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A NOTATIONS

We provide a summary of the notations used in this paper and their descriptions in the following tables for reader convenience.

Notation Description
G Graph

G+,G− Positive and negative graph
V , E Node and edge set

S Sign matrix
Z Node representation matrix

A, As Adjacency matrix and symmetric adjacency matrix
D, Ds Degree matrix and symmetric degree matrix

L Laplacian matrix
Lq Magnetic Laplacian matrix with parameter q

G̃, L̃
q

Structure perturbed graph and perturbed magnetic Laplacian
Pq Phase matrix
Hq Complex Hermitian adjacency matrix
q Phase control parameter
X Input graph signal
M Projected representations
g Projected head

W, b Learnable weight matrix and bias

Table 1: Notations of this paper and its descriptions

B EXPERIMENT DETAILS

B.1 LINK SIGN PREDICTION TASK

B.1.1 Dataset and Metric

We used four signed-directed graph dataset, Bitcoin-Alpha, Bitcoin-OTC, Epinions, and Slashdot which are widely used in
signed-directed graph research. Bitcoin-Alpha1 and Bitcoin-OTC2 [Kumar et al., 2016] are extracted from Bitcoin trading

1http://www.btc-alpha.com
2http://www.bitcoin-otc.com
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platforms. Nodes are users, and edges are user relationships. Users can score the others on a scale of -10 to +10. Edges
higher than 0 are treated as positive edges, otherwise negative edges. Epinions3 [Guha et al., 2004] is a who-trust-whom
network crawled from a consumer review site. Users can notate trust or distrust to reviews of other users. Slashdot4 [Kunegis
et al., 2009] is a social network of user community site. Especially they share new information. Users tag others as friends
or foes, and we can construct positive and negative edges with this information. The preprocessed datasets can be found at
Standford Network Analysis Project (SNAP)5. Some papers [Li et al., 2020, Derr et al., 2018] used sub-networks of the
originals due to the large network size. We use the whole graph structure for the experiments. In the training phase, we
sample positive and negative edges at a ratio of 3:1, but in the validation and test sets, we maintain a natural ratio. It is
because the ratio of the positive and negative edges is highly unbalanced. If we train a model with 90 percent of positive
samples, a model can easily improve its performance by simply predicting all links are positive. Then, we adopt four metrics,
AUC, macro-F1, micro-F1, and binary-F1, for unbiased evaluation.

B.1.2 Implementation Details

Since some graph contrastive baselines are intended for self-supervised learning, we train them with the same semi-
supervised loss of the proposed model. Moreover, we removed the read-out process of GraphCL and SimGRACE, which are
designed for graph embedding. We ran ten times of experiments with different seed sets for a fair comparison. The seeds are
[0, 10, 20, 30, 40, 50, 60, 70, 80, 90]. We apply early stop conditions by comparing the training and validation losses. The
model parameters with the lowest validation loss are saved during the training. If validation loss goes up consecutively for
more than ten epochs, we stop training and get performance with a test set. We follow the hyperparameter settings of the
original papers of each model. The node embedding dimension is set to 128 for all the baselines to make the same learning
capacity. The edges are split into 60:20:20 for training, validation, and test sets. However, we did not use all the positive
edges as training instances during the training stage. The structure perturbing ratio p and r are set to 0.1 for all datasets. The
magnetic Laplacian phase q is perturbed by adding Gaussian noise with a standard deviation of 0.1. The contrastive loss
weight α is set to 0.2. Graph encoder stacks two signed-directed spectral convolution layers. We use Adam optimizer with
learning rate = 0.001, weight decay = 0.001. All experiments are run 10 times with different seed sets to avoid randomness
and get the average score. The experiments are conducted on Xeon E5-2660 v4 and accelerated via Nvidia Titan XP 12G
GPU. The software is implemented via Ubuntu v16.4 with python v3.7 and Pytorch v1.12.1.

B.2 NODE CLASSIFICATION TASK

B.2.1 Dataset and Metric

Our experiments utilized five datasets, including three directed citation networks (Cora, Citeseer, and Pubmed) and two
undirected co-author networks in Computer Science (CS) and Physics. In the citation networks, nodes correspond to
scientific publications and edges represent citations, while in the co-author networks, nodes correspond to researchers and
edges represent co-author relations, which are bidirectional. All datasets were preprocessed and made available through the
DGL library 6. To evaluate the performance of our models on the node classification task, we used prediction accuracy as
our primary metric.

Dataset # node # edge # features # class

Cora 2,708 10,556 1,433 7

Citeseer 3,327 9,228 3,703 6

Pubmed 19,717 88,651 500 3

CS 18,333 163,788 6,805 15

Physics 34,493 495,924 8,415 5

Table 2: Dataset statistics.

3http://www.epinions.com
4http://www.slashdot.com
5https://snap.stanford.edu/data/index.html#signnets
6https://docs.dgl.ai/



B.2.2 Baselines

We implemented nine baselines to compare the model performance. There are five graph convolution models and four
constative learning models.

• GCN [Kipf and Welling, 2016] is a spectral graph convolution model with Laplacian matrix.

• GAT [Veličković et al., 2017] is a spatial graph convolution model utilizing attention mechanism.

• APPNP [Gasteiger et al., 2018] utilize PageRank for efficient propagation scheme.

• MagNet [Zhang et al., 2021] defined a magnetic Laplacian for directed graph convolution.

• DiGCN [Tong et al., 2020] is a directed graph convolution with directed Laplacian matrix.

• DiGCL [Tong et al., 2021] is a graph contrastive model for directed graphs, which perturbs the Directed Laplacian
matrix by changing the teleport probability of the transition matrix.

And also used contrastive learning models, GraphCL, GCA, and SimGRACE.

B.2.3 Implementation Details

We followed the same settings as the link-sign prediction experiments, conducting ten runs with different seed sets, applying
early stopping criteria, and the same computing resources. The hyper-parameters used were consistent with those of the
original papers.

B.2.4 Prediction Performance

The proposed UGCL and its variants consistently demonstrate superior performance across various datasets, with the
exception of the pubmed dataset. Despite this, the overall results highlight the wide applicability and effectiveness of UGCL
in comparison to other approaches. These findings emphasize the competitive performance of UGCL and its potential as a
powerful tool for graph-related tasks.

Method
Directed Undirected

CORA CITESEER PUBMED CS Physics

C
on

vo
lu

tio
n

GCN 0.761 0.657 0.740 0.818 0.906
GAT 0.780 0.658 0.771 0.827 0.912
APPNP 0.769 0.664 0.768 0.823 0.920
MagNet 0.789 0.683 0.765 0.845 0.914
DiGCN 0.770 0.669 0.776 0.857 0.914

C
on

tr
as

tiv
e

GraphCL 0.782 0.681 0.763 0.887 0.935
GCA 0.786 0.688 0.794 0.889 0.940
SimGRACE 0.791 0.673 0.795 0.897 0.941
DiGCL 0.794 0.672 0.757 0.902 0.927
UGCL 0.796 0.699 0.762 0.916 0.955
UGCL-S 0.787 0.658 0.764 0.893 0.951
UGCL-L 0.791 0.692 0.751 0.907 0.940

Table 3: Node classification performance. Bold and underline indicate the best and the second performance respectively.
The performances are the average score of 10 experiments with different seed sets.

C PROOF OF THEOREMS

Theorem 1. For a signed directed graph G = (V,E,S), both the unnormalized and normalized magentic Laplacian Lq
U ,Lq

N

are positive semdifinite.



proof.
The unnormalized magnetic Laplacian Lq

U is an Hermitian matrix by its definition. Then, we have Imag(x†Lq
Ux)=0 where

x ∈ CN . Now we show Real(x†Lq
Ux) ≥ 0. The following procedures utilize the definitions of Ds and As.

2Real(x†Lq
Ux)

=2

N∑
u,v=1

Ds(u, v)x(u)x(v)

− 2

N∑
u,v=1

As(u, v)x(u)x(v)

[
cos(iΘq(uv)) + cos(iΘ

q
(uv))

∥exp(iΘq(uv)) + exp(iΘ
q
(uv))∥+ ϵ

]

=2

N∑
u=1

Ds(u, u)x(u)x(u)

− 2

N∑
u,v=1

As(u, v)x(u)x(v)

[
cos(iΘq(uv)) + cos(iΘ

q
(uv))

∥exp(iΘq(uv)) + exp(iΘ
q
(uv))∥+ ϵ

]

=2

N∑
u,v=1

As(u, v)|x(u)|2

− 2

N∑
u,v=1

As(u, v)x(u)x(v)

[
cos(iΘq(uv)) + cos(iΘ

q
(uv))

∥exp(iΘq(uv)) + exp(iΘ
q
(uv))∥+ ϵ

]

=

N∑
u,v=1

As(u, v)|x(u)|2 +
N∑

u,v=1

As(u, v)|x(v)|2

− 2

N∑
u,v=1

As(u, v)x(u)x(v)

[
cos(iΘq(uv)) + cos(iΘ

q
(uv))

∥exp(iΘq(uv)) + exp(iΘ
q
(uv))∥+ ϵ

]

=

N∑
u,v=1

As(u, v)

(
|x(u)|2 + |x(v)|2 − 2x(u)x(v)

[
cos(iΘq(uv)) + cos(iΘ

q
(uv))

∥exp(iΘq(uv)) + exp(iΘ
q
(uv))∥+ ϵ

])

≥
N∑

u,v=1

As(u, v)(|x(u)|2 + |x(v)|2 − 2|x(u)|
∣∣∣x(v)∣∣∣)

=

N∑
u,v=1

As(u, v)(|x(u)| − |x(v)|)2

≥0.

Thus, x†Lq
Ux ≥ 0 for x ∈ CN , positive semi-definite.

For normalized Laplacian matrix, Lq
N = D−1/2

s Lq
UD−1/2

s .

x†Lq
Nx = x†D−1/2

s Lq
UD−1/2

s x

= y†Lq
Uy

≥ 0.

where, y = D−1/2
s x.

Thus, both unnormalized and normalized magnetic Laplacians are positive semi-definite.

Theorem 2. For a signed directed graph G = (V,E,S), the eigenvalues of the normalized magnetic Laplacian Lq
N lie in [0,

2].



proof.
Lq
N has non-negative and real eigenvalues since it is positive semi-definite by Theorem.1. Now, we show the eigenvalues are

less than or equal to 2. Here, we use the Courant-Fischer theorem [Golub and Van Loan, 2013],

λN = max
x̸=0

x†Lq
Nx

x†x

= max
x̸=0

x†D−1/2
s Lq

UD−1/2
s x

x†x

= max
y̸=0

y†Lq
Uy

y†Dsy
.

where, y = D−1/2
s x. Since Ds is diagonal,

y†Dsy =

N∑
u,v=1

Ds(u, v)y(u)y(v) =
N∑

u=1

Ds(u, u)|y|2

Similar to Theorem 1, we have

y†Lq
Uy

=
1

2

N∑
u,v=1

As(u, v)

(
|y(u)|2 + |y(v)|2 − 2y(u)y(v)

cos(iΘq(uv)) + cos(iΘ
q
(uv))

∥exp(iΘq(uv)) + exp(iΘ
q
(uv))∥+ ϵ

)

≤1

2

N∑
u,v=1

As(u, v)(|y(u)|2 + |y(v)|2)

≤
N∑

u,v=1

As(u, v)(|y(u)|2 + |y(v)|2)

≤2

N∑
u,v=1

As(u, v)|y(u)|2 (since As is symmetric)

=2

N∑
u=1

|y(u)|2
(

N∑
v=1

As(u, v)

)

=2

N∑
u=1

|y(u)|2Ds(u, u)

=2y†Dsy.

Thus,

λN = max
y ̸=0

y†Lq
Uy

y†Dsy
≤ max

y ̸=0

2y†Dsy
y†Dsy

= 2.

Finally, the eigenvalues of normalized magnetic Laplacian are between [0, 2].

Proposition 1. Let a G1 = (V,E1) and G2 = (V,E2) be a directed graphs on the same vertex set. Then their union
G = (V,E1 ∪ E2) has entropy H(G) ≤ H(G1) +H(G2).

proof.
Let p1(x, y) and p2(x, y) be the distributions that minimize I(X ∧ Y ) for G1 and G2, respectively. Then we have a joint
distribution with Bayes’ rule

p(x, y1, y2) = p(x) · p1(y1|x) · p2(y2|x).

For a given choice of X , observe the Y1 ∩ Y2 contains X and is an independent set in G. Therefore,



H(G) ≤ I(X ∧ (Y1 ∩ Y2))

≤ I(X ∧ Y1, Y2)

= H(Y1, Y2)−H(Y1, Y2|X)

= H(Y1, Y2)−H(Y1|X)−H(Y2|X)

≤ H(Y1)−H(Y1|X) +H(Y2)−H(Y2|X)

= H(G1) +H(G2).

Theorem 3. Von Neumann entropy of a signed directed graph can be expressed via two directed graph entropy.

proof.
For a signed directed graph, G = (V,E,S), we can split it into two directed graphs via the edge type. Extract positive edges
from E and S then construct a directed graph with node set V . Now we have a positive directed graph G+ = (V,E+).
Similarly, we have a negative directed graph G− = (V,E−). Therefore, by utilizing Proposition 1.

H(G) ≤ H(G+) +H(G−).

Proposition 2. Let G = (V,E) and F = (V,E′) are graphs with same the same vertex set V and F is a subgraph of G,
E′ ⊂ E. Then the entropy is, H(F) ≤ H(G)

proof.
If X,Y are random variables achieving H(G), then Y is also an independent set in H(F). Therefore, H(F) ≤ I(X ∧Y ) =
H(G)

Theorem 4. Perturbation Error of a Signed Directed Graph

proof.
By Definition 1, we have perturbation error of a graph as:

∆H(G, q,∆q) = H(G, q)−H(G, q +∆q).

Since H(G, q) ≤ H(G+
D, q) +H(G−

D, q) and H(G, q +∆q) ≤ H(G+
D, q +∆q) +H(G−

D, q +∆q), we have the following
results.

∆H(G, q,∆q) ≤ H(G+
D, q) +H(G−

D, q)−H(G+
D, q +∆q)−H(G−

D, q +∆q)

= H(G+
D, q)−H(G+

D, q +∆q) +H(G−
D, q)−H(G−

D, q +∆q)

= ∆H(G+
D, q,∆q) + ∆H(G−

D, q,∆q)

And by Proposition 2,

∆H(G+
D, q,∆q) ≤ ∆H(G, q,∆q)

∆H(G−
D, q,∆q) ≤ ∆H(G, q,∆q)

Therefore, a signed directed graph perturbation error is described in the lower and upper boundaries.
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