
Causal Effect Estimation from Observational and Interventional Data
Through Matrix Weighted Linear Estimators

(Supplementary Material)

Klaus-Rudolf Kladny1,2 Julius von Kügelgen2,3 Bernhard Schölkopf1,2 Michael Muehlebach2

1Department of Computer Science, ETH Zürich, Switzerland
2Max Planck Institute for Intelligent Systems Tübingen, Germany

3Department of Engineering, University of Cambridge, United Kingdom

A PROOFS

A.1 PROPOSITION 4.1

Proof. We begin by observing that we can write Wm
P as

Wm
P =

(
m−1X⊤

I XI +
n

m
n−1X⊤

O XO

)−1 (
m−1X⊤

I XI

)
. (A)

We apply the strong law of large numbers to obtain that

m−1X⊤
I XI

a.s.−−→ Cov(XI) and n−1X⊤
O XO

a.s.−−→ Cov(XO).

Due to the fact that lim
m→∞

n(m)
m = c for some c > 0, we conclude

Wm
P

a.s.−−→ W∞ := (Cov(XI) + c · Cov(XO))
−1 Cov(XI).

We observe that

(I−W∞) = (Cov(XI) + c ·Cov(XO))
−1

c ·Cov(XO).

Since both covariance matrices are positive definite, so is Cov(XI) + c ·Cov(XO). We conclude that the smallest singular
value of I−W∞ is strictly greater than 0. This means∣∣∣∣E[α̂m

W∞
]−α

∣∣∣∣2
2

= || (Ip −W∞)∆||22 ≥ c′||∆||22,

for some fixed constant c′ > 0. We obtain therefore

0 < lim
m→∞

∣∣∣∣E[α̂m
W∞

]−α
∣∣∣∣2
2
≤ lim

m→∞
MSE

(
α̂m

W∞

)
,

where we invoked Jensen’s inequality. We see that W∞ is constant and bounded. We note that almost sure convergence
implies convergence in probability. We can thus apply Lemma B.1, which yields the desired result

0 < lim
m→∞

MSE
(
α̂m

W∞

)
≤ lim

m→∞
MSE

(
α̂m

Wm
P

)
.
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A.2 PROPOSITION 4.2

Proposition 4.2. Let limm→∞
n(m)
m = 0. Then, it holds that

lim
m→∞

MSE (α̂m
P ) = 0.

Proof. Similar to the proof of Proposition 4.1, we employ the formulation of (A) and consider the term

n

m
· n−1X⊤

O XO.

We see that lim
m→∞

n(m)
m = 0 and by the strong law of large numbers, n−1X⊤

O XO
a.s.−−→ Cov(XO). Hence, we obtain that

n

m
· n−1X⊤

O XO
a.s.−−→ 0.

By the continuous mapping theorem, we conclude that

Wm
P

a.s.−−→ Ip,

and by Lemma B.2, this implies that

lim
m→∞

MSE
(
α̂m

Wm
P

)
≤ lim

m→∞
MSE (α̂m

I ) = 0.

A.3 PROPOSITION 4.3

Proof. We rewrite Ŵm
∗ as follows:

Ŵm
∗ =

(
n−1

(
n−1X⊤

O XO

)−1
σ̂2
Y |X + ∆̂∆̂⊤ + ϵIp

)
(
n−1

(
n−1X⊤

O XO

)−1
σ̂2
Y |X +m−1

(
m−1X⊤

I XI

)−1
σ̂2
Y |do(X) + ∆̂∆̂⊤ + ϵIp

)−1

,

where we insert any almost surely converging estimators for ∆, σ2
Y |X and σ2

Y |do(X) instead of their ground-truth values. By

almost sure convergence of linear estimators individually, we see that this holds specifically for ∆̂ = α̂n
O − α̂m

I . Also, we
can use the strong law of large numbers to conclude almost sure convergence of σ̂2

Y |X and σ̂2
Y |do(X).

We now show Ŵm
∗

a.s.−−→ Ip: First, we see that

(cm)−1
(
n−1X⊤

O XO

)−1
σ̂2
Y |X

a.s.−−→ 0 and m−1
(
m−1X⊤

I XI

)−1
σ̂2
Y |do(X)

a.s.−−→ 0,

since m−1X⊤
I XI σ̂

2
Y |do(X) and n−1X⊤

O XO σ̂2
Y |X converge almost surely to constants and m−1 vanishes. Hence,

Ŵm
∗

a.s.−−→
(
∆∆⊤ + ϵIp

) (
∆∆⊤ + ϵIp

)−1
= Ip.

A.4 THEOREM 4.4

Proof. We have that Ip is bounded in norm, almost surely. So we can apply Lemma B.2 to see that

lim
m→∞

MSE
(
α̂m

Ŵm
∗

)
≤ lim

m→∞
MSE

(
α̂m

I

)
= 0.



A.5 PROPOSITION 4.5

Proof. By Theorem 4.4, it suffices to show that Ŵm
ℓ2

a.s.−−→ Ip. Since the other quantities Cov(α̂m
I ), Cov(α̂n

O ) for estimating
Wm

∗ remain unchanged compared to Ŵm
∗ , it suffices to show that the modified computation of ∆̂m we call ∆̂ℓ2

m converges
almost surely to the true ∆ = αI−αO, where αI and αO are short-hand for Eint[Y |X = x] and Eobs[Y |X = x], respectively.
We observe that ∆̂ℓ2

m has a closed-form solution

∆̂ℓ2

m = −(X⊤
I XI + λℓ2Ip)

−1X⊤
I (yI −XIα̂

n
O ) (B)

= (X⊤
I XI + λℓ2Ip)

−1X⊤
I XIα̂

n
O − (X⊤

I XI + λℓ2Ip)
−1X⊤

I yI, (C)

since α̂n
O is again a closed-form solution to an ordinary least squares problem. Considering the first term in (C), we conclude

almost sure convergence with respect to αI (it is simply the ridge regression solution on the interventional data, which is
well-known to converge almost surely for fixed λℓ2 ). The second term satisfies

(X⊤
I XI + λℓ2Ip)

−1X⊤
I XI

a.s.−−→ Ip and α̂n
O

a.s.−−→ αO.

This leads to the desired conclusion.

B ADDITIONAL LEMMAS

Lemma B.1. Let Ŵm −Wm P−→ 0 1 and let there exist c > 0, m′ ∈ N, such that ||Wm||2 ≤ c, for all m ≥ m′, almost
surely. Then, it holds that

lim
m→∞

MSE
(
α̂m

Wm

)
≤ lim

m→∞
MSE

(
α̂m

Ŵm

)
,

where P−→ denotes convergence in probability.

Proof. We derive a lower bound on MSE
(
α̂m

Ŵm

)
by using the formulation

MSE
(
α̂m

Ŵm

)
= E

[
1

{
||Ŵm −Wm||2 ≤ ϵ

}
||α̂m

Ŵm
−α||22

]
+

E
[
1

{
||Ŵm −Wm||2 > ϵ

}
||α̂m

Ŵm
−α||22

]
, ∀ϵ > 0.

(D)

We bound the second summand of (D) from below by zero. For the first summand, we use reverse triangle inequality, which
yields

E
[
1

{
||Ŵm −Wm||2 ≤ ϵ

}
||α̂m

Ŵm
−α||22

]
= E

[
1

{
||Ŵm −Wm||2 ≤ ϵ

}
||α̂m

Ŵm
− α̂m

Wm − (α− α̂m
Wm)||22

]
≥ E

[
1

{
||Ŵm −Wm||2 ≤ ϵ

}
||α̂m

Wm −α||22
]
− 2

√
E
[
1

{
||Ŵm −W||2 ≤ ϵ

}
||α̂m

Ŵm
− α̂m

Wm ||22
]
E [||α̂m

Wm −α||22] +

E
[
1

{
||Ŵm −Wm||2 ≤ ϵ

}
||α̂m

Ŵm
− α̂m

Wm ||22
]

≥ MSE(α̂m
Wm)− E

[
1

{
||Ŵm −Wm||2 > ϵ

}
||α̂m

Wm −α||22
]
−

2

√
E
[
1

{
||Ŵm −Wm||2 ≤ ϵ

}
||α̂m

Ŵm
− α̂m

Wm ||22
]
E [||α̂m

Wm −α||22].
(E)

For any constant W,W′ ∈ Rp×p, we rewrite

E
[
||α̂m

W′ − α̂m
W||22

]
= E

[
||(W′ −W)α̂m

I + (W −W′)α̂n
O ||22

]
≤ 2

(
||W −W′||22Tr

(
E
[
α̂m

I α̂m⊤
I

])
+ ||W −W′||22Tr

(
E
[
α̂n

O α̂
n⊤
O

]))
= 2||W −W′||22

[ (
||E [α̂m

I ] ||22 + Tr (Cov (α̂m
I ))

)
+

(
||E [α̂n

O ] ||22 + Tr (Cov (α̂n
O ))

) ]
,

1We note that Wm may be random.



where we have used Young’s inequality in the first step. We see that both ||E [α̂m
I ] ||22 and ||E [α̂n

O ] ||22 remain bounded ∀m,
while Tr (Cov (α̂n

O )) and Tr (Cov (α̂m
I )) decrease monotonically in m. Hence, we conclude that for any ϵ′ > 0, there exists

an ϵ > 0 such that

E
[∣∣∣∣α̂m

W′ − α̂m
W

∣∣∣∣2
2

]
≤ ϵ′, ∀m ∈ N and ∀W,W′ ∈ Rp×p s.t. ||W −W′||2 ≤ ϵ. (F)

Since ||Wm||2 ≤ c for all m ≥ m′, we have that ||α̂m
Wm −α||22 is also bounded by some constant c′ > 0, for all m ≥ m′,

almost surely. We now fix an ϵ′ > 0 and choose a corresponding ϵ such that (F) holds. We then conclude from (E) that

MSE
(
α̂m

Ŵm

)
≥ E

[
1

{
||Ŵm −Wm||2 ≤ ϵ

}
||α̂m

Ŵm
−α||22

]
≥ MSE (α̂m

Wm)− 2
√
ϵ′ E [||α̂m

Wm −α||22]− P
(
||Ŵm −Wm||2 > ϵ

)
c′

≥ MSE (α̂m
Wm)− 2

√
ϵ′c′ − P

(
||Ŵm −Wm||2 > ϵ

)
c′,

for all m ≥ m′. Thus, we conclude

lim
m→∞

MSE
(
α̂m

Ŵm

)
≥ lim

m→∞
MSE (α̂m

Wm)− 2
√
ϵ′c′.

We can repeat this procedure for any ϵ′ > 0 and therefore conclude

lim
m→∞

MSE
(
α̂m

Ŵm

)
≥ lim

m→∞
MSE (α̂m

Wm) ,

which is the desired result.

Lemma B.2. Let Ŵm −Wm a.s.−−→ 0 and let there exist some c > 0, m′ ∈ N, such that ||Wm||2 ≤ c,∀m ≥ m′, almost
surely. Then, it holds that

lim
m→∞

MSE
(
α̂m

Ŵm

)
≤ lim

m→∞
MSE

(
α̂m

Wm

)
.

Proof. We again employ the formulation from (D), but this time to construct an upper bound. For the first term of (D), we
see that

E
[
1

{
||Ŵm −Wm||2 ≤ ϵ

}
||α̂m

Ŵm
−α||22

]
= E

[
1

{
||Ŵm −Wm||2 ≤ ϵ

}
||α̂m

Ŵm
− α̂m

Wm + α̂m
Wm −α||22

]
≤ MSE

(
α̂m

Wm

)
+ 2

√
E
[
1

{
||Ŵm −Wm||2 ≤ ϵ

}
||α̂m

Ŵm
− α̂m

Wm ||22
]
E[||α̂m

Wm −α||22] +

E
[
1

{
||Ŵm −Wm||2 ≤ ϵ

}
||α̂m

Ŵm
− α̂m

Wm ||22
]
,

(G)
by triangle inequality and the Cauchy-Schwarz inequality. Since for m ≥ m′ it holds that ||Wm||2 ≤ c, almost surely, there
exists a constant c′ > 0 such that E

[
||α̂m

Wm −α||22
]
≤ c′, for all m ≥ m′. This is true because the two estimators α̂m

I

and α̂n
O have both bounded mean squared error for any sample size m.

Analogously to the proof for Lemma B.1, we now fix an ϵ′ > 0 and choose a corresponding ϵ such that (F) holds. For
m ≥ m′, we then conclude from (G) that

E
[
1

{
||Ŵm −Wm||2 ≤ ϵ

}
||α̂m

Ŵm
−α||22

]
≤ MSE (α̂m

Wm) + 2
√
ϵ′ E [||α̂m

Wm −α||22] + ϵ′

≤ MSE (α̂m
Wm) + 2

√
ϵ′c′ + ϵ′.

(H)

This bounds the first term of (D). For the second term of (D), we use almost sure convergence of Ŵm −Wm. Since Wm

is bounded in the limit, almost surely, so is Ŵm. Formally, ||Ŵm||2 ≤ c
′′
,∀m ≥ m′ for some m′ ∈ N, almost surely.



We use this to bound ||α̂m
Ŵm
− α||22 < c′′′ for all m ≥ m′, almost surely, for some c′′′ > 0. Now, we apply iterated

expectations to the second term of (D) to see that for all m ≥ m′

E
[
1

{
||Ŵm −Wm||2 > ϵ

}
||α̂m

Ŵm
−α||22

]
= E

Ŵm

[
1

{
||Ŵm −Wm||2 > ϵ

}
E
α̂m

Ŵm
|Ŵm

[
||α̂m

Ŵm
−α||22

]]
≤ P

(
||Ŵm −Wm||2 > ϵ

)
c′′′,

(I)
almost surely. Now, we can combine the inequalities (H) and (I) to obtain

MSE
(
α̂m

Ŵm

)
≤ MSE (α̂m

Wm) + 2
√
ϵ′c′ + ϵ′ + P

(
||Ŵm −Wm||2 > ϵ

)
c′′′,

for all m ≥ m′′. Almost sure convergence implies consistency of Ŵm −Wm with respect to 0, so we see that
P
(
||Ŵm −Wm||2 > ϵ

)
vanishes in the limit m → ∞, for all ϵ > 0. We can repeat this procedure for any ϵ′ > 0.

This implies the desired result.

C DETAILED DERIVATION OF OPTIMAL WEIGHTING SCHEMES

In general, we observe that

Bias(α̂m
W) = Wα+ (I−W)(α+∆)−α = (I−W)∆,

Cov(α̂m
W) = WCov(α̂m

I )W⊤ + (I−W)Cov(α̂n
O )(I−W)⊤.

C.1 OPTIMAL SCALAR WEIGHT

Here, we have

∂

∂w
MSE

(
α̂m

wIp

)
=

∂

∂w

∣∣∣∣∣∣Bias
(
α̂m

wIp

) ∣∣∣∣∣∣2
2
+

∂

∂w
Tr

(
Cov

(
α̂m

wIp

))
= − 2(1− w)||∆||22 + 2wTr (Cov(α̂m

I ))− 2(1− w)Tr (Cov(α̂n
O ))

!
= 0.

By rearranging, we get

wm
∗ =

Tr(Cov(α̂n
O )) + ∥∆∥

2
2

Tr(Cov(α̂m
I )) + Tr(Cov(α̂n

O )) + ∥∆∥
2
2

.

C.2 OPTIMAL DIAGONAL WEIGHT MATRIX

Here, we see that the objective decouples into a sum over the individual dimensions

MSE
(
α̂m

wIp

)
=

p∑
k=1

(
1− w(k)

)2

∆(k) 2 + w(k) 2Cov(k,k)(α̂m
I ) +

(
1− w(k)

)2

Cov(k,k)(α̂n
O ).

Thus, we optimize for each dimension k separately and obtain

w
m(k)
∗ =

Cov(k,k)(α̂n
O ) + ∆(k) 2

Cov(k,k)(α̂m
I ) + Cov(k,k)(α̂n

O ) + ∆(k) 2
.



C.3 OPTIMAL WEIGHT MATRIX

Using ∂
∂WTr(WAW⊤) = 2WA, since A is symmetric, we observe that

∂

∂W
MSE (α̂m

W)

= 2W
(
Cov(α̂m

I ) +Cov(α̂n
O ) +∆∆⊤)− 2

(
∆∆⊤ +Cov(α̂n

O )
)

!
= 0.

We see that this minimum is attained for(
Cov(α̂n

O ) +∆∆⊤) (Cov(α̂m
I ) +Cov(α̂n

O ) +∆∆⊤)−1
.

D NON ZERO-MEAN EXOGENOUS VARIABLES

All results established here can readily be extended to settings, where any of the exogenous variables have non-zero mean,
i.e., µNX

, µÑX
:= E[ÑX], µNZ

, µNY
(see (1)–(3)) may be non-zero. In order to extend the practical estimators introduced

here, one needs to consider the following two pre-processing steps:

First, we center both treatment distributions separately, without scaling:

x′
i ← xi − n−1

∑
j∈1,...,n

xj , ∀i ∈ 1, ..., n, (J)

x′
i ← xi −m−1

∑
j∈n+1,...,n+m

xj , ∀i ∈ n+ 1, ..., n+m. (K)

In this manner, both treatment variables become zero-mean.

Furthermore, we add a dummy dimension with value one to all treatment vectors:

x′′
i ← (x′

i, 1), ∀i ∈ 1, ..., n+m.

This naturally adds one more dimension also to α, which corresponds to the intercept term. We then use the constructed x′′
i

to compute the weight matrices proposed in this work.

Finally, we see that the intercept term must be identical for both distributions, interventional and observational:

E[Y | X′ = x′] = γ⊤E[Z | X′ = x′] +α⊤x′ + µNY
.

We then have in the observational setting (data points 1, ..., n) that

γ⊤E[Z | X′ = x′] = γ⊤µNZ
+ γ⊤ΣNZ

B⊤(ΣNX
+BΣNZ

B⊤)−1(x′ − E[X′])

= γ⊤µNZ
+∆⊤x′,

where E[X′] = 0 due to (J).

For the interventional data, we have independence between X′ and Z by definition and so we trivially get

γ⊤E[Z | X′ = x′] = γ⊤µNZ

here. Thus, the intercept is γ⊤µNZ
+ µNY

for both distributions and we fix ∆̂(p+1) = 0.



E SAMPLE IMBALANCE

We see that the ground truth covariance matrices of α̂m
I and α̂n

O adapt to changes in the sample sizes, keeping the distributions
of all variables fixed. For instance, we see that

Cov(α̂m
I ) = (X⊤

I XI)
−1σ2

Y |do(X) = m−1(m−1X⊤
I XI)

−1σ2
Y |do(X).

The term (m−1X⊤
I XI)

−1σ2
Y |do(X) is bounded in probability, for large enough m. Accordingly, this implies that

Cov(α̂m
I )

P−→ 0. Thus, when keeping n fixed, we obtain Wm
∗

P−→ Ip, for m→∞.

On the other hand, if we keep m fixed and consider the limit n→∞ instead, we observe that

Wm
∗

P−→∆∆⊤(Cov(α̂m
I ) +∆∆⊤)−1.

We note that we do not have Wm
∗

P−→ 0 here in general, because the bias in α̂n
O remains, independent of the sample size n.
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