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Abstract

We study causal effect estimation from a mixture
of observational and interventional data in a con-
founded linear regression model with multivariate
treatments. We show that the statistical efficiency
in terms of expected squared error can be improved
by combining estimators arising from both the
observational and interventional setting. To this
end, we derive methods based on matrix weighted
linear estimators and prove that our methods are
asymptotically unbiased in the infinite sample limit.
This is an important improvement compared to
the pooled estimator using the union of interven-
tional and observational data, for which the bias
only vanishes if the ratio of observational to inter-
ventional data tends to zero. Studies on synthetic
data confirm our theoretical findings. In settings
where confounding is substantial and the ratio of
observational to interventional data is large, our
estimators outperform a Stein-type estimator and
various other baselines.

1 INTRODUCTION

Estimating the causal effect of a treatment variable on an
outcome of interest is a fundamental scientific problem that
is central to disciplines such as econometrics, epidemiol-
ogy, and social science (Angrist and Pischke, 2009; Morgan
and Winship, 2014; Imbens and Rubin, 2015; Hernin and
Robins, 2020). A fundamental obstacle to this task is the
possibility of hidden confounding: unobserved variables
that influence both the treatment and the outcome may intro-
duce additional associations between them (Reichenbach,
1956). As a result, estimators purely based on observational
(passively collected) data can be biased and typically do not
recover the true causal effect.

This contrasts experimental studies such as randomized con-
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Figure 1: Overview. We estimate the causal effect o of a
continuous multi-variate treatment X on a scalar outcome Y
in a linear Gaussian structural equation model with unob-
served confounders Z. Given a large sample from the obser-
vational setting in (a) and a small sample from the interven-
tional setting in (b), we establish an optimal, sample-size
dependent matrix weighting scheme for combining the bi-
ased, low-variance observational estimator with the unbi-
ased, high-variance interventional estimator.

trolled trials (RCTs; Neyman, 1923; Fisher, 1936), where
the treatment assignment mechanism is modified through
an external intervention, thus breaking potential influences
of confounders on the treatment. For this reason, RCTs
have become the gold standard for causal effect estimation.
However, obtaining such interventional data is difficult in
practice because the necessary experiments are often infea-
sible, unethical, or very costly to perform.

In contrast, observational data is usually cheap and abundant,
motivating the study of causal inference from observational
data (Rubin, 1974; Pearl, 2009). In fact, in certain situa-
tions causal effects can be identified and estimated from
purely observational data, even under hidden confounding,
e.g., in the presence of natural experiments (instrumental
variables; Angrist et al., 1996) or observed mediators (front-
door adjustment; Pearl, 1995). However, this does not apply
to the general case in which a treatment X and an out-
come Y are confounded by an unobserved variable Z as
shown in Fig. 1a.
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In the present work, we study treatment effect estimation
in this general setting under the assumption that we have
access to both observational and interventional data. The
latter can be viewed as sampled from the setting shown
in Fig. 1b, where the arrow Z — X has been removed as
a result of the intervention on X (graph surgery; Spirtes
et al., 2000), and is thus unbiased for our task. Due to
small sample size, however, the estimator based only on
interventional data may exhibit high variance. Our main
idea is therefore to use the (potentially large amounts
of) observational data for variance reduction—at the cost
of introducing some bias. This is achieved by forming
a combined estimator, which is superior to the purely
interventional one in terms of mean squared error.

We make the key assumption that both the treatment X — Y
and confounding Z — {X, Y} effects are linear, but allow
for treatment X and unobserved confounder Z to be continu-
ous and multi-variate. We then consider a class of estimators
of the causal effect parameter vector that combine the un-
biased, but high-variance interventional estimator and the
biased, but low-variance observational estimator through
weight matrices—akin to a multi-variate convex combina-
tion. We study the statistical properties of these estimators,
establish theoretical optimality results, and investigate their
empirical behavior through simulations.

In summary, we highlight the following contributions:

e We introduce a new framework of weighing linear es-
timators using matrices and show that several existing
approaches fall into this category (§ 4).

* We prove that, unlike pooling observational and interven-
tional data (Prop. 4.1), our matrix weighting approaches
achieve vanishing mean squared error in the interventional
sample limit (Prop. 4.3 and Thm. 4.4) if the ratio between
observational and interventional data is non-vanishing.

* We discuss two practical approaches for variance
reduction in estimating optimal weight matrices (§ 4.4;
Prop. 4.5), and demonstrate through simulations that our
estimators outperform baselines and existing methods in
situations where confounding is substantial (§ 5).

2 RELATED WORK

Causal reasoning, i.e., inferring a causal query such as a
causal effect, can be split up into the tasks of (i) identifica-
tion and (ii) estimation. Step (i) operates at the population
level and seeks to answer whether a causal question can—at
least in principle—be answered given infinite data. If the
answer is positive and a valid estimand is provided, step (ii)
then aims to construct a statistically efficient estimator.

A causal query is identified from a set of assumptions if
it can be expressed in terms of the available distributions
(e.g., a mixture of different observational and interventional
distributions). To this end, Pearl’s do-calculus (1995; 2009)
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Figure 2: Relation between shrinkage and estimator
weighting in 2D. Classical shrinkage methods like ridge
regression (yellow) shrink the interventional estimator &!™
toward the origin. Scalar estimator weighting (red) instead
shrinks toward the observational estimator &*. Dashed cir-
cles show the covariances of & and a!™, here assumed
isotropic. A (green) is the confounding-induced bias of &f.

provides an axiomatic set of rules for manipulating causal
expressions based on graphical criteria. The identification
task has been studied extensively (Tian and Pearl, 2002;
Pearl and Bareinboim, 2014; Bareinboim and Pearl, 2016)
and has by now been solved for many settings of interest: In
these cases, the do-calculus—and its extensions (Correa and
Bareinboim, 2020)—are sound and complete in that they
provide a valid estimand if and only if one exists (Huang
and Valtorta, 2006; Shpitser and Pearl, 2006; Bareinboim
and Pearl, 2012; Lee et al., 2020).

In our setting from Fig. 1, the causal effect c is not identifi-
able from observational data, but is trivially identified by in-
tervening on X. Yet, this leaves open the question of how to
estimate o from finite data in the best possible way. In con-
trast to the plethora of works on identification, there is much
less prior literature about statistical efficiency of causal pa-
rameter estimation, particularly for confounded settings.

A common source of inspiration for both prior work and
our approach is that of shrinkage estimation. In light of the
bias-variance decomposition of the mean squared error (e.g.,
Hastie et al., 2009, p. 24), shrinkage can yield a strictly
better (“dominating”) estimator by reducing variance, at
the cost of introducing some bias. These ideas were first
introduced in frequentist statistics by Stein (1956); James
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and Stein (1961) who showed that the maximum likelihood
estimate of a multivariate mean is dominated by shrink-
ing towards a fixed point such as the origin. Similar ideas
are also at the heart of empirical Bayes analysis (Robbins,
1964; Efron and Morris, 1973; Efron, 2012). For estimat-
ing a parameter vector « in a linear model, as is the focus
of the present work, a classical shrinkage method is ridge
regression (Hoerl, 1970).

Instead of shrinking towards the origin, an intuitive idea
for causal effect estimation is to shrink towards the obser-
vational estimator. The hope is that the latter constitutes
a better attractor if the confounding bias is not too large—
despite a slight increase in variance compared to shrinking
toward a constant. We refer to this approach as scalar estima-
tor weighting. Fig. 2 shows a visual comparison to classical
shrinkage estimation. The most closely related work on esti-
mator weighting is that of Green and Strawderman (1991);
Green et al. (2005) and Rosenman et al. (2020). The for-
mer two consider general biased and unbiased estimators.
The latter propose weighting schemes for estimating vec-
tors of multiple binary treatment effects. These works are
strongly inspired by James-Stein shrinkage estimators and
minimize a generalized version of Stein’s unbiased risk es-
timate (Wasserman, 2006, p. 150). Rosenman et al. (2020)
show optimality among scalar weights with respect to mini-
mizing the true risk as the dimensionality of the estimated
treatment effects goes to infinity. However, these theoretical
results rely on knowledge of the true covariance matrix of
the interventional estimator (which is typically unknown in
practice), and the behavior of their estimators in the infinite
sample limit is not analyzed.

Other work that focuses on combining observational and
interventional data to estimate causal effects of binary treat-
ments includes, e.g., Kallus et al. (2018); Cheng and Cai
(2021); IIse et al. (2021); Rosenman et al. (2022); Hatt et al.
(2022), see Colnet et al. (2020) for a comprehensive survey.

Yang and Ding (2020) also study combining estimators
of binary treatment effects. However, in their framework
an estimator with less bias in addition to a second error-
prone estimator is computed from a second observational
“validation set”, in which all confounders are measured. Our
framework, in contrast, does not require measurements of
the confounders.

In the present work, we consider a general linear regression
setting with continuous (rather than binary) multi-variate
treatments. To combine observational and interventional
data, we introduce a new class of matrix (rather than scalar)
weighted estimators, of which ridge regression and data
pooling are special cases. Instead of employing Stein’s un-
biased risk estimate, we develop and analyze estimates for
the theoretically optimal weight matrix, without making
assumptions about the covariance structure of estimators.

Most approaches to causal estimation, including the present

work, assume that the causal structure among variables is
known and takes the general form of the directed acyclic
graph in Fig. 1. For prior work on leveraging observational
and interventional data for causal discovery, or structure
learning, see, e.g., Wang et al. (2017).

3 SETTING & PRELIMINARIES

Notation. Upper case Y denotes a scalar random variable,
lower-case y a scalar, bold lower-case x a vector, and bold
upper-case X either a matrix or random vector. The spectral
norm of a matrix X is denoted by ||X||,.

Causal Model. To formalize our problem setting, we
adopt the structural causal model framework of Pearl (2009).
Specifically, we assume that the causal relationships be-
tween the d-dimensional confounder Z, the p-dimensional
treatment X, and the scalar outcome Y are captured by the
following linear Gaussian structural equation model (SEM):

Z <+ NZ; NZNN(/J’N27EN2)
()

Nx ~ N(HNxv 2Nx)
2

Y « Z'"v+X"a + Ny, NYNN(NNWJZQ\W) ©)

X <+ BZ+ Nx,

with B € RPX4 ~ € RY, o € R?, and (Nz, Nx, Ny)
mutually independent exogenous noise variables. The
SEM in (1)—(3) induces an observational distribution over
(Z,X,Y) which is referred to as Pops, see Fig. la.

To model the interventional setting, we consider a soft inter-
vention (Eberhardt and Scheines, 2007), which randomizes
the treatment X by replacing the assignment in (2) with

X + Nx, Nx ~Pg., 4)
where Nx is mutually independent of Nz and Ny. We note
that Nx may be non-Gaussian. The modified interventional
SEM consisting of (1), (3) and (4) induces a different, inter-
ventional distribution over (Z, X,Y"), which we refer to as
Pin, see Fig. 1b.

For ease of notation and for the remainder of this work, we
assume without loss of generality that all noise variables
are zero-mean. Details on how to extend our method to non
zero-mean noise variables are provided in App. D.

Data. We assume access to two separate datasets of ob-
servations of (X,Y") of size n and m, each sampled inde-
pendently from the observational and interventional distri-
butions (i.i.d.), respectively:

=

(xi,yi) X
iid.

(%5, ¥i) ~ Pin,

IP)()bS7 izla"'anv

[=%

t=n+1,...,n+m,
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where Poys and Py, denote the distributions of (X,Y) in
the observational and interventional settings, respectively.
We note that the confounder Z remains unobserved. We
concatenate the observational sample in a treatment ma-
trix Xo = (x1,..,%,)" € R™ P and outcome vector
Yo = (Y1,..,yn) " € R, and similarly with X, y, for the
interventional sample. Finally, we denote the pooled data by
Xp = (Xo,X) € R(+m)*p gnd Yo = (Yo, ¥1) € R7H™,

Goal. Our objective is to obtain an accurate estimate of the
parameter vector o, which characterizes the linear causal
effect of X on Y in (3). Formally, it is given by

a = VE[Y]do(X «+ x)],

where the do(+) operator denotes a manipulation of the treat-
ment assignment akin to (4), and the expectation is taken
with respect to the corresponding conditional distribution.

Confounding Issues. In the general case with non-zero
B and ~, the observational setting is confounded, meaning

Powy(Y[X = x) # B(Y|do(X - X)) = Pin(Y[X = %),

which complicates the use of observational data. Specifi-
cally, for our assumed model (1)—(3) the conditional expec-
tation of Y under P, is given by the following perturbed
linear model (Cevid et al., 2020):

Eops[VX = x] = (. + A) Tx, 3)

where A € RP denotes the confounding bias, which is given
explicitly in terms of the model parameters as

A = (Zny +BEN,BT) 'BEn, 7. (6)

It can be seen from (6) that the confounding bias A is
zero if B or ~y are zero (i.e., Z only affects either X or Y).
Furthermore, we have that, in general,

Varops (Y [X) = 03 x # 05 ja0x) = Varm(Y[X) . (7)
Assessing Estimator Quality. We rely on mean squared

error with respect to the true parameter o as a measure for
comparing different estimators.

Definition 3.1 (MSE). Let & be any function of the pooled
data (Xp,yp) taking values in RP. Then
MSE(@) = E [|l& - al3]

where the expectation is taken over Xp, yp.
We note that the mean squared error can also be written as
follows:

MSE(&) = ||Bias(a)|; + Tr(Cov(a)),  (8)
where

Bias(a) = Ela] — «,

Cov(a) = E[(a — E[a])(a - Ela])"].

This decomposition highlights that biased estimators can
dominate unbiased ones through variance reduction.

Pure Estimators. We study estimators for « that are lin-
ear combinations of the following ordinary least squares
estimators obtained on the two data sets individually.

Definition 3.2 (Pure Estimators). For non-singular moment
matrices X} X, and X, X,, the pure estimators based only
on the observational/interventional sample are given by:

ag = (XIXO)_lx(IYm
am = (XX, Xy,

Recall that & is unbiased while & has bias A. Their
covariances conditionally on X, and X are given by

Cov(ag) = (X, Xo) oy x,

Cov(a") = (XITXI)_1012/|d0(X)'

©))

Unlike previous work (see § 2), we do not make assumptions
about the covariance structure of either estimator.

Almost sure convergence. To analyze the behavior of
estimators in the infinite sample limit, we will employ the
following characterization known as almost sure conver-
gence.

Definition 3.3 (Almost Sure Convergence). Let M be a
random matrix with realizations in RP*P. We say a sequence
of random matrices M,,, indexed by m € N converges
almost surely to M, denoted M,,, ==+ M, if and only if
lim P (ﬁm - M) —1,

m—o0

where P denotes probability.

4 MATRIX WEIGHTED LINEAR
ESTIMATORS

We now introduce our class of matrix weighted linear estima-
tors, which combine the two pure estimators from Def. 3.2
using a weight matrix W to obtain a new (better) estimator.

Definition 4.1 (W-weighted Linear Estimator). Let W €
RP*P (possibly random). The W -weighted linear estimator
for o is given by

ayw = Wa" + (I, - W)ag.
We furthermore refer to W as a weight matrix.
We will generally think of n as a function of m, where we
sometimes even explicitly write n(m). However, to sim-

plify notation we index estimators by m only, omitting the
dependence n(m).

Note that the purely interventional estimator is a special
case of a W-weighted estimator with W = I,. However,

1090



while unbiased, it may be subject to high variance if m
is very small.! Hence, we generally prefer to employ the
observational data as well and choose W # I,

4.1 EXISTING METHODS AS SPECIAL CASES

First, we show that several standard approaches can be
viewed as special cases of matrix-weighted estimators.

Data Pooling. A straightforward approach for combining
both data sets is to compute an estimator on the pooled data.
The resulting least-squares estimator a* is:

ay' = (X, Xp) ' Xy ye
:(X(—)FXO+X1TXI)_1(XJYO+XITYI) (10)
=Wa" + (I-Wag,

where
W= (X)X, + X, X)X X,. an

We see that a* indeed qualifies as a valid matrix weighted
estimator in the sense of Def. 4.1.

However, data pooling can lead to highly undesirable lim-
iting behavior in cases where the amount of observational
data n(m) does not vanish in the limit of infinite interven-
tional data m — oo. An example for this is given in the
following proposition.

Proposition 4.1. Let lim,,,_,
and A # 0. Then, it holds that

= c for some ¢ > 0

lim MSE (&) > 0.

m—r o0

The proof of Prop. 4.1 is provided in App. A.1. We note,
however, that this does not happen for a vanishing amount of
observational data, that is lim,,, _, - "(mm) = 0 (see Prop. 4.2
in App. A.2).

Ridge Regression. The ridge regression estimator on the
interventional data, which shrinks @™ towards the origin
(see § 2 and Fig. 2), is given by

a;rirtllge = (XITXI + )‘Ip)ilxl—ryl
g’(blgeazn + (IP - g?lge)oa
where

Wik = (X, X, + AL) 71X/ X, (12)

Hence, aijjg,. can also be seen as a special case of a matrix
weighted estimator with no observational data and & = 0.

'E.g., consider a one-dimensional setting with x; = 1 if i
is even and —1 otherwise. Then, for odd m, Var(a™|X,)

(> 1‘22)71 = %

Further, comparing (11) and (12) suggest an interpretation
of ridge regression as a poor man’s data pooling since ac-
cess to observational data is replaced by a positive definite
data matrix A\L,. However, X is a constant, and therefore
lim,, — 00 MSE(&;’&ge) = 0 even in the setting of Prop. 4.1,
which contrasts data pooling.

4.2 OPTIMAL WEIGHTING SCHEMES

We now establish theoretically optimal weighting schemes
that minimize the mean squared error of W-weighted lin-
ear estimators iy, for different classes of weight matri-
ces W by exploiting the specific structure of our problem
setting (§ 3).

Optimal Scalar Weight. First, we consider the special
case of scalar estimator weighting by considering weight
matrices of the form W = wI,, with weight w € [0, 1]. The
optimal scalar weight is then derived as follows:

9 \ISE (am ) Lo

& o (H]E[a;gip - a]Hz T (COV (a:gl))) Lo

_ Tr(Cov(ay)) + | Al
Tr(Cov(a")) + Tr(Cov(an)) + |Al2

Optimal Diagonal Weight Matrix. A more general case
is to weigh each dimension individually by different scalars
w®) e [0,1], & = 1,...,p, corresponding to a weight
matrix of the form W = diag(w). The optimal diagonal
weighting diag(w?") is then given by

wi”(k) _ Cov(k’k)(ag) + A2
Covl®F) (@m) + Cov PP (an) 4+ Ak)2

for k =1, ..., p. The derivation is analogous to that for the
optimal scalar weight above, with the only difference being
that we optimize over each dimension separately.

Optimal Weight Matrix. Finally, we can also determine
the optimum weighting as follows:

W = (Cov(al)+ AAT)

_ A a3

(Cov(a") + Cov(ay) + AA") .
A thorough derivation of the proposed weighting schemes
can be found in App. C. In addition, we elaborate on how
this weighting scheme handles sample imbalance in App.
E.

Remark 4.2. If (i) A = 0 and (ii) O’%/‘X = O’%,‘do(x), then
W' = WU, ie, data pooling corresponds to weighing
with the optimal weight matrix under these two assumptions.
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Remark 4.2 can be verified by simplifying (13) with
assumptions (i) and (ii) and comparing to (11). It agrees
with our intuition: Ordinary least squares relies on the
assumption that E[Y|X = x;] = a'" x; with equal variance,
for all <. Thus, data pooling recovers the optimal estimator
if these assumptions are true, i.e., the two conditional
distributions Pups (Y] X) and Pjp (Y |do(X)) are identical.
However, in general, they will not be identical and data
pooling then amounts to model misspecification. This is
likely to result in a non-vanishing mean squared error for
m — oo as highlighted in Prop. 4.1.

4.3 PRACTICAL ESTIMATORS

Unfortunately, the optimal weighting derived in (13) cannot
be implemented directly, since the quantities A, Cov(al),
and Cov(a!™) are unknown in practice. To construct prac-
tical estimators informed by our theoretical insights, one
option is thus to rely on plug-in estimates of these unknown
quantities. For Cov(a!™) and Cov(al), we use the stan-
dard estimators

Cov(@)") = (X X)) ™'0¥ 40(x)
Cov (@) = (X3 Xo) 5% x.
which replace the conditional variances in (9) by

1 ~m 2
Tm—1 [y — Xie"([3

1 112
1 [yo — Xoag|l; -

~2
Oy|do(X)
~2 _
Oy|x =

For A, one may consider using the unbiased estimator

~

A, =al—a. (14)

Substituting these into (13) then yields:

W = (60\\7(68) +A,A] + eIp)
o — —~ —~ —1
(cov(a;n) + Cov(@l) + A, AT + d,,)

s)
The regularization with € > 0 ensures that the inverse re-
mains stable even in the large sample limit where éch(ag)
and 6(;/(&{”) tend to zero. The reason for instability with-
out such regularization is that W7 is not uniquely defined
in the infinite sample limit. With regularization, however,
we can guarantee that \/7\\/1” converges to I, almost surely.

Proposition 4.3 (Weight Matrix Convergence). Let
"(721) = ¢, for some constant ¢ > 0. Then, W

limy, 00
a.s.

Sfrom (15) converges almost surely to I, i.e., \/7\7*’" — L,

The proof for Prop. 4.3 is included in App. A.3. We can
show that this convergence implies that the mean squared
error vanishes asymptotically.

Theorem 4.4 (Zero Mean Squared Error in the Sample
Limit). Let W™ be any sequence of random weight ma-
trices such that W™ 22y I, and lim,, % = c for

some constant ¢ > 0. Then,

m—r oo

lim MSE (agiv) —0,

where &%m denotes the matrix-weighted linear estimator
with weight matrix W™, as defined in Def. 4.1.

The proof of Thm. 4.4 is included in App. A.4.

Thm. 4.4 has the following relevant implication: we can in-
corporate an arbitrarily large amount of biased observational
data and are still guaranteed that the bias (and also variance)
of &%m will vanish in the infinite sample limit. Moreover,

*

this guarantee is independent of A and [0,y — 0% 40(x)|-

We also note that Thm. 4.4 does not imply unbiasedness of

~m . .
Ao for any finite sample size.

Further, we note that almost sure convergence of W™ to I,
may generally not be the only option to achieve vanishing
mean squared error. For example, if A = 0 such that & is
unbiased, we also obtain vanishing mean squared error for
almost sure convergence of W™ (0 0.

4.4 SUITABLE INDUCTIVE BIASES

Despite the desirable performance established in Thm. 4.4,
the plug-in estimates from § 4.3 will often not perform
very well in finite sample settings. The main issue is the
estimation of A, which has a large variance when done
according to (14). To see this, we first note that

Tr(Cov(A,,)) = Tr(Cov(al")) 4+ Tr(Cov(al)), (16)

since the observational and interventional data are indepen-
dent. Now, if we only have a small interventional sample (as
is typically the case), Tr(Cov(a!™)) and hence according
to (16) also Tr(Cov(Am)) will be large.

We therefore explore possible inductive biases in the form
of additional assumptions on the type of confounding that
lead to reduced variance when estimating A,,,. These in-
ductive biases can be motivated from domain knowledge
and validation techniques such as cross-validation (Schaffer,
1993). Specifically, the application itself may provide some
prior knowledge about the nature of confounding, which
can then be confirmed by a better validation score compared
to the other inductive biases/methods proposed here.

To this end, we observe that (14) can be written as the
solution of the following two-step ordinary least squares
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procedure:

&y« ag min {|lyo - Xoall}}
r — yi — Xay

~

A, +— arg rmn {Hr + X;A|5 } (17)

Small |A|,. Insome settings, we may be willing to as-
sume that, despite the existence of unobserved confounders,
the resulting confounding bias is rather weak, i.e., that its
Euclidean norm || A||, is small. Since this is precisely the as-
sumption underlying ridge regression, we reformulate (17)
using a regularizer Ay2 > 0 as

o~

Al arg min {|lr + XA[3 + e A
for which a closed-form solution of the same computational
complexity as least squares exists. We refer to the welght
matrix estlmate obtained by using AZ, in place of Am
in (15) as W@. By Prop. 4.5, we still obtain the same limit-
ing guarantees of Thm. 4.4 for ‘/7\\7?;, as long as A2 is fixed
(A2 is independent of m, X, yp).

Proposition 4.5. Let lim,,_, o "(NT) = cand \p2 > 0 be
fixed. Then,

lim MSE (Am ) =0.
02

m—»o0 Wi
The proof for Proposition 4.5 is given in App. A.5.

Small [|Al|,. In other settings, we may have prior be-
liefs that only some treatment variables X; are confounded,
i.e., that the number of nonzero elements of A, denoted by
| Al is small. If we are unaware of which treatments are
confounded, but p is small, we can simply fit all 2P possi-
ble models or use best subset selection (James et al., 2013,
p. 205). For larger p, a more efficient technique known as
the LASSO employs ¢!-regularization and has become a
standard tool (Tibshirani, 1996). For the LASSO, approx-
imate optimization techniques exist that have a computa-
tional complexity of O(p?n) (Efron et al., 2004), which is
of the same order as ordinary least squares. In this case, we
reformulate (17) as

o~

A, arg min {|lr + XA[3 + AL,
for some A\p1 > 0, and where || - ||, denotes the ¢!-norm.
We refer to the weight matrix obtained by using Af; in
place of A, in (15) as WL,

S EXPERIMENTS

We investigate the empirical behavior of our proposed ma-
trix weighted estimators in a finite sample setting and com-

pare them with baselines and existing methods through simu-
lations on synthetic data.? To this end, we consider different
experimental settings in which we vary the strength and
sparsity of confounding, as well as the ratio and absolute
quantity of observational and interventional data.

Compared Methods. We report the mean squared error
attained by the theoretically optimal weight matrix W7*

from (13) as an oracle, as well as the plug-in estimator W7"
thereof from (15), and the regularized regression-based W73

and V/\\fﬂ from § 4.4. For the latter two, we choose the regu-
larization hyperparameters Ay2 and Ay by cross-validation
on the interventional data. As baselines, we consider only
using interventional data (W{* = I,,) and data pooling
according to W{" from (11). We also compare to the Rosen-
man et al. (2020) scalar weighting scheme which was pro-
posed for vectors of binary treatment effects and is given by
W = o1, with

M

W, = max{q 1l —

We emphasize that other commonly used methods for causal
effect estimation from observational data such as propensity
score matching (Imai and Dyk, 2004) are not applicable, be-
cause they require the relevant confounders to be observed,
which is not the case in our setting.

General Setup. In all experiments, we use p = 30 treat-
ments, a one-dimensional (d = 1) confounder Z, and
unit/isotropic (co)variances: 03, = o3, = 1, Eny = L.
We sample Nx ~ N(0, Cov(X,)), a ~ N(0,91,), and
choose b and v depending on the settings described below.
Unless otherwise specified, we then draw m = 300 inter-
ventional and n = 600 observational examples from Py,
and P, respectively, and compute estimates of o using
the different weighting approaches. We repeat this proce-
dure 1000 times and report the resulting mean and standard
deviation of the mean squared error.

Different Types of Confounding. In our main experiment,
we investigate how estimators perform under different types
of confounding encoded by (2) and (3), specifically by the
parameters b € R? and v € R (for a scalar confounder Z).
For spread confounding, we sample b ~ N(0, I,,) such that
the confounder affects all treatment variables almost surely.
For sparse confounding, we sample b*) ~ N (0,1) for
k=1,..,5, and b*) = 0 otherwise, such that only the first
five treatments are confounded. In both cases, we investigate
v € {1, 5} which controls the strength of Z — Y and thus
the extent to which A = 0 is violated.

>The source code for all experiments is available at:
https://github.com/rudolfwilliam/matrix_weighted_linear_estimators
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Table 1: Mean squared error for the causal effect parameter o us1ng various weighting schemes for different types
of confoundlng The standard plug-in optimal weight matrix estimator Wm generally does not perform well, while W "

and ng , which benefit from prior knowledge, outperform prior work. Note that W7 is an oracle that is generally not
computable in practice. Numbers correspond to mean =+ std. dev. over 1000 runs; the best method is highlighted in bold.

wnm w wp wr ™ ” wr
spread  y=1 0.074+0.02 0.21+0.06 0.07+0.01 0214006 0.10+0.04 0.0840.03 0.04+0.01
conf. 4 =5 089+020 279+£078 092+0.14 277+£0.77 1.11£042 076+029 0.10+0.03
sparse  y=1 0124002 0.21+£0.06 0.13+0.02 0214006 0.10+0.04 0.1640.05 0.05=+0.01
conf. 4 =5 180+0.37 279+£078 242+0.24 277+0.77 0.95+048 228+0.63 0.30+0.08
y=1 y=25 vy=1 y=25
1.00 1004
| 0.10
o 030 30-
= 0-10 1 1.0-:\&‘*“‘.
2 L0 0.05 - 0.7 - \\N"M
0.03 1 \\‘\\%
0.3 0.5 -
T T T T T T 0-03 T T T T T T
500 1000 1500 500 1000 1500 03 10 30 03 10 30
m n
m
w W e W e Wi O

Figure 3: Performance for varying dataset sizes and ratios. (Left) All methods improve as the amount of data is increased.
More sophisticated weighting schemes outperform the purely interventional (W) and plug in estimators (\/7\\71”) (not
depicted due to close performance overlap with pure interventional), whereas data pooling (W[") works well only for
small m and . (Right) When keeping m fixed and adding more observational data, \/7\\7;’; clearly works best in strongly
confounded (y = 5) settings. MSE and . are plotted on a log, scale. Shaded areas indicate +0.5 standard deviations.

Main Results. The results are presented in Tab. 1. We
find that our regularized estimators generally perform well,
particularly when the underlying assumptions are satisfied:
under sparse confounding \/7\Vm works best, and in the spread

confounding case W is only narrowly outperformed by
w™ and W when v = 1. Data pooling works relatively
well when v = 1 (compared to v = 5) where the violation
of the identically distributed assumption is weak and the
variance from estimating unknown quantities is not com-
pensated by the bias reduction. In contrast, both the purely
interventional approach W™ and the plug-in estimator \/7\\71”
do not perform very well in this finite sample setting due to
high variance, as explained in § 4.4.

Varying Data Set Sizes and Ratios. In Fig. 3, we inves-
tigate how the different estimators behave across different
data set sizes and ratios for the spread confounding setting.
In the left two plots, we vary the amount of interventional
data m while fixing the amount of observational data to
n = 3m. The results confirm our theoretical results: For
small data set sizes, data pooling is a worthwhile alternative

to more sophisticated weights, in particular if the violation
against the assumption of identical distribution is minor
(v = 1). However, for large enough data set sizes, the ap-
proaches from both previous work and ours achieve a better
score. Particularly, we see that \/7\72; outperforms all other
weights in both scenarios for large enough data sets.

In the right two plots, we keep m = 500 fixed and change n
and thus the ratio of interventional to observational data.
Unsurprisingly, we find that the mean squared error of W{"
remains constant. For strong confounding (7 = 5), we see
that V\VZZ adapts best with a considerable margin: Unlike
Wi, it explicitly takes into account (an estimate of) the co-
variance structure of & in constructing the weight matrix.

6 DISCUSSION

Connection to Transfer Learning. Our setting bears re-
semblance to transfer and multi-task learning (Thrun, 1995;
Caruana, 1997), specifically to supervised domain adapta-
tion, which aims to leverage knowledge from a source do-
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main to improve a model in a target domain, for which typi-
cally much less data is available. In our case, we aim to use
the source model &, learned by estimating E[Y|X = x|
in the observational setting, to improve our (high-variance)
target model @™ of E[Y|do(X < x)]. Transfer learning
can only work if the domains are sufficiently similar, re-
sulting in numerous approaches leveraging different as-
sumptions about shared components (Quifionero-Candela
et al., 2008). These assumptions are often phrased in causal
terms (Scholkopf et al., 2012; Zhang et al., 2013; Gong
et al., 2016; Rojas-Carulla et al., 2018). Similarly, our obser-
vational (source) and interventional (target) domains share
the same causal model and only differ in the treatment as-
signment mechanisms (2) and (4). Still, the bias in (6) can
in theory be arbitrary large, and our methods from § 4.4
implicitly rely on it being small or sparse.

Beyond Linear Regression. Some of our derivations and
theoretical results rely on the fact that the confounding bias
in (5) is linear in x. For the class of linear SCMs (1)-(3),
Gaussianity is necessary and sufficient® for this condition
to hold, but it may also hold for more general classes of
SCMs. For binary treatments X € {0, 1}?, in particular, it
is always possible to write the difference between the bi-
ased and unbiased average treatment effect estimates using
a constant offset A akin to (14), irrespective of the con-
founding relationship.” Future work may thus investigate
nonlinear extensions, e.g., by drawing inspiration from semi-
parametrics (Robins and Rotnitzky, 1995), doubly robust
estimation (Bang and Robins, 2005), and debiased machine
learning (Chernozhukov et al., 2018).

Incorporating Covariates. Our current formulation does
not explicitly account for observed confounders, or pre-
treatment covariates, which need to be adjusted for in the
observational setting to avoid introducing further bias. In
principle, such covariates can simply be included in X, as
different treatment components X; are allowed to be depen-
dent. However, this may result in high-dimensional treat-
ments and thus render full randomization in (4) unrealistic.
Other covariates, while unproblematic with regard to bias,
may help further reduce variance (Henckel et al., 2022).
Extending our framework to incorporate different types of
covariates is thus a worthwhile future direction.

7 CONCLUSION

In the present work, we have introduced a new class of ma-
trix weighted linear estimators for learning causal effects
of continuous treatments from finite observational and in-
terventional data. Here, our focus has been on optimizing

*Note E[Y'|X] = ~ " E[Z|X] + " X and E[Z|X] is linear in
X only in the Gaussian case (Peters et al., 2017, Thm. 4.2).

“Specifically, we have A = E[Y|X = 1] —E[Y|X = 0] —
(E[Y|do(X <+ 1)] — E[Y|do(X < 0)]).

statistical efficiency, which complements the vast causal
inference literature on identification from heterogeneous
data. Our estimators are connected to classical ideas from
shrinkage estimation applied to causal learning and provide
a unifying account of data pooling and ridge regression,
which emerge as special cases. We show that our estimators
are theoretically grounded and compare favorably to base-
lines and prior work in simulations. While we restricted our
analysis to linear models for now, we hope that the insights
and methods developed here will also be useful for a broader
class of causal models and transfer learning problems.
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