¢y, (81). By varying z within [0 : £51] in the definition of ;, and y;,, we conclude
the lemma. O

In order to have consistent notations in the appendix, we restate Lemmausing é, S’ , S” instead of L,L’, L” respectively.

Lemma Suppose S € V is a single c-component, such that S = S' U S" for some disjoint sets S' and S Q[§’|§”] is
c-gID from (A, G) if and only if Q[S’ v S"] is gID from (A, G).

Proof.
Sufficiency: We use Assume that Q[S’ U S”] is gID from (A, G), then Q[S’|S”] is c-gID from (A, G). This is an immediate
result of applying Equation @), i.e.,
QSI(v)
s QISI(v)
Necessity: We prove this by contradiction. Assume that Q[S’ U S§”] is not gID from (A, G). We will show that Q[S'|S"]

is not c-gID from (A, G). To this end, we will construct two models M; and M such that for each i € [0 : m] and any
veV:

QIS'IS")(v) =

QM A](v) = @V [A(v ), (14)
ZQMI [S](v') ZQM2 (15)

but there exists vo € X(V) such that: _ _
QM[S](vo) # Q™*[S](vo). (16)

Equations (I5)-(16) yield . S
QIF 81 (vo) # QLIS (vo).

This means that Q[S’|S"] is not c-gID from (A, G).

We consider two cases.



First case: Suppose that there exists ¢ € [0, m], such that S c A,. For this, we consider the models constructed in the

section [LI.1}

PRI (v) = 3] 56, (vI81), a7
= =1
d
DQISIM(v) = D pies(vIST]) (18)
= i=1
and according to the Equations (3) and (I0), we have
d
1
QM [A)(v) — QM A (v) = j;(pj 20i5(v) (19)
d
D QM) - VOB (v) = (s — )6, (vI8) 0)
% % j=1
d
QM[8](vo) — Q*[81(vo) = Y. (0 — )ns(vo) an
d 1 "
2P —1=2 =) (22)

Therefore, it suffices to solve a system of linear equations over parameters {p; };-i:l and show that it admits a solution.

d

(05— 2)0:5(v) =0, v e X(V),i [0,m], 23)
j=1

d 1 -

21 (p; = 7)6;(") =0, V&' e 2(8N), i€ [0,m], (24)
j=1

d 1 -

20 = )i(vo) # 0, Ive € X(V), (25)
j=1

1

p; — g) =0, (26)
0<pj<1, Yje[l:d]. 27

However, the system of linear equations (23)-(27) admits a solution with respect to {p;}9_, if and only if the following
system of equations has a solution with respect to parameters {4, }?zlz

M=

Bjai,j(v) = O, Vv e %(V),Z S [0 : m] 28)
j=1
d ~
> Big;(EN) =0, s e x(8"),ie[0:m] (29)
=1
d
> Bimi(vo) # 0, Ivge X(V) (30)
j=1
d
>8i=0 (31)
=1
Clearly, if { ﬁj*} is a solution for system |i , then
1 By
* . Ty
p; = d+2hd’ (32)



is a solution for 23)-27), where h := n%ax 1B
1:d

According to Lemma!and Lemma@ forany i € [0: m], v e X(V)and 8" € X(ST), we have
Oiii (V) = 0ia (V) = - = 0. (V),
¢, (87) = ¢, 81 = -+ = @-%(ET),

and by Lemma we know that there exists vo € X(V) and 1 < r < ¢ < ¥ such that

15, (Vo) # 1, (Vo).

The latter means that the vector (11 (vo),72(vo), - - ., 7a(vo)) is linearly independent from vectors:
(1,1,...,1), (33)
(91'71(V), 97;72(V), ey 9i7d(V)), VV S X(V), VZ € [0 : m], (34)
(6181, 628", 4a®)), V& € x(S"). (35)

(36)

Combining the last result with Lemma [3| imply the existence of a solution { ﬁ]*} and subsequently the existence of two
models M and M that satisfy equation (I4), (I5) and (T6).

Second case:  Suppose that there is no ¢ € [0, m], such that Sc A,;. Suppose S* € S and denote by G* the graph obtained
from graph G through the following procedure:

1. Add nodes T and U{ to graph G.

2. Draw a direct edge from T to S*.

3. Draw direct edges from U to S* and 7.

We define A, 41 := S U {T¢¥} and A* := A U {A,,41}. To summarize, we have

* Visaset of all observed variables in graph G;
* U is a set of all unobserved variables in graph G;
s V¥ =V u{Tj}h
s U*=Uu {U}}
Note that Q[S] is not identifiable in G*[A.,,, 1] and therefore Q[S] remains not gID from (A*, G*). Since S € A,,11,

according to the First case, we can construct models M7 and M3 for the graph G* and set A*. These two models satisfy
the following properties

* X(UF)=[0:K]andd = k + 1.
.« X(T¥) = {0, 1}.

For the graph G*, we define

0;;(v. Tg = to) :=>. [[ Pla|Pags(X)) [ Plu) [0:m], je[l:d],
U XeA; UeU
O (V, T = to) ZP to) || P(x|Pags(X)) || P(u [1:d],
XeA; UeU
:ZEHPx\Pag* ) [ Pw), [1:d]
§ U XeS UeU
ni(v, T =t0) :== Y. [ [ Pz | Pag« (X)) | | P(w)
U xc§ UeU

Now, we are ready to construct two models M; and M, for G.



« Forall § € S\{5*}, we define
Mi(S|Pag(8)) := P(S|Pag+(S)), i€ {1,2}.
e For S = S*, we define

PY(81Pag(8)) = P(S|Pag(8), T = 1,U =),
PM:(S|Pag(S)) := P(S|Pag(S), T = 1, U = 2).

Suppose that ,, = 0 and ,, = 2, then
¢ In model M;:
QAN (V) = 0,, ;(v, T = 1), ie[0,m],
ZQMI [S](v) = ¢», (V[ST]),
QMBI 1 0.
* In model Maj:

Q[ ] V): T2J(V TO :1) ie[ovm]v
Y QM [S](v) = oy, (vIST)),

S/

QM[S](v) = 0 (v).
According to the Lemmas|[I]and [ for any v € X (V)

QM A](v) = QM [A](v),
2 RMISIY) = XM [S](v),

S S

however, using Lemma2|and for vy = (0, ..., 0), we get

QM[S](vo) # QM2[S](vo).

1.3 PROOF OF THE PROPERTIES IN SECTION & SECTION

Recall that in Sections[4.2.2]and £.2.3] we present two sets of properties which we prove them here. We only present the
formal proof of the set of properties in Sections[d.2.2]since the other set of properties in Section[4.2.3]can be shown similarly.

1. If path p contains a chain W/ — W — W or a fork W’ < W — W”, then node W does not belong to any of the

sets X', Z' or Y.

2. If path p contains a collider W/ — W « W then there is a directed path py, from W to a node in Z’. Moreover,

none of the intermediate nodes in the path py, belong to the set X' U Z' U Y'.

3. Path p does not contain any node from the set X'.

Proof.

1. The first property is obvious since path p is not blocked by the set X’ u (Z'\{Z'}) u (Z'\{Y"}).

2. Suppose W is a collider as defined and let assume that R is the closest descendant of the variable 1 that unblocks path p.

Note that R ¢ X' since it unblocks p in the graph Oxr. (z/}» 1-€. no incoming edges in X',



- =

Figure 2: An illustration of the path p, collider W and its corresponding path pyy .

All variables except R in the shortest directed path from ¥ to R do not belong to the set X’ U Y’ U Z’. Assume that R € Y’
and p’ is a path obtained by combining two paths: one from Z’ to W in p and the other one from W to R (defined above). It
is easy to see that p’ is also unblocked, but it contains less number of colliders than p. This is impossible according to the
definition of the path p. Thus, R must be in the set Z’. This concludes the proof of the second property.

3. We prove this by contradiction. Suppose that there is a variable R € X' on the path p. Since p is unblocked, then X is a
collider or a descendant of a collider. This is impossible due to property 2. O

1.4 PROOF OF LEMMAE]

Recall that S = Ancg[‘vf\x,] (Y’ U Z’) and it is assumed that is not gID from (A, G). S consists of Sy, ..., S,, as its single

c-components where S; is not gID. Let S=5,. Clearly, we can add {S;}?, to the known distributions and S remains not
gID, i.e., S is not gID from (A’, G), where A’ := A U {S;}™_,. For simplicity, we denote A’ = {A’}7 . Hence, using the
method in Section|1.1.1] we can construct two models M7 and M that are the same over the known distributions and
different over Q[S]. These models disagree on the distribution Q[S] as well, because Q[S] = [ ]!, Q[S;]. Below, we use
these two models to introduce two new models to prove Lemmaf]

1.4.1 New models for Lemma E]

Recall that P is a collection of paths {p} U {pw |W € F}, where F is a set of all colliders on the path p. Moreover, D is a
set of all observed nodes on the paths in P excluding the ones in Z’. Figure [2|demonstrates some variables used in this proof
and their relations for clarity.

Herein, we define new models M/ and M), based on the models M; and Ms. Let Dp be the set of all variables (observed
and unobserved) on the paths in P. We say that a variable D is a starting node of path p € P if

e D=Z7"andp=por

e DeF,ie.,itisacollider on path p and p = pp.
Note that D can be a starting node of only one path. According to the definition of a starting node, if D is a starting node for
some path then either D is a collider on the path p or D is Z.

For R € V U U, let o, (R) be the number of paths in 7 that contains R. Furthermore, we use X(R)" and X (R) to denote its
domain in M or M/, (variables in different models have the same domains) and in M; or Mo, respectively. We define
X(R)’ as follows:

* If R is a starting node for a path in P:



* If R is not a starting node for any of the paths in P, then:
X(R) = X(R) x [0: k]*).

Consequently, if R does not belong to any of the paths in P, then X (R) = X(R).

Consider R € V u U. According to the domains definitions above, R is a vector that is a concatenation of the vector coming
from X(R) in model M; (or M>) and some additional coordinates. These additional coordinates are defined based on
ap(R). More precisely, if R is not a starting node of a path p € P, then there is a coordinate assigned to this path, denoted
by R[p], otherwise, if R is a starting node of p € P, then there is no coordinate assigned this path.

Let O = V U U. For any realization o € X(0)" of O, we denote by o™ € X(0), a realization of O that is consistent with
o. With a slight abuse of notation, we use O and O™ to denote realizations of O in models M and M;, respectively. oM
means realizations in X (O) from model M; that are consistent with realizations in %(O)l from model M.

Recall that Dp is a set of all variables on the paths in P. Let D € Dp. We denote by Pp, the set of all paths p, such
that p € P, D belongs to path p, and D is not a starting node of path p. We are now ready to define the probabilities of
PMi(D|Pag(D)) forany D e V u U andi € {1,2}.

e If D does not belong to the set Dp, we define
PMi(D|Pag(D)) := PMi(DM|Pag(D)).
* If D belongs to the set Dp\{Z’}, we define

PMi(D|Pag(D)) := PM{(DM|Pag(D)) [ fp(DIpllPas(D)),

PEPD
where Pa;(D) denotes the parents of D on path p and f;(D|Pas(D)) is given below.

Definition of function f;(D[p]|Pa;(D)):

— When there exists a variable W € F, such that p = py and D is a child of W on path pyw (i.e., W € Pa,,, (D)),
then we define

fow (Dlpwl|Pap,, (D)) :=

1—re ifD[lpw]=W][p] (modk +1),
€ if D[pw] # W[p] (mod x + 1).

— When Paﬁ(D) = @,
1

k+1

fp(DI[p]) =
— Otherwise,
1—re if D[] =Y piep,,py D'[P] (mod k+1)
e DI % Npenp) D'l5l (mod i+ 1),
Note that P™M: (D|Pag(D)) is a probability distribution since for different paths p1 and po, D[f1] and D[p,] are
different and also
> fa(DIplIPas(D)) =1

D[plex(D[p])

* If D = Z’ and W is a parent of Z’ in path p. Note that such I exists because p is an unblocked backdoor path in
graph Gy 17} Recall that Z’ is a variable from the set S. In this case, we define

f3(D[p]|Pay(D)) = { (37

PMi(Z'\Pag(2')) := P'(Z™M|Pag(Z")) || fa(Z'[plIPas(2)), (38)

pEPZ/
where P’(-|) is given by

24 ifI(Z) =1,
P(ZM =2 | Pag(Z')):={1—ke ifl(Z')=0and2 =M (Z') (modk+1),

€ ifI(Z')=0and 2’ #£ M'(Z') (mod k + 1),



and M'(-) is defined similar to (9) and is given by

W[p] + ZzEPag,[g](Z/) xM > if 7' e S\{SO}7

M'(Z') = .
W[p] + uOAA [0] + erPag,[é](Zl) $M , if 7' = SO .

(39)

Note that for any W € (V u U)\{Up}, we have
PM(W|Pag(W) = PM2(W|Pag(W)).
Therefore, we will use P’ (W |Pag (W) instead of PMi (W |Pag(W)) or PM2 (W |Pag(W)) for W e (V L U)\{Up}.

We also have

P 1_[ fp UO
@ e, (40)
PMe(Uo) = PMU) [T f(Uolp
0 0 P 0 p])
PEPU,

Recall that S = Ancgpv\x/(Y', Z'). Let D’ := S\D and D := VA\D. Fori € [0:m/],je [l :d],ve X(V) and
d' e X(D"), we define G;J(v), (;5;- (d") and n;-(v) as follows:

0,,v):= > 1] KWl > ] PM@lragx)) [[ P"@™, 1)
Uo[P] ﬁePUo U\{Uop} XeA’ UeU\{Up}

o)=Y [ HWl)>) D [Pl ragx)) [ PY@™), 42)
U [P] pePUO D U\{Uy} XeS UeU\{Up}

)= Y [ £0E) Y J]PY@E|rPgx) ] P, (43)
Uo[P] PP, U\{Up} XeS UeU\{Uo}

where ;15 is a summation over all realizations of the random variables {Us[p]| p € Pu, }-

Next, we prove three lemmas similar to Lemmas and for the new models M/ and My,

Lemma 6. Foranyv € X(V) andi € [0 : m'], we have

055, (V) = 075, (V) = =05, (V).

Proof. By substituting PM from the above into Equation (#I)) and rearranging the terms, we obtain

0,,0)=> [] HO@ T[] HEXIlPas(X))

U[P] U[pleU[P] X[pleA[P]
(Y P (ZIPag(z)) ] PMaMIPag(x) ] PM@M)),
uM XeA\{Z"} UeU\{Uo}

where U[P] := JpotULp]] b € P}, U := U\{Uy}, and by definition UM is all realizations of elements in set U in
X (U) that are consistent with realizations in %(Q)/. Suppose variable W belongs to the path p and Z’ is a child of W in
that path. By the construction of P(Z’|Pag(Z")), we have

P'(Z' + W(pl|Pag(Z")) = P*(Z'|Pag(Z")). (44
This is because M’ (Z' + W (p]) = M(Z'). Let v/ € X(V) be a realization that is consistent with v**{[V\{Z’}] and
v'[Z2'] = vM[Z'] = v [Wp]].
In this case, using , we have
vi= > Il #@ T fa(XplPa(X))
U[P] U[pleU[P] X[pleA,[P]

(X PMY M ZIPag(2) [ PM@lPag(x)) [T PM@™)).
uM

XeA\{Z'} UeU\{Uo}



Note that the terms inside the big parenthesis is equal to 8; ;(v’) given in (3), i.e.,

=N I] 5@ T f(XIblPap(X)6:,;(v').

U[P] 0[p]eU[P] X [pleA][P]

In the last equation, all terms on the right hand side except 0; ;(v’) are independent of the realization of {Up}™, i.e.,
independent of index j. For j € {j1, ...,j%l} and using the result of Lemmathat says 6; j, (V) = ... =0, ; w1 (v'), we

can conclude the result. O

Lemma 7. For any df € X(D")’, we have

¢j1 (dT) = ¢j2 (dT) == ¢)jk+1 (dT)

2

Proof. Similar to the previous lemma, by substituting PM’ from their definitions into Equation (#2)) and rearranging the

terms, we obtain
2 SN TT Hwels) [T fa(X[BIPas(X))

PluM D pePy, X[pleS[P] 45)
x(P’(Z'|Pag<Z'>> [T PM@™Irag(x) T] PM@™),
XeS\{z} UeU\{Uo}

where U[P] := |Jycy{U[p]| b € Pu}, U := U\{Up}. Suppose that [; and [; are two integers such that
L= (22,0,...,0)),
Y, = (22 +2 (mod x+1),0,...,0),
and x is an integer in [0 : “51]. We will prove that ¢, (d") = ¢, (dT).

Suppose that path p is the sequence of variables: Z’, D}, D} . D;g, , D = Y’. Note that there is a direct edge between

k41
any consecutive nodes in this path and furthermore, the direct edge between Z’ and Dy is pointing toward Z’, i.e., Z' < D].

On the other hand, since Z’' and Uy are both in S (é =S by construction), then there exists a shortest path
Uo, S5, U1, S4,Ub, ..., U, Z', such that Uy is a parent of S; € S, Z' is a child of U] € US, and U’ e US is a par-
ent of variables S; € Sand SJ»Jr1 eSforje[l:1'—1].Let U := {U], ..., U}, i.e., unobserved nodes in this shortest
path except Up. For a given realization o1 of U u D, we define 02 € X(U u D)’ as follows

o' [U}] := o [U}] +2(~1)7 (mod k+1), jel[l:l], (46)

For D/, we have
02[D{[p]] = 01[D}[p]] — 2(-1)"  (mod & + 1). (47)
Note that with these modifications, for any S € S\{Z'}, we have
% —M(S) =% —M(S) (mod k+1),

where 5] is a realization of S ‘ , 59 1s a realization of S ,and M(-) is
(UuD,Df,UM)=(01,dT,v1,) (UuD, D UM)=(02,d",71,)

given by Equation (9). Additionally,
o2 - M'(Z")=oM[Z'] — M'(Z') (mod k + 1),
where M’() is defined in Equation . This implies that for any S € S, we have

(5Pag(5)) (UuD, D UM)=(01,d",m,) (BlPag(5)) (UuD, DT, UM)=(02,d",71,)

Let ¢ := —2(—1)", then Equation becomes

03 [Di[p]] = o"[Di[p]] + ¢ (mod &+ 1). (48)



Suppose that D’; is not a collider on the path p and j € [2 : k + 1]. We define x( D) to be the number of colliders on a part
of the path p from Dj to D} _;. Thus, for those j € [2 : kj + 1] that D7 is not a collider, we define

’

03[ D} [pl] := o' [ D} [p]] + c(—1)MP5). (49)

Note that the modifications in (49) might only affect the function f,(-|-). Next, we show that after these modifications,
function f,(-|-) remains unchanged. To do so, for j € [1 : k] + 1], we consider four different cases:

1. If D} has no parents, then it is obvious that

RGAT) ~ £, (D}[p)) :

(UuD,UM)=(01,71,) (UuD,U")=(02,71,)

2. Djis acollider, then p(D} ) = p(D’_) + 1 and

01[Dj 1 [pl] + 01[D) 1 [p]] = 02[Dj 1 [pl] + 02[Dj 4 [p]].

and hence, according to Equation (37)), we have

fo(D] [p]IPap(D}))‘ = fp(Dj[pl|Pay(D5))

(UuD,UM)=(01,71,) (UuD,UM)=(02,71,)

3. DY isachild of D}, then pu(D}) = pu(Dj ) and

+10
01[Dj[pl] = 01[Dj 1 [p]] = 02[ Dj[p]] — 02[ D41 [p]]-

According to Equation (37), we imply that

Fo(D5 ] Pay(D5))| — £,(D}[pl1Pay(D)))

(UuD, UM)=(01,71,) (UuD,UM)=(02,71,)

4. Djisachild of D_, then u(D}) = p(D);_;) and

o1[Dj[pl] — 01[D; 1 [pl] = 02 Dj[p]] — 02[ D, [p]].

Similarly, according to Equation (37), we get

1D} [p1Pay (D)) — 1 (D} [p] Pay (D))

(UuS,Up)=(01,71,) (UuUS,Uo)=(02,71,)

This concludes that for any j € [1: k] + 1],

12D} [p)1Pay (D)) — 1D} ] Pay (D))

(UuD,UM)=(01,7,) (UuD,U")=(02,71,)

Note that the aforementioned transformation of o; affects only those realizations of variables that are used for the
marginalization in the Equation (@3). Putting the above results together implies that the terms in (@3)) remain unchanged, i.e.,

[T H@la) T[] fo(X[BlIPas(X))

PPy, X[pleS[P]
x (P'(Z'|Pag(2')) [] PM@™|Pag(x)) ] PM@™)
( XesS\{Z"} UeU\{Up} )‘(UUD»DTvUé\/I)=(011dT»'Yl1)
= 1 HWals) ] (X [pNPas(X))
pePuy X[ples[P]
x (P'(Z'|Pag(2)) || PM@™M|Pag(X)) ] PM@M)
( XeS\{z'} UeU\{Uo} )‘(UUDvDTvU({Vt):(Ode,’nz)

This implies that ¢, (d") = ¢y, (d"). By varying  within [0 : #51] in the definition of 7;, and y;,, we obtain the result. [J



Lemma 8. There exists 0 < € < *, such that there exists vo € X(V) and 1 <r < t < “FL such that

15, (Vo) # 15, (Vo).

Proof. By substituting PM from their definitions into Equation (43)) and rearranging the terms, we obtain

mvo = > > I HO) T1 HmEXblIPpX)
leS

UM\{Uo}M U[P] U[p]eU[P] X[pleS[P] (50)
< (P(ZlPag(z)) ] PM@MIPag(X) ] PM@M)),
XeS\{Z"} UeU\{Up}

Next, we define vy € X(V)’ such that the conditions in the lemma hold.

* For any path p € P and any node W on the path p that is not a starting node for path p, we define
vo[W[p]] := 0.

* For any variable S € § we define
vé\/l [S] := 0.

* For the remaining part of v, we choose a realization suc@ that for the selected v, there exists a realization for the
unobserved variables U that ensures I(.S) = 0 for all S € S. This is clearly possible due to the definition of I(S).

Assume 7 and ¢ are such that 7;, := (0,0,...,0) and vy}, := (2,0, ...,0). To finish the proof of the lemma, it is enough to
show that 7’ (vo) and )}, (vo) are two different polynomial functions of parameter ¢. We prove that these two polynomials
are different by showing that i’ (vo) # 7, (vo) for € = 0.

We only need to consider the non-zero terms in Equation (30). From (50), we have
[T #O) T fE&XBlIPayX)
UlpleUP] X[ples[P]

< (P(ZPag(2)) ] PME@M I Pag(x)) [T PM@M)).
XeS\{Z'} UeU\{Uo}

(51

Note that f5(U) = %ﬂ and f;(X|Pay (X)) is non-zero only
 when there exists a variable W € F such that p’ = py, X is a child of W in path py, and
X[p']=WI[p] (mod k+1).

* when the following holds

X[p]= X'[F] (mod & +1).
X'ePay (X)\{W}
Similarly, P (X |Pag (X)) is non-zero
« ifI(X) = 1 (ie. PM(X|Pag(X)) = ~17), or
e if X = M(X) (mod & + 1) for PM(X|Pag(X)),
P'(Z'|Pag(Z')) is non-zero

< ifI(Z') = 1 (i.e. PM(Z'|Pag(Z')) = 7). or
s 7/ =M'(Z") (mod k + 1) for P'(Z'|Pag(Z")).



Let fix a realization u € X (U\{Ug"'})". We consider two scenarios:

I) Assume that for this realization, there is a variable S e S, such that I(S) = 1 and S is the closest variable to Uy
considering only paths with bidirected edges in G’ [§] The value of S does not depend on its parents because of I(.S) = 1
and Equation (8). Additionally in the graph G'[S], there exists a path Uy, S}, U}, 8}, U}, .. ., U}, S, such that Uy is a parent
of §} € S, S is a child of Ul e US, and UJ’ eUSisa parent of variables 5’; € Sand 5‘3+1 eSforje[l:1'—1]. Let
U = {U],...,U}}. We define u’ € X(U\{UM})’ that is consistent with u except the variables in U’. For these variables,
we define

uM[U;] == oM[U;] +2(~1)7 (mod k+1), je[l:1], (52)

With this modification for any Se S, we have
PM(3|Pag (S ‘ — P(3|Pag (S .
(8Pag (S)) ()= (8]Pag(5)) () )
Therefore for all such realizations of u, the summation of the following terms for both 7 (vo) and n;, (vo) will be the same,
[T @ [ £HEXD5IPpX)
UlpleU[P] X[p]eS[P]

< (P(ZPag(2)) ] PMEM | Pag(x)) ] PM@M)).
XeSs\{z'} UeU\{Uo}

(33)

II) Assume that for all S € S, we have I(S) = 0. We consider a realization U*' = «;_and u such that:

. u[IvJé] =0, and
* for all U € U and any path p € P which contains U, u[U|[p]] = 0.

We claim that for such u,

[T #@ 11 HE&XEIPapX))
1eU

UlpleU[P] X[ples[P]

< (P(ZPag(2)) ] PMEM | Pag(x)) ] PM@M)).
XeS\{Z'} UeU\{Uo}

is non-zero. To prove this claim, we consider four cases:

* assume that p € P and exists a variable W such that p = py . Let X be a child of W in path py. From the definitions
of u and v, we get .
X[pl =WI[p] (mod x+1),

and therefore f;(X[p]|Pas(X)) = 1. The above holds because X [p] = 0 = W[p] (mod & + 1).

e assume that p € P and X is a variable on this path such that it is neither a starting node on p nor a child of a starting
node on path p. Then, from the definitions of vy and u we get

X[pl= >, X[p (modk+1),
XePay(X)

and therefore f;(X[p]|Pas(X)) = 1. The above holds because all the variables in the above equation are zero.
« assume X € S\{Z’}. From the definitions of vo and u, we get
XM=M(X) (modk+1),

and therefore PM (2™ |Pag(X)) = 1. Again, the above holds because all the terms are zero.



e assume X = Z’, then
Z'=M'(Z") (mod k + 1),
and consequently P'(Z'|Pag(Z’)) = 1.
Now, we consider the case when U({V‘ = 7j,. Assume that W € F and W' is the last descendant of W on the path pyy . From
the properties which we proved in Section[1.3} we have W’ € Z’ and by the definition of v¢, we have W’[p,,] = 0. Assume
W" is a parent of W’ on the path py. Note that f,,,, (W'[pw]|Pap,, (W')) # 0 if and only if W”[pw ] = 0. Repeating the

above reasoning for variables from W' to W, we conclude that W[p] must be equal to 0, otherwise, there would be a term
in Equation (53) that is zero and this contradicts with the fact that Equation (53) is non-zero.

Assume that Z', W1, Wy, ..., W], , W/, := Y are the nodes on the path p. Next, we prove by backward induction that
W/ =0forallie€ [1: k" + 1]. By definition of vg, we know that Y'[p] = 0. If W/[p] = O foralli € [k” + 1 : k'], we will
prove that W}/, [p] = 0 as well. To do so, we consider the following three cases:

» W/, is a collider on a path p. Then the fact that W}/, [p] = 0 follows immediately from the aforementioned reasoning
and the fact that Equation is non-zero.

» W}, is achild of W}, , and it is not a collider. Then, f,(W},|Pa,(W}.,)) # 0if and only if W}, [p] = W}, [p] = 0.
* W}, is a parent of W}, , . Then, f,(W}, ,|Pa,(W},)) # 0if and only if 0 = W}, ., [p] = W], [p].

This implies that W = 0. Therefore, P'(Z'|Pag(Z')) = PM(Z'|Pag(Z')) because M'(Z') = M(Z'). Furthermore, the
above arguments show that all f;(-|-) terms in Equation are equal to one. This simplifies the Equation to

[ ] PM@aM | Pag(x)) ] PM@M).

XeS UeU\{Up}

However by the proof of Lemma 6 [Kivva et al. [2022], we know that there is no realization of U™ consistent with Uy = Vi,
such that:

o I(S)=0forall S e §, and
e 2M = M(X) (mod k + 1) forall X € S. The latter is a necessary condition for P (z|Pag(X)) being non-zero.
To summarize, we showed that for Us"! = v; _, Equation (53) is non-zero while it is zero for U = ~;,. This implies that

n;, (vo) # nj, (vo) fore = 0. -

1.4.2 Proof of LemmaEI

LemmaEl} Let S := Ancgpv\x)(Y', Z") and D is a set of all nodes on the paths in P excluding Z'. Then,

Po(dls\d) = — Q[D|S\D] (54)

]
2p Q[S]
is not c-gID from (A, G).

Proof. We will show that Q[D|S\D] is not c-gID from (A’, G), where A’ := A U {S;}!" ,. To this end, we will construct
two models M; and M such that for each i € [0 : m'] and any v € V:

QYA (v) = QM [A]](v), (55)
2 QMISIv) = QM [SI(v), (56)
D D
but there exists vo € X (V) such that:
QM[S](vo) # Q™2[S](vo). (57)

Note that Equations (56)-(57) yield

Q[DIS\D]""": (vo) # Q[D|S\D]*"**(vo).



This means that Q[D|S\D] is not c-gID from (A’, G).
To this end, we consider two cases.

First case:
Suppose that there exists ¢ € [0, m], such that S — A;. Then, consider the models M and M}, constructed in the section

1.4.1 According to the definitions of models MI and M/ for any v € X(V /, and any 1ef0:m/ , and any g € 17 2 , WE
1 2
have

QIAIMa( Z PMoupy S TT fHWlp) >, [ Pl pragx)) [ PM@™),

Uo[P] ﬁePUO U\{Uop} XeA; UeU\{Up}
D QISIM(v) ::ZPMQ Z [T @l > [P @l rgx)) [[ PM@M),
D uM Uo[P] pEPu, D U\{Up} XeS UeU\{Up}
QISIMs(v) := Y PMo(u 2 [ f@els)) Y. []PY(lPag(x)) J] PY@M)
UM Uo[P] p€PuU, U\{UD} XeSs UeU\{Up}

We can re-writing the above equations using the notations of 6, 4 (b;-, and 77;-,

41
QIAI (v) = Y] =01,(v),
d
QIAI(v) = ) 1t (v),
d
SQISI (v) = ) 2o (vID),
D j=1
d
DRI (v) = Y pid (vIDT]),
D j=1
41
QIS (v) = X, 275(v),
d
QIS (v) = 3 py)(v)
j=1
The above equations imply the following equations.
d
QYEAN(v) ~ Q*U[AT(Y) = (s — )60, ()
d
SQISI*(v) — S QISIY (v) = 3. (5 — 5)¢(vID'])
D D Jj=1
d
QY28 (vo) ~ Q*[S1(vo) = D) (ns — ) (vo)

<.
I
—_

To prove the statement of the lemma it suffices to solve the following system of linear equations over parameters {p; le



and show that it admits a solution.

d

N %)%(v) =0, VWweXx(V),ie[0:m],
j=1

d

Z(pj - §>¢;<d*> =0, vd' e X(D"),ie[0:m],

<
Il
—

1
(pj - E)WE(VO) 7 0) 3VO € %(V)/7

on

<
Il
—

0<p; <1, Vje[l:d].

S

Analogous to the proof of Lemmal[I] we use Lemmas|6] [7, and[8]instead of Lemmas [T} 4 and [2] respectively and conclude the
result.

Second case: _
Suppose that there is no ¢ € [0, m], such that S < A,;. This case is identical to the Second case of the Lemma O

1.5 PROOF OF LEMMA

Recall that S = Ancg 5 x /) (Y’ U Z') and it is assumed that is not gID from (A, G). S consists of Sy, ..., S,, as its single

c-components where S; is not gID. Let S=8,. Clearly, we can add {S;}?, to the known distributions and S remains not
¢lD, ie., S is not gID from (A’, G), where A’ := A U {S;}"_,. For simplicity, we denote A’ = {A’ ;":"O. Hence, using the
method in Section |1.1.1] we can construct two models M7 and M that are the same over the known distributions and
different over Q[S]. These models disagree on the distribution Q[S] as well, because Q[S] = [\, Q[S;]. Below, we use
these two models to introduce two new models to prove Lemmal(7]

1.5.1 New models for Lemma

Recall that 7 is a node in S\(Z’ U Y”), pr is a shortest directed path from node T to the node Z’, F is a set of all colliders
on the path p, P := {p} U {pr} v {Pw|W € F} and D is a set of all nodes on the paths from P excluding the nodes in Z’.
Let Dp be a set of all variables that belong to at least one path in P.

Similar to the Section further we define new models /\7 1 and /S/(J 5 based on the models M and M, defined in Section
We say that a variable D is a starting node of the path p € P if

e D=Tandp = pp,or

e D=Zandp = p,or

e DeF,ie.,itisa collider on path p, and p = pp.

Note that D can be a starting node of only one path.

For R e V u U, let &, (R) be the number of paths in P that contains R. Furthermore, we use X (R) and X (R) to denote its

Qomain in M; or M5 (variables in different models have the same domains) and in M or M, respectively. We define
X(R) as follows:

e If R is a starting node for one of the paths in P



Consequently, if I? does not belong to any of the paths in 75, then X (R) := X(R).

Consider R € V u U. According to the domain’s definitions above, R is a vector that is a concatenation of the vector
coming from X (R) in model M; (or My) and some additional coordinates. These additional coordinates are defined based
on &, (R). More precisely, if R is not a starting node of a path p € P, then there is a coordinate assigned to this path, denoted
by R[p], otherwise, if R is a starting node of p € 75, then there is no coordinate assigned this path.

Let O € V U U. For any realization o € X(0) of O we denote by oM € X(O) arealization of O that is consistent with o.
With slight abuse of notation, we use O and O™ to denote realizations of O in models M; and M, respectively. oM
means realizations in X (O) that are consistent with realizations in X(O).

Recall that D 5 is a set of all variables on the paths in P.LetD e f)p. We denote by 75,3 the set of all paths p, such that

pE P, D belongs to the path p, and D is not a starting node of path p. We are ready now to define the probabilities of
PMi(D|Pag(D)) forany D e V U Uandi e {1,2}.

 If D does not belong to the set ]NDP, we define
PMi(D|Pag (D)) := PMi(D|Pag(D)).
« If D belongs to the set Dp\{Z'}, we define

PM(D|Pag(D)) i= PM(DM|Pag(D)) [ f5(DIslIPas(D)), (58)
ﬁE’ﬁD
where
- if D # Z' or p # pr then Pay(D) is a parents of D in a path p;
— if D = Z" and p = pp then Pay(Z') is a parents of Z’ on the paths p and pr;
- f3(D|Pap(D)) is given below.
Definition of function f;(D[p]|Pa;(D)):
— When there exists a variable W € F such that p = pw and D is a child of W on path py,

1—ke ifD[p]=WI[p] (mod«k—+1)

fo(D[p]|Pay(D)) := {6 if D[p] ; WI[p] (mod k + 1).

— When p = pr and D is a child of T on path p,

1—re ifD[p]=TM (modr +1)

fo(D[p]|Pap(D)) := {e if D[p] z TM  (mod s +1).

— When p = pr and D = Z’'. Suppose Z' is a child of W’ on a path pr and is a child of W” on a path p,

1— ke if Z'[pr] = W'[pr] + W"[p] (mod  + 1)

[3(Z'[pr]|Pas(D)) := {6 if Z'[pr] # W'[pr] + W"[p] (mod k + 1).

— When Pa;(D) = &,
1

k+1

f3(DIp]) :=

— Otherwise,
1—ke ifD[p]= ZD,EP%(D) D'[p] (mod k+1)
€ if D[] # X prepay(py '[Pl (mod k + 1),

Note that PM: (D|Pag(D)) is a probability distribution since for different paths p; and po, D[p1] and D[ps] are

different and also
> fa(DIplIPas(D)) =1
D[pleX (D[p])

[3(D[p]|Pap(D)) := { (59



Note that for any W e (V u U)\{Up}, we have
P (W |Pag (W) = P2 (W |Pag (V).

Therefore, we will use PM (W |Pag (W) instead of P (W|Pag(W)) or PM2 (W|Pag(W)) for W e (V U UN\{Up}.
We also have
PR W) = 5 [T f(Wols
PEPUO

PM(Ug) = PMU) T £5(Usl8))

PEPU,

(60)

Recall that S = Ancgpvix(Y' U Z'). Let D’ := S\D and D := V\D. Forie [0:m'],j €[l :d].veX(V)and
df e X(D), we define H;J(v), gf)lj(dT) and 77;. (v) as follows:

i)=Y T @l Y, [] PM@lrPagx)) [ PM@™), (61)
Uo[P] pePuy, U\{Uo} XeA! UeU\{Uo}

Gid) = > T HO) Y. D] HPMHClPag(X)) I1 PM (M), (62)
Uo[P] pePu, D U\{Uo} XeS UeU\{Up}
N TT HWolsh) Y. []PM@|Pagx)) [T PM@M), 63)
Uo[P] pePuy, U\{Up} XeS UeU\{Uo}

where ZUO[,,;] is a summation over realizations of the random variables {Uy[p]| p € Py, }-
Next, we prove three lemmas similar to Lemmas EI, and for the new models M and M.

Lemma 10. Foranyv e X(V)andie [0:m/],

Proof. By substituting P from the above into Equation (4T)) and rearranging the terms, we obtain

=3 I] #©@ TI fHE6lPaX)x

U[P] O[5]€U[P] K[plea’[P]
><( ST PMEeM Pag(x)) ] pM(uM))
UM\{Up}M XeA/ UeU\{Up}

Note that the terms inside the big parenthesis of the above equation is equal to 6; ; given by[3] i.e.,

= > 11 #O) T fHXBIPas(X))bis ().

U[P] U[p]eU[P] X[plea;[P]

In the last equation, all terms on the right-hand side except 6; ;(v*') are independent of the realization of {U}™, i.e.,
independent of index j. For j € {j1, jo, ..., j~+1 } and using the result of Lemmathat says 0; j,(v) = 0; ,(v) =+ =
2
0i.j.... (V), we can conclude the result. O
2

Lemma 11. Forany d' € X(DY):
O3 (d") = B (dT) = oo = G, (d).

2



Proof. Similar to the previous lemma, by substituting P from their definitions into Equation (62)) and rearranging the

terms, we obtain:
=2 2 X1 Hwmd [T e )x

Uo[P] UM{UIM D pePry, X[pleS[P] (64)
« ( [P @™ | Pag(x)) [ PMuM ))

XeS UeU\{Uo}
Suppose that [; and /5 are two integers such that

Y, = (22,0,...,0)),

1, =(2x+2 (modk+1),0,...,0),

and z is an integer in [0 : 51]. We will prove that é1, (dh) = ¢y, (d).
Suppose that path p is the sequence of variables: Z', D}, D} . D;C/ , D;, := Y and path py is a sequence of variables:

To:=T,T1, ..., Ty, Ty 41 := Z'. Note that direct edge between 7" and D1 is pointing toward Z’, i.e., Z' «— D/ and for
all ¢ € [0, k4] variable T; is a parent of T}, on the path pr.

On the other hand, since T and U, are both in S (§ = S; by construction), then there exists a shortest path
Uy, Ai,U{,S’é,ﬁé, . .,Ul’,,T, such that U is a parent of 5’{ € S, T is a child of U{ € Ivjé, and U]’ e USisa parent
of variables S € Sand 5%, ; € Sforany j € [1: I’ —1]. Let U’ := {U7, ..., U}}, i.e., unobserved nodes in this shortest
path except Uy. For any given realization o; € X(U u D), we define 0, € X(U u D) as follows,

MU == oM[U] +2(~1)  (mod k+1), Vjel[0:1],

03" [T] := ot [U +2(-1 DY (mod k +1). (65)

Note that if 0[Uy] = 7, then 03" [Uy] = ,,. With these modifications for any S € S, we obtain

s1—M(S) =52 — M(S) (mod s+ 1),

where s is a realization of S ’ , S9 s a realization of S ‘

(Uob Bh=(or.dt , M(-) is given by Equation (H)
v, =01,

This implies for any S € S, we have

MslPag(S)| — P(slPag(9))|

(UUD,D)=(01,d") (UUD,D)=(02,d")

(UUD,D1)=(0z,d")

Let c = —2(—1)" and we define
03 [Ti[pr]] = o [Ti[pr]] — ¢ (mod s+ 1), Vje[1:kj],
03 [D[p]] == o' [D[p]] + ¢ (mod &+ 1).

This implies that for all j € [1 : k% + 1] we have

T;|P T; = T;|P T; .
for (Tj|Pay,. (T})) (ULD,B)=(or.d1) for (Tj|Pay,. (T})) (ULD D)= (on.d")

Assume that D’ is not a collider on the path pand j € [2 : £} + 1]. We define x(D}) to be the number of colliders on a part
of the path p from Dj to D}_;. Thus, for those j € [2: k{ + 1] that D, is not a collider, we define

o' [D}[p]] := o' [D}[p]] + c(—1)»(P3). (66)

Note that the modifications in (66) might only affect the function f;(-|-). Next, we show that after these modifications,
function f(+|-) remains unchanged. To do so, for j € [1 : ki + 1] we consider four different cases:

1. If D;- has no parents, then it is obvious that

(D3| - = (D3| -

(UuD)=(01) (UuD)=(02)



2. If D’ is a collider, then u(D’ ;) = p(D_;) + 1 and

01[ D41 [P]] + 01[ D)1 [p]] = 02[ D)1 [P]] + 02[ Dj 4 [P]],

and hence, according to the Equation (39), we have

fﬁ(D;-[ﬁ“Paﬁ(D;))‘(U 5 (o)~ 2D PIPaDI)|

3. If D is achild of D}, then pu(D}) = p(D’, ) and
01[D}[p]] — 01[Dj1[p]] = 02[D;[p]] — 02[D} 1 [P]]-

According to Equation (39), we imply that

f3(D}[p)|Pay(D5)) D)o £3(D}[p]|Paz(D})) CoB)—on)

4. If D} is a child of D’;_,, then u(D’;) = u(D)_;) and
01[Dj[pl] — 01[D; 1 [P]] = 02 Dj[p]] — 02 D, [P]].

Similarly, according to Equation (39), we get

135171 Pay(D5)| — J3(D[PPay(D})

(UuD)=(01) (UuD)=(02)

This concludes that for any j € [1 : k] + 1],

13D} [#1Pas(D})| — J3(D}311Pay(D)))|

(UUD)=(01) (UuD)=(02)

Note that the aforementioned transformation of 0 affects only those realizations of variables that are used for marginalization
in the Equation (64). Putting the above results together implies that the terms in Equation (64) remain unchanged, i.e.,

[T W) [T FH(X[plIPas(X))

pePy, X[pleS[P]

M M M, M _
(L1 st TTP0)] gy~
=[] W) ] fa(X[plPas(X))

PP, X[p]eS[P]
> M M M, M
()I;ISP (@ |Pag(X>)UdQUO}P (u >)‘(Uul~3):(02)

This implies that ¢y, (A7) = ¢, (d"). By varying z within [0 : =11 in the definition of +;, and 7,, we obtain the result. [
Lemma 12. There exists 0 < € < L, such that there exists v, € X(V)and1<r<t< 541 such that

15, (vo) # 1, (Vo).

Proof. By substituting P from their definitions into Equation (63)) and rearranging the terms, we obtain

Bivo = > > I #O) [ fHXBlPyX))x

UM\{Uo}M U[P] U[p]eU[P] X[pleS[P] ©7)
><< [P @™ Pag(x)) [] PM(uM)),
Xes UeU\{Uy}

Next, we define v € X (V) such that the conditions in the lemma hold.



* For any path p € P and any node W on the path p that is not a starting node for path p we define:
vo[W[p]] := 0;
* For any variable S € §, we define
vi'[S] := 0;

¢ For the remaining part of vy, we choose a realization such tllat for the selected v, there exists a realization for the
unobserved variables U that ensures I(1)(.S) = 0 for all S € S. This is clearly possible due to the definition of I(S).

Assume r and t are such that v;, = (0,0,...,0) and v;, = (2,0,...,0). To finish the proof of the lemma, it is enough to
show that 7;,_(vo) and 7j;, (vo) are two different polynomial functions of parameter e. We prove that those two polynomials
are different by showing that 7j;, (vo) # 7, (vo) for e = 0.

We only need to consider the non-zero terms in Equation (67). From (67), we have

[T #@O) T fEXBlIPapX)

UlpleU[P] X[pleS[P]
(63)
X(HPM(:EM|Pag(X)) I1 PM(uM)>.
XeS UeU\{Uoy}

Note that f5(U) = %H and f;(X|Pas(X)) is non-zero only:

e when p = pr, X is a child of T on the path pr, and
X[p]=T™ (mod k+1).
e when p = pr, X = 7', and
Z'pl = W'[p] + W”[p] (mod & + 1),
where W is a parent of Z’ on the path pr and W” is a parent of Z’ on the path p.
* when there exists a variable W € F such that p’ = py, X is a child of W in path Py, and

X[p]=W[p] (mod k+1).

* when the following holds

X[p] = D X'[p] (mod k + 1).
X'ePay(X)\{W}

Similarly, P (X |Pag (X)) is non-zero
< ifI(X) = 1 (i.e. PM(XM|Pag(X)) = —), or
o if XM = M(X) (mod s + 1) for PM(XM|Pag(X)).
Let fix a realization u € X (U\{U2M}). We consider two scenarios:

I) Assume that for this realization, there is a variable S € S, such that I(S) = 1 and S is the closest variable to Uy
considering only paths with bidirected edges in G’ [§] The value of S does not depend on its parents because of I(.S) = 1
and Equation (8). Additionally in the graph G'[S] there exists a path Uy, S}, U1, S5, U5, . . ., U}, S, such that Uy is a parent
of § € S, S is a child of Ul e US, and U]’ eUSisa parent of variables .SAZ € Sand 5’3“ eSforje[l:1'—1]. Let
U := {U},...,U/}. We define u’ € 3~€(U\{U5\/‘}) that is consistent with u except the variables in U. For these variables,
we define

uM[U;] = wM[U;] +2(~1) (mod k+1), je[l:1], (69)

With this modification for any Se S, we have

(5lPag(9)) (U)=(u,) (5]Pag(5)) (U)=(',m,)



Therefore for all such realizations of u the summation of the following terms for both 7j;, (vo) and 7j;, (vo) will be the same,

[T O ] fa(XHlPa(X))x

UlpleU[P] X[ples[P]

<(TT P I Pag(x)) TT PM@™)).

XeS UeU\{Up}

(70)

II) Assume that for all S € S, we have [(S) = 0. We consider a realization U*' = «;_and u such that:

« u[US] = 0.
e for all U € U and any path p € P which contains U, u[U[p]] = 0.

We claim that for such u, R . .
[T #O J] faX5lPaX))x
eU

U[pleU[P] X[ples[P]

X(HPM(xM|Pag(X)) I1 PM(uM)>.

XeS UeU\{Uoy}

is non-zero. To prove this claim we consider 5 cases:

« assume that p = pr and X = Z’. Denote by W’ parent of Z’ on the path py and by W” parent of Z’ on the path .
From the definition of u and v, we get R
X[p] = W'[p] + W"[p],
and therefore f; ¢4} p., (%)) = 1 The latter is true because X[p] = W'[p] = W”[p] =0 (mod & + 1).
¢ assume that p = pp and X is a child of T. From the definition of u and v we get
X=TM (modk+1),
and therefore fﬁ( X[5]1Pay (X)) = 1. The above holds because all the variables in the above equation are zero.

¢ assume that p € P and exists a variable W such that p = pw. Let Xisachildof Wina path Py . From the definitions
of u and vy, we get .
X[p]l=W[p] (mod k+ 1),

and therefore f;(X [p]|Pas(X)) = 1. Again, the above holds because all the terms are zero.

¢ assume that p € P and X is a variable on this path such that it is neither a starting node of the path p nor a child of a
starting node on the path p. Then, from the definitions of vy and u, we get

X[p] = > X[p] (mod & + 1),
XePas (X)\{W}

and therefore f;(X[p]|Pas(X)) = 1. Again, the above holds because all the terms are zero.
+ assume X € S. Then, from the definitions of v and u, we get
XM= M(X) (modk + 1),
and consequently PM (zM|Pag (X)) = 1.

Now we consider the case when Ug"! = ~,.

Note that the following term depends only the realization of UM and v§*.

[]PY @M Pag(x)) ] PM@™).

Xes UeU\{Uo}

However by the proof of Lemma 6 Kivva et al. [2022] we know that there is no realization of U such that:



« I(S) = 0forall S € S, and
* Ug" =, and

« oM = M(X)(k + 1) for all X € S. The latter is a necessary condition for P (z|Pag (X)) being non-zero.

To summarize, we showed that for Ug" = -;, , Equation is non-zero while it is zero for Uf*! = ~;,. This implies that
75, (vo) # 1, (vo) for e = 0. u

1.5.2 Proof of Lemma
Lemma Let S := Ancgpv\x(Y',Z') and D is a set of all nodes on the paths in P excluding Z/. Then,

Po(@s\d) = 2B _ ois\p) an

2p @S]

is not c-gID from (A, G).

Proof. We will show that Q[D|S\D] is not c-gID from (A, G), where A’ := A U {Si}™_,. To this end, we will specify two
models M and M, such that for each i € [0 : m’] and any v € X(V):

QMAI(v) = QM [Al](v), (72)
> RQMISIV) = Y M [S](v), (73)
D D
but there exists vo € X(V) such that:
Q™M [S](vo) # Q™ [S](vo). (74)

Note that using Equations (73)-(57) yield
QDIS\D]* (vo) # Q[DIS\D]***(vo).
This means that Q[D|S\D] is not c-gID from (A’, ).

Two this end, we consider two cases.

First case:
Suppose that there exists i € [0, m], such that S — A,;. Further we consider models M and M constructed in Section

1.5.1} According to the definitions of models M; and M for any v € X(V),andanyie [0:m'],and any g € {1, 2}:

QIAIMo(v) = Y PMod) S T foWole) ) [ PMe|Pag(x) [ PMw),
UM

Uo[P] pePuy, U\{Uo} X€A; UeU\{Uo}
DRMSI(v) ==Y, PMaud) DT [T f@oeld)) Y, D) []PM@lPag(x) ] PMw),
D Ut Uo[P] pPuy, D U\(Uo} XeS UeU\{Uo}

QM[SIv) == M PMo) N [T fHWol) Y [ PMe Pag(X) [ PMw).

U™ Uo[P] pePus, U\{Up} XeS UeU\{Uo}



We can re-writing the above equations using the notations of 97 s ¢7j, and 7);,

1

~ d ~
QAT (v) = 3 201,5(v),
Jj=1
d
QAT (v) = 3. pifi(v),
DQISIM (v) = 3] 505 (vIDT),
D i=1
~ d ~ ~
DQISM(v) = X pi;(v[D']),
-
D R ] 1
QIS (v) = 3 (),
Jj=1
N d
QISIM(v) = 35 pif (v)

The above equations imply the following equations.

- . d
QU ANv) ~ QN [ANY) = (s — 3)s()

j=1
~ d ~ ~
SQISI() ~ 2 QIS (v) = 3. (ny — 58 (vID))
D D j=1
d
Q18](vo) — @7 [S](vo) = 3 (5 — ) (vo)
d d 1 "
;pg —1= ;(Pj g)

To prove the statement of the lemma it suffices to solve a following system of linear equations over parameters {p, }?zl and
show that it admits a solution.

)0 ;(v) =0, YveX(V),ie[0:m],

=
5

|
ISH R

<
Il
—

(s~ )o(d) =0, vd' e (BN ie[0:m]

UK

j=1
d 1 N
Z(pj - g)ﬁj(vo) #0, Jvge X(V),
j=1
1
b; — E) = 07

0<pj <1, Vje[l:d].
Analogous to the proof of Lemmal[I] we use Lemmas [I0} [[T] and [12]instead of Lemmas [T} @] and [2]respectively and conclude
the result.

Second case: g
Suppose that there is no i € [0, m], such that S = A;. This case we solve exactly the same as the Second case of the Lemma

[ O



1.6 PROOF OF LEMMA
Lemma (3 Suppose that X, Y and Z are disjoint subsets of V in graph G and variables Zy € Z, Zy € Y U Z, such that

there is a directed edge from Zy to Zy in G. If the causal effect Px(y|z) is not c-gID from (A, G), then the causal effect
Py (y|z\{z1}) is also not c-gID from (A, G).

Proof. By the basic probabilistic manipulations, we get

Px(y|Z) = Pz(z) ’

Pe(y|z\{z1}) = Im'

Using Markov factorization property in graph G, we have

Py.z)= > > ] PwlPigW)) ] Pu)

V\(XuYuz) U WeV\X UeU
Pz)= > > ] Pw|pPag(W)) [] Pu)
V\(XuZ) U WeV\X UeU

And similarly, we have

Puy,2\{Zi}) =), > > [ Plwl|PagW)) ] P(u),

Z1 V\(XuYuZ) U WeV\X UeU 75
Pz =Y S S [ Pl ragw) [] P
Z1 V\(XuZ) U WeV\X UeU

Since Py (y|z) is not c-gID from (A, G), there exists M and M such that
QYIAN(Y) = QME[AN(v), Vv e X(V), Vie [0:m],

P (y|z) # P (ylz), 3x € X(X), 3y € X(Y).

Using M; and My, we construct two models M and M. To do so, we first take any surjective function F': X¥(Z;) —
{0, 1} and define a function U: {0,1} x X(Z;) — (0,1) that satisfies ¥ (0, 21) + ¥(1, 2;) = 1 for any 2z, € X(Z;).

For any node S that either belongs to the set of unobserved variables or belongs to V\({Z2} U Chg(Z2)), we define
PMi(s|Pag(S)) := PM:(s|Pag(S)), ie{1,2}.

The domain of Z5 in M/, is defined as X (Z2)™ x {0, 1}, where X (Z2)™ is the domain of Z, in M (either M; or My).
For 25 € X(Z2)™, i € {1,2}, and k € {0, 1}, we define

PMi((2, k) | Pag(Z2)\{Z1}, 21) := P (25 | Pag(Z2)) x W(F (1) @k, 21).

Due to the property of function ¥, the above definitions are valid probabilities, i.e., for any realizations (Pag(Zs), z1), the
following holds

Z Z PMi((29, k) pa(Za), z1) = 1.

ke{0,1} z2eX (Z2)M

For each S € Chg(Z5), we define:
PMi(s | Pag(S)\{Za) (22, K)) = PMi(s | Pag(S)\{Za},z2), i< {1,2}.k € {0,1}.

Next, we show that QM1 [A;](v) = QM2[A,](v) for each v € X(V) and i € [0 : m]. Suppose v is a realization of V in
M with realizations z; and (29, k) for Z; and Z,, respectively. Consider two cases:



e Z5 ¢ A;: In this case, we have

QMIA(v) =) [] PMi(a]|Pag(A) ] P (u)
U AeA,; UeU
=2 [ PMal Pag(A) [T PM (w) = QM A (v) = QM [Ai](v)
U AeA; UeU
=2 11 P (a| Pag(A) [ PM2(w)
U AeA; UeU
=3 [ PMa(a| Pag(4)) [ | PM2(w)
U AeA; UeU
= QM2 [A](v).
e 75 € A;: In this case, we have
QMIA(v) =Y [ PMia| Pag(A) [ | PMi(w)
U AeA; UeU
= U (F(z1) @k, 21) Y, [ [ PM(a]|Pag(A) [ PM(u)
U AeA; UeU
= U(F(21) @k, 21)QM [A](v) = U(F(21) @k, 21) Q™2 [A] (v)
—U(F() @k )Y [ PM(al Pag(a) [ PM2(w)
U AeA; UeU
:Z n PM2(q | Pag(A )HPM/Q(u)
U A UeU
= QM'Z[ i](V)~
Therefore, QM1[A;](v) = QM2[A;](v) for each v € X(V) and i € [0 : m].

On the other hand, we know that there exists x € X (X)M,§ € X(Y)M and z € X(Z)™ such that P2V (y|z) # PM2(32).

According to Equations (73)), we have

M
Py, 2\ Z)) = ), > ZPM 22, k)|Pag(Z2)) ] PMi(w | Pag(W)) [ | P(u
z21€X(Z1) V\(XuYuz) U WeV\(Xu{Z}) UeU

= Z Z Z\I’ 21 @k Zl)PM (22|Pag(Z2)) H PM U) ‘ Pag H P
21€X(Z1) V\(XuYuz) U WeV\(Xu{Z2}) UeU

= Z \I/( (2:1) @k‘,zl) Z ZPMi(22|Pag<Zg)) H P w ‘ Pag 1_[ P
21€X(Z1) V\(XuYuZ) U WeV\(Xu{Z2}) UeU

= ) U(F(n) @k 2)PM(y,2).
216X (Z1)

Let us denote X(Z1) = {a1,as,...,a,}. For 21 = a; and j € [1 : n], we also denote

Vi = V(F(ay) ®0, ),
Bt = Py, 2[Z\(Z1)], ).

This leads to

= > e,

Py, 2\{Z1})

for realizations y consistent with y, realization x consistent with X, z consistent with z, and Z = (29, k) consistent with
¥y Uz and k = 0. Recall that ¢, is a real number from the interval (0, 1). Note that ¢, is independent from any other /; for
I #7.

Next, we consider two cases:



¢ Assume that Z5 € Z. In this case, we have

P,ﬁ\/l;(z\{Zl}) = Z Z ZPM 20, k)|Pag(Zs)) n PMi(w | Pag(W)) n P(u)

21€X(Z1) V\(XUZ) WeV\(XU{Za}) Ueu
= Z Z Z\If (21) @ k, 21) PMi (23| Pag(Z5)) H PMi(w | Pag(W)) H P(u)
216X (Z1) V\(XuZ) U WeV\(XU{Za}) UeU
= Y VFE)®kz) Y, Y PMi(wlPag(Z)) [T Pl PagW) [] Pu
21€X(Z1) V\(Xuz) U WeV\(Xu{Za}) UeU
= ) U(F(zn) @k 21)PMi(2).

zlex(Zl)

For j € [1: n] and 21 = a;, we denote

vt = PLNEIZ\(Z1)], ),

which leads to
PM7 (z\{Z1}) Z ¢j7j )

for realizations y consistent with y, realization x consistent with X, z consistent with z, and Zs = (29, k) consistent
with ¥ U z and k£ = 0. Thus, for such realizations, we have

Z;‘l=1 V; ﬁng

Mi(y|z\{Z1}) = 22—
B (y12\{Z1}) ST b

By the assumption of the lemma, there exists j € [1 : n] such that

M M
M1 Bj 2

M My ?
;5 ! V5 2

or equivalently,
6M1 2 5M2 My

Without loss of generality, we assume that the aforementioned inequality holds for j = 1. Next, we prove that there
exists a parameters {1/;}”_; such that

n M n M
Zj=1 "/J]ﬂj ! ” Z]‘=1 "/Jjﬁj 2

n M n My ?
Zj=1 "/Jj'Yj ! Z]‘=1 "/Jj'yj 2

or equivalently,
20 iB " 2L = X B D et # 0.
j=1 j=1 j=1 j=1

Note that the left hand side is a quadratic equation with respect to parameter 1, e.g.,

(B — B2y )7

Since A1 412 — B2 M 2 0, then we can find {¢);}7

i1 such that

DB DU = D Ui ™ £ 0,
j=1 j=1 j=1 =1

This is possible because v; € (0, 1). This concludes the proof of the lemma for this case.



* Assume that Zo € Y. Suppose that P (y, 21|z\{Z1}) = PM2(y, 21|2z\{Z1}) for all x € X(X), y € X(Y) and
z € X(Z). Then,

PMi(ylg) — PMi(y,z1|2\{Z1}) _ PMi(y. z|2\{Z1)) _ PMz (1)
O = e ez PRz O

This is impossible as P (y]2) # P2 (§|2). Thus, there exist &’ € X(X), ¢ € X(Y), and 2’ € X(Z), such that
PO, 21\ 20)) # PR (8 2112\ 21 )).
On the other hand, we have

P,ﬁw;(y,z) = Z ZPMII'((227I€)|Pag(Z2)) H PMi(w | Pag(W n P(u

V\(XuYuZz) U WeV\(Xu{Z2}) UeU
= D DIW(E(n) @k, 21)PMi (2| Pag(Z2)) ] PMi(w | Pag(W)) | | Pu
V\(XuYuZz) U WeV\(Xu{Za}) UeU
=U(F(z))®k,z1) >, Y PMi(2|Pag(2y)) ] PMi(w | Pag(W)) || Pu

V\(XuYuz) U WeV\(Xu{Z2}) UeU

= U(F(21) @k, 21) Py (v, 2).
For j € [1 : n], we define

B =PI # 2\ Z1)), ).

J

Suppose m € [1 : n], where z1 = v, and it is consistent with z’. We assign k£ = 0 and denote
B/ ML e PM"( I7 i,)

m

This results in

We also have

PU@z) = Y Y Y PM(blPag(z) [ PMiw | Pagw) T] Pl

21€X(Z1) V\(XuZ) U WeV\(Xu{Z2}) UeU
= > 2\1} (21) @ k, 21) PMi (25| Pag (Z5)) I PMi(w | Pag(W)) [ | Plu
21€X(Z1) V\(XUZ) WeV\(Xu{Z2}) UeU
= ) D 2 2 U(E(z) @k, z) P (2| Pag(2s)) I1 PMi(w | Pag(W)) [ | P(u)
21€X(Z1) V\(XuZ) U ke{0,1} WeV\(Xu{Za}) UeU
= Z PM" (z)

zlex(Zl)
For j € [1:n] and 2, = a;, we denote

M= PMY 2N\ Z0)]),

J X

and from the above equation, we get
Z\{Zl Z V5 ‘

for realizations y consistent with §', realization x consistent with X', z consistent with z’, and Zs = (22, k) consistent
with y' U 2’ and k = 0. We have

n / Mi
Zj:l %‘ 6]'

PMi(3]2\{Z,}) =
< (y12\{Z1}) S



By the assumption of the lemma, we have

M M
B B

M Mo *
DU /D YL

Next, we prove that there exists a set of parameters {¢j ;?:1, such that

M M
Z;'Lzl d’]ﬂé‘ ' 4 Z?:l @/’jﬁé‘ ’
M M
Z;'Lzl vt Z?:l v

or equivalently,

M M
Z?:l ’(/}j/B; ! B Z?:l "/’jﬁé 2 £0
M M :
i X

Note that left hand side of the above equation is linear with respect to parameter v,,, with the following coefficient,

A S
n M n M
Zj:l'Yj ! Zj:l"/j ?

This ensures that we can can find a realization of {1;}7_,, such that

# 0.

n M n M
Zj:leﬂé ' ijﬂ/’jﬂé‘ ’

— M — M # 0.
Zj:1'7j Zj:l’Yj

This concludes the proof of the lemma for second case.

1.7 PROOF OF LEMMA|§]

Lemmal(6, Suppose that X, Y and Z are disjoint subsets of V in graph G and variables Z1 € Y, Zy € Y U Z, such that
there is a directed edge from Zy to Zy in G. If the causal effect Px(y|z) is not c-gID from (A, G), then the causal effect
Py (y\{z1}|2) is also not c-gID from (A, G).

Proof. By the basic probabilistic manipulations, we get

Rdvie) = 252,

Px(y\{zl}lz) = W

Using Markov factorization property in graph G, Py (y) will be

Pu(y.z)= Y > ] Pw|Pag(W)) ] P(w),

V\(XuYUuZ) U WeV\X UeU
Pz = 3 Y [ PwlPag(w)) [] Pu).
V\(XuZ) U WeV\X UeU

And similarly, we have

Pay\Zihz) =3, Y, D ] PwlPagW) [] Pw),

Z1 V\(XuYuZ) U WeV\X UeU

Pz) =Y Y Y ] Plwl ) [] Pw.

Z1 V\(XuzZ) U WeV\X UeU

(76)



Since Py (y|z) is not gID from (A, G), there exists M; and My such that
QYIA(v) = QM [A(v), Vv e X(V), Vie [0:m],

P (ylz) # P (ylz), 3x € X(X), 3y € X(Y).

Using M and M, we construct two models M| and M}, Define a surjective function F': X(Z;) — {0, 1} and a function
U: {0,1} x X(Z1) — (0,1) such that U(0, z1) + ¥(1,2,) = 1 for each z; € X(Z1).

For any node S which is either unobserved or in V\({Z2} u Chg(Z2)), we define
M (s|Pag (8)) = P (s|Pag(9)),

where i € {1,2}. The domain of Z5 in M/, is defined as X(Z2)™ x {0, 1}, where X(Z)™ is the domain of Z in M
(either M or My). For 23 € X(Z2)™, i € {0,1}, and k € {0, 1}, we define

PMi((22,k) | Pag(Z2)\{Z1}, 21) = P (22 | Pag(Z2))W(F (1) @ k, 1)
Moreover, for a fixed realization (Pag(Zs), z1), we have

2 2 PMQ((zQ,k)|Pa(Z2)’Zl) = 1.

ke{O,l} ZQE%(ZQ)M
For each S € Chg(Z3), we define:
PMi(s | Pag(S)\{Za}, (22, k)) = P (s | Pag(S)\(Z2}, 22)-

Next, we show that QM1 [A;](v) = QM2[A;](v) for each v € X(V) and i € [0 : m]. Suppose v is a realization of V in
M with realizations z; and (29, k) for Z; and Z,, respectively. Consider two cases:

e Z5 ¢ A;: In this case, we have

QiAW) =) [] PMi(a] Pag(a)) [T P ()

U AeA; UeU

=3 [1 P (a|Pag(A) [ PM (u) = Q' [AJ](v) = QM [Ai](v)
U AeA; UeU

=2 [ P*(a | Pag(a) T] P*(w)
U AeA; UeU

= Z H PMIQ(a | Pag(A)) H PM;(“)
U AeA; UeU

= QM:[A](v).

e 75 € A;: In this case, we have

QMAN(v) = [] PMi(al Pag(A) [ | PMi(u)

U AeA; UeU

= U (F(z1) @k, 21) Y, [ [ PM(a|Pag(A)) [ PM (u)

U AeA; UeU
(F(21) @k, 20) QM A (v) = U(F(21) @k, 21) QM2 [A] (v)
(Fz)@k,z1) ) [ | PM(a] Pag(A) [ ] PM2(u)

U AeA; UeU

D H PMa(a| Pag(A))) [ | PM2(u)
U A UeU
Q ’2[ A](v).

Y
v



Therefore, QM1[A,](v) = QM2[A;](v) for each v € X(V) and i € [0 : m].
On the other hand, we know that there exists x € X(X)™,y € X(Y)™ and 2z € X(Z)™ such that PM1 (¥]z) # PMZ( |Z).
According to Equations (76), we have

PNz = Y Y N PM(ak)lPag(Z2)) [ PMi(w | Pag(W)) [ Plu)

216X (Z1) V\(XuYuZ) U WeV\(Xu{Zs}) UeU

= N D Z‘I’ (21) ® k, 21) PMi (22|Pag (Zs)) I1 PMi(w | Pag(W)) [ | P(u)
21€X(Z1) V\(XuYuZz) U WeV\(Xu{Z2}) UeU

= Z \IJ( (2’1) @k‘,21) Z ZPM’ 22|Pag ZQ)) 1—[ P w ‘ Pag H P
216X (Z1) V\(XUYUZ) WeV\(Xu{Za}) UeU

= Y V(F(z) @k z)PY(y,2).
21636(21)

Let us denote X(Z1) = {a1,az,...,a,}. For 21 = a; and j € [1 : n], we also denote

Y =Y(F(ay) ©0,q;),
P (IIY\(Z1)]. 2, 05) = B2

For Zy = (£[Z2],0) we have:
M3\ 21}, Z ;B

Recall that 9 is a real number from the interval (0, 1). Note that ¢; is independent from any other #; for [ # j.

Next, we consider two cases:

¢ Assume that Z5 € Z. In this case, we have

RE@ = Y SR kiPg(z) [ PMiw | ag(W) [] Pw)

21€X(Z1) V\(XuZ) U WeV\(Xu{Z2}) UeU
= Z Z Z\If 2’1 @k Zl)PM (22|Pag(Z2)) l_[ P ’LU | Pag l_[ P
21€X(Z1) V\(XuZ) U WeV\(Xu{Za}) UeU
= Y UF(E)®kzn) Y, Y, PMi(2n|Pag(2)) 11 PMi(w | Pag(W)) [ | P(u
z1€X(Z1) V\(XuzZ) U WeV\(Xu{Z2}) UeU
= > Y(F(z1) @k, 21)PMi(2).
z21€X(Z1)

We denote
P (z) = M,

which leads to
= 2 PiyM
j=1

for Zy = (2[Z2],0). Thus,
Z?:l 7/}]53/\/‘1
Z?:1 iy

By the assumption of the lemma, there exists j € [1 : n] such that

PRI\ 21} |2) =

g g
fy./\/ll f}/Mz ’



or equivalently,
BIyMe 2 g
J J :

Without loss of generality, we assume that the aforementioned inequality holds for j = 1. Next, we prove that there
exists a parameters {1/;}”"_; such that

n M n M
Zj:l %ﬂj ' ” Zj:l wjﬂj ’

n n ’
2‘7‘:1 wj’YMl Zj:l ¢j7M2

or equivalently,

Zw]ﬁ./\/ll Z,(/)J,YMQ Zw]ﬁMsz,y/\/h £ 0.

j=1 j=1
Note that the left hand side is a quadratic equation with parameter 1, that contains the following term

(B Mz — g2y Mi)2

Since 1AMz — gM2AMi 2 () then we can can find realization of {1); "_,, such that
n n n n
2B D M = Y iB Y w™ # 0.
j=1 j=1 j=1 j=1

which concludes the proof of the lemma for this case.

Assume that Z5 € Y. In this case we have:

Pz = S S PM(ab)Pag(Z2) [ PMi(w | Pag(W) [] Plu)

V\(Xuz) U WeV\(Xu{Z2}) UeU
= Z Z\IJ (21) @ k, 21) PMi(23|Pag (Z5)) H PMi(w | Pag(W)) H P(u)
V\(XuZ) U WeV\(Xu{Z2}) UeU
= Z Z Z F(21) ®k, 21)PMi(23|Pag(Z5)) H PMi(w | Pag(W)) n P(u)
V\(XuZ) U ke{0,1} WeV\(Xu{Z2}) UeU
= PMi(z).
We denote
Pt (z) = 4™
Thus,
i S ws
P G\l) = =g

By the assumption of the lemma exist m € [1 : n] such that

ﬂ"an /8771‘/\/12

,y]{\/ll fy./\/lz :
Next, we prove that there exists a set of parameters {wj ;L:l, such that
n M n M
Zj:l VB 4 Zj:l V67
,yMl ryME

or equivalently,

M M

2?21 %ﬂ; ! 22;1 ¢;ﬁ§ :
M M

Note that left hand side of the above equation is linear with respect to parameter v,,, with the following coefficient,

# 0.

B;an B/ Mo

fy/\/ll - ryMz # 0.



This ensures that we can can find a realization of {1); };_L=1’ such that

] M M
P DY L L0
Z?:l /yMl Z?:l ry./\/lz

This concludes the proof of the lemma for the second case.

2 ON THE POSITIVITY ASSUMPTION IN THE LITERATURE

As it was pointed out in Kivva et al.,| [2022]], positivity assumption is crucial for proving the completeness part. More
precisely, the completeness of an algorithm means that if the algorithm does not compute a given conditional causal effect,
then it cannot be computed uniquely by any other algorithms. To prove the completeness, two models M; and M, are
constructed such that they are both positive and induce the same set of distributions as the ones given in the problem
statement, i.e., Q[Ao], Q[A1], ..., Q[A,.] , but they result in different values for the conditional causal effect of interest,
ie., PMi(y | z) # PM2(y | z). Hence, Px(y | z) cannot be uniquely computed .

In Lee et al. [2019, 2020] and Correal et al. [2021] for the completeness part authors constructed such models M and
M, but the models violate the positivity assumption. That is, it is possible to have examples in which a given causal
effect is identifiable under the positivity assumption while it is possible to construct two non-positive models that show
the causal effect is not identifiable (Kivva et al. [2022]). Violation of positivity assumption renders some distributions
ill-defined (conditioning on zero-probability events). That is why computing a causal effect in the classical setting with
do-calculus implicitly contains steps in which we can cancel out a distribution (e.g., Q) that appears on both side of an
equality, i.e., P; - Q = P - Q@ = P, = P5. Clearly, this is only possible when ) > 0. If positivity is violated, then such
steps in computing a causal effect cannot be used.

2.1 GENERAL TRANSPORTABILITY

The work of [Lee et al.|[2020] proves the completeness part of the c-gID problem by constructing two models that agree on
the observable distributions and disagree on the target causal effect. Those models does not satisfy the positivity assumption
by the construction. A similar flaw existed in the proof of |Lee et al.|[2019], which was specified in details later by |[Kivva
et al.| [2022]]. Given that|Lee et al.|[2020] does not discuss whether their models can be transformed into positive ones.

For further details, we refer to the technical report of |[Lee et al.|[2020], which contains the proofs.

Parametrizations for an s-Thicket: According to the appendix of Lee et al.|[2020], the models in Lemma 3 which is one of
the main Lemmas for proving the completeness result are based on the ones in|Lee et al.|[2019]]. These models violate the
positivity assumption according to Kivva et al.[[2022] and should be substituted with a fixed ones.

Parametrization for an Extended s-Thicket: According to Eq. (5) and (6) in|Lee et al.|[2020], it is easy to observe that several
observed variables are deterministic functions of other observed variables. This implies that there exists a realization of
observed variables such that the conditional probability of one observed variable given the rest is zero. This is against the
positivity assumption.

Parametrization for an Extended s-Thicket with a Path-Witnessing Subgraph: In Eq. (7) of |[Lee et al.| [2020] if vp is an
observed variable with only observed parents on a backdoor path P, again, vp will be a deterministic function of only
observed variables. This again does not satisfy the positivity. In general, such vp would always exist.

Please note that the errata for Lee et al.|[2019] can potentially fix the issue for s-Thicket, but not for extended s-Thicket or
Extended s-Thicket with a Path-Witnessing Subgraph (the last two cases).

2.2  COUNTERFACTUAL IDENTIFICATION

Here, we refer to the technical report of |Correa et al.|[2021]] and construct a simple example that demonstrates our main
concerns about the proof of the completness part of the c-gID problem.
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Figure 3: DAG G with X = {X, X} and Y = {YV'}.

Recall that a causal effect Pr(Y|X) can be written as a counterfactual P(Y 4, Xy ), where Yy U Xy = {W|W €
V(Y. u X,)} and [T] denotes an intervention under which the counterfactual value is observed. Now, consider the graph
G in Fig. 3] Suppose that the known distribution is P(V) and the target conditional causal effect is

PT(Y|X07X1) = P(X*7Y*)7

where X = {Xor7), X111}, Y = {Yir)}, X = {Xo, X1} and Y = {Y'}. Note that for both X and X, there exists an
active backdoor path to Y, thus, we cannot use the second rule of do-calculus to simplify Pr(Y| Xy, X1). Please note that
in this graph, X, X1, Z,Y belong to the same ancestral component (Def. 7 in [2]) induced by X, U Y, given X,.. This is
because Z € An(Xo[r))gx, NAn(Z11)g N An(Xi[11)gx, and there is a bidirected arrow between X and Y. This ancestral

component contains Y and based on the definition of D, (after Eq. (69) in [2]), we have Dy = { Xo[7), X1[77, 217, Y17}
Furthermore, according to Equation (70) in|Correa et al.|[2021]] is

p(X,y) = Z P( /\ Dya, = d)

dy\(ysxUxy)  Di€Dy

and in our example, it is equivalent to
PT(Y = y[Y]7X0 = X[Xo], X1 = X[Xl])
In part of the proof, they encounter a setting in which p(x,y) and p(x) are not g-ID and they need to show that

p(y|x) = p(x,y)/p(x)

is not c-gID. To do so, they consider two models M) and M(2) that shows p(x,y) is not g-ID and transform them into
two new models to prove the non-c-gID of p(y|x). According to Correa et al.|[2021]], realizations x’, y’ are such that for
models M™) and M?):

Py x)#p® (v, x).
Models M®" and M) obtained from models M) and M as follows:

1. Append an extra bit U, to the node Uy.

2. X, and Y, binary unobserved variables defined for variables X, and Y, respectively.

3. Rename X and Y as X o and Y and make them unobserved, then X, and Y are defined in models MDD and M@
as X := x/[Xo] if X, = 1 and X, otherwise. Similarly, they defined Y using ¥, and Y.

According to the definitions of p(x,y), Y, and X, and using the law of total probability, we have

PEy)= D Py X0, Y|X,, Y,)P(X,,Y,)

Xp,Yp,X,Y
and therefore
P (X/,y/) :P(Xp = Oqu = 0)p(xlayl)+
P(Xp =1Y,= O)p(X/[Xl]vy/)+ 77
P(X, =0,Y, = 1)p(x)+
P(X, = 1Y, = 1)p(x'[X1])



Clearly, p(x'[X1]) # 1 otherwise, the positivity assumption does not hold. On the other hand, based on Eq. (78)-(81) Correa
et al.|[2021]], p/(x’,y’) is computed by

P(X, =0,Y, = 0)p(x,y')+

P(X, =1Y, =0)p(y')+

P(X,=0,Y, =1)px")+ 78
P(X, =1,Y, = 1).

In general, (77) and (78) are not equal unless for example, X = {X} and Y = {Y'}.

Moreover the rest of the proof in [Correa et al|[2021], i.e., Eq. (83)-(92) heavily relies on Eq. (78), therefore without
corresponding fix the whole proof for the completeness part in c-gID problem falls apart.
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