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A THEORY

Theorem 2. Under Assumption 1, G1 and G2 are sets of sufficient context parameters on (q, s, a, s′) if and only if G1 ∩ G2

is a set of sufficient context parameters on (q, s, a, s′).

Proof. Sufficiency (backward statement): G1 ∩ G2 ⊆ G1 and G1 ∩ G2 ⊆ G2, then by Lemma 1, G1 ∩ G2 is a set of sufficient
context parameters on (q, s, a, s′).

Necessity (forward statement): Let cG = [c[i]]i∈G for any G ⊆ 2D. Then, for any c, c′ ∈ C that satisfy cG1∩G2 = c′G1∩G2
we

want to show that δq(q, Lc(s, a, s
′)) = δq(q, Lc′(s, a, s

′)). Under Assumption 1, there exists c′′ ∈ C such that

cG1\G2
= c′′G1\G2

,

c′G2\G1
= c′′G2\G1

,

cG1∩G2 = c′′G1∩G2
= c′G1∩G2

.

Such a choice is always possible since G1 ∩ G2, G1 \ G2 and G2 \ G1 are disjoint sets. Then,

c′′G1
= cG1

,

c′′G2
= c′G2

.

Therefore, δq(q, Lc(s, a, s
′)) = δq(q, Lc′′(s, a, s

′)) = δq(q, Lc′(s, a, s
′)).

B EXPERIMENTAL DETAILS

We provide details about the algorithms and the environments studied in the paper. These details include hyperparameters of
the algorithms, how we select them, and the structure of the environments.

B.1 ALGORITHMS

We compare two baseline algorithms and four automated curriculum generation methods:

1. Default: We evaluate learning without a curriculum, i.e. sampling contexts from the target context distribution and
training the agent in these contexts as a baseline.

2. Default*: We extend Default by running it on a product contextual MDP, thus we observe the effect of capturing
temporal abstractions without learning a curriculum.
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Algorithm 1 Intermediate Self-Paced RL
Input: Product MDP M̄L

R, target context distribution φ, initial context distribution ϱ(·|ν0),
Parameter: KL penalty proportion ζ , relative entropy bound ϵ, KL penalty offset offset Kα, number K of iterations, number
N of rollouts
Output: Final policy πωK

1: Initialize policy πω0 .
2: for k = 1 to K do
3: ci ∼ ϱ(c|νk−1), i ∈ [N ], ▷ sample contexts
4: Dk ← {(ci, τ̄i)|τ̄i = (s̄i,0, ai,0, r̄i,1, s̄i,1), · · · , (s̄i,Ti−1, ai,Ti−1, r̄i,Ti , s̄i,Ti), i ∈ [N ]}, ▷ collect trajectories
5: πωk ← Ψ(Dk, πωk−1) ▷ update policy with RL algorithm Ψ
6: Compute next context distribution parameter νk by solving

max
νk

1

N

N∑
i=1

Ti−1∑
t=0

γt ϱ(ci|νk)
ϱ(ci|νk−1)

r̄i,t+1 − αkDKL(ϱ(c|νk) || φ(c))

s.t. DKL(ϱ(c|νk) || ϱ(c|νk−1)) ≤ ϵ, (1)

where αk =

{
0 if k ≤ Kα;

B(νk−1,Dk) otherwise,
, and B(νk−1,Dk) = ζ

max (0, 1
N

∑N
i=1

∑Ti
t=1 γtr̄i,t)

DKL(ϱ(c|νk−1)||φ(c))
.

7: end for
8: return πωK

3. GoalGAN: Florensa et al. [2018] develop Goal Generative Adversarial Network for the goal-conditioned setting,
where a goal discriminator to determine whether a goal is at the intermediate difficulty for the current policy, and a
goal generator which generates goals that are at such level of difficulty. Although GoalGAN takes an initial context
distribution, similar to self-paced RL approaches, it does not allow for a target context distribution, instead, it generates
a curriculum as if the target context distribution is a uniform distribution over the context space C.

4. ALP-GMM: Florensa et al. [2018] propose Absolute Learning Progress with Gaussian Mixture Models, which
generates a Gaussian mixture model over the absolute learning progress of task parameters, e.g. contexts in our setting.
ALP-GMM uses a bandit scheme to choose a Gaussian as an arm whose utility is the absolute learning progress. The
chosen Gaussian distribution is used to draw the next task parameter.

5. SPDL: Klink et al. [2020] propose Self-paced Deep RL by exploiting deep learning methods under the self-paced RL
framework. We build Intermediate SPRL and RM-guided SPRL on top of this algorithm.

6. Intermediate SPRL: We present an intermediate self-paced RL algorithm, which runs on the product contextual MDP.
Therefore, we assess how self-paced RL performs when the agent can capture the temporal abstractions. We provide
the pseudocode in Algorithm 1.

7. RM-guided SPRL: We develop a reward-machine-guided, self-paced RL algorithm, which uses reward machines to
update the policy and value functions of an RL agent, as well as to direct the curriculum generation.

In our experiments, all methods use the soft actor-critic algorithm Haarnoja et al. [2018] as the RL method of choice.

Table 1 shows the hyperparameters of RM-guided SPRL, Intermediate SPRL, and SPDL algorithms in three case studies:

• Case-1: Two-door environment & 2D context space with wide target distribution,

• Case-2: Customized Swimmer-v3 environment & 2D context space with narrow target distribution,

• Case-3: Customized HalfCheetah-v3 environment & 3D context space with narrow target distribution.

There are four parameters in Table 1 that we do not provide in Algorithm 1: KOFFSET, nSTEP, σLB, and DKLLB
. Klink et al.

[2020] introduce these parameters as a part of SPDL. KOFFSET is the number of context distribution updates before they
enable a self-paced RL algorithm to update the initial context distribution. This parameter allows learning a meaningful
value function that estimates the expectation of the value of the initial states, which the objective function of the self-paced
RL problem takes into account. nSTEP is the number of environment interactions between two context distribution updates,
and it replaces N , which is the number of rollouts, i.e., trajectories between two context distribution updates. σLB is the
lower bound for the standard deviation of a context distribution, which is used to stabilize learning, particularly for narrow



Algorithm ϵ KOFFSET ζ Kα nSTEP σLB DKLLB

C
as

e-
1 RM-guided SPRL 0.05 70 0.96 10 16384 (4 · 10−3, 4 · 10−3) 8000

Intermediate SPRL 0.05 70 1.2 10 16384 (4 · 10−3, 4 · 10−3) 8000
SPDL 0.05 70 1.2 10 16384 (4 · 10−3, 4 · 10−3) 8000

C
as

e-
2 RM-guided SPRL 0.1 10 1.0 5 16384 (4 · 10−3, 4 · 10−3) 8000

Intermediate SPRL 0.1 10 4.0 5 16384 (4 · 10−3, 4 · 10−3) 8000
SPDL 0.1 10 4.0 5 16384 (4 · 10−3, 4 · 10−3) 8000

C
as

e-
3 RM-guided SPRL 0.05 80 1.0 0 16384 (4 · 10−3, 4 · 10−3, 4 · 10−3) 8000

Intermediate SPRL 0.05 80 4.0 0 16384 (4 · 10−3, 4 · 10−3, 4 · 10−3) 8000
SPDL 0.05 80 4.0 0 16384 (4 · 10−3, 4 · 10−3, 4 · 10−3) 8000

Table 1: Hyper-parameters for self-paced RL algorithms

Case µINIT ΣINIT µTARGET ΣTARGET

1 (0, 0) diag((0.25, 0.25)) (2, 2) diag((1, 1))
2 (0, 1) diag((0.1, 0.1)) (-0.6, 1.6) diag((1.6 · 10−7, 1.6 · 10−7))
3 (1, 4, 7) diag((0.25, 0.25, 0.25)) (4, 7, 10) diag((1.6 · 10−7, 1.6 · 10−7, 1.6 · 10−7))

Table 2: Initial and target context distributions

target distributions. DKLLB
is the threshold for KL divergence to the target context distribution and it determines when the

algorithm stop clipping the standard deviation of a context distribution using σLB. In all case studies, we run a grid search
over

Kα ∈ {0, 5, 10},
nSTEP ∈ {8192, 16384},

DKLLB
∈ {8000, 10000},

ϵ ∈ {0.05, 0.1}.

We set σLB with respect to the standard deviation of the narrow target context distribution (see Table 2). For KOFFSET, the
grid search is over the sets {60, 70}, {5, 10}, and {70, 80} for Case-1, Case-2 and Case-3, respectively. For ζ , the parameter
value search in Case-1 is over {0.96, 0.98, 1.0, 1.2}, whereas the search in Case-2 and Case-3 is over {1.0, 2.0, 3.0, 4.0}.
We use the parameters that yield the fastest convergence to the optimal expected discounted return via Intermediate SPRL
for SPDL (see Table 1).

We compare GoalGAN with self-paced RL algorithms in our case studies since it is a state-of-the-art automated curriculum
generation method that can handle sparse rewards. We tune the random noise δNOISE that is on every sample, the number
nGG

ROLLOUT of policy rollouts between context distribution updates, and the percentage pSUCCESS of samples drawn from the
success buffer. The tuning is done for every case via a grid-search over

δNOISE ∈ {0.05, 0.1},
nGG

ROLLOUT ∈ {50, 100},
pSUCCESS ∈ {0.2, 0.3}.

We also evaluate ALP-GMM as it is a state-of-the-art automated curriculum generation method that is competitive with
SPDL [Klink et al., 2021]. We tune the percentage of random context samples pRAND, the number nAG

ROLLOUT of policy
rollouts between context distribution updates, and the size of the buffer of past trajectories sBUFFER. The tuning is done for
every case via a grid-search over

pRAND ∈ {0.2, 0.3},
nAG

ROLLOUT ∈ {100, 200},
sBUFFER ∈ {1000, 2000}.



Due to failing to accomplish the task in every experiment with all combinations of these available parameter values, we
use a combination that we consider locally better than the other combinations in terms of the expected discounted return
obtained in the evaluation runs. The hyperparameters of GoalGAN and ALP-GMM that we use are in Table 3.

Case δNOISE nGG
ROLLOUT pSUCCESS pRAND nAG

ROLLOUT sBUFFER

1 0.1 100 0.3 0.2 200 1000
2 0.1 100 0.3 0.3 200 1000
3 0.1 100 0.3 0.3 200 1000

Table 3: Hyper-parameters for GoalGAN and ALP-GMM

In Case-1, we set the discount rate γ to 0.98, whereas Case-2 and Case-3 use γ = 0.99. Every curriculum learning method
uses the stable-baselines3 Raffin et al. [2021] implementation of the soft actor-critic (SAC) RL algorithm Haarnoja et al.
[2018]. In Case-1, we provide a replay buffer of size 150,000 and a batch size of 64, start the learning after 500 environment
interactions, update the policy every 5 interactions via the soft Q-updates, and use a multi-layer perceptron policy with 2
layers of 64 neurons and tanh activation function. In Case-2 and Case-3, SAC uses a replay buffer size of 500,000, and batch
size of 256, updates the policy every 8 steps and the learning starts after 10,000 interactions with the environment. SAC also
uses a multi-layer perceptron policy with 2 layers of 256 neurons and ReLU activation function. In addition, we set the
learning rate to 0.001. We keep the rest of the hyperparameters as what the implementation provides in its default setting.

We conduct all experiments on a laptop with an 11th Gen Intel Core i7-11800H processor and an Nvidia GeForce RTX
3060 graphics card and 16GB of RAM.

B.2 ENVIRONMENTS

B.2.1 Two-Door Environment

Case-1 is based on a two-door environment (see Fig. 1). The two-door environment is a 40-by-40 grid world, where the
initial state is at the coordinates (20, 35), which correspond to the positions along horizontal and vertical axes, respectively.
Box is a 5-by-5 square, and its top-left corner is at the coordinates (15, 20). The goal is positioned at (20, 5). We set the
vertical position of the doors to 30 and 10 for the first and second doors, respectively. The width of the doors has a width of
5. In short, the labeled contextual MDP M̄L of the two-door environment has a state space S = {1, 2, · · · , 40}2 and action
space A = {U,D,L,R}, which correspond to the coordinates and the four cardinal directions, i.e., up, down, left, right,
respectively. The transitions in the two-door environment are deterministic. Unless the agent completes the task or dies by
moving onto a wall or the second door before getting the key, we allow the agent to take at most 4800 steps.

Start

Door 1

Goal

Door 2

Box

Figure 1: Two-door Environment

Case study 1 has a context space C1 = [−4, 4]2, where the context parameters are the horizontal positions of the first and



second doors, respectively. We design the reward-machine-context mapping F1 for case study 1 as

F1(q0, q0) =,F1(q0, q1) = {1},F1(q0, q5) = {1},
F1(q1, q1) = {1},F1(q1, q2) =,F1(q1, q5) = {1},
F1(q2, q2) = {1},F1(q2, q3) = {2},F1(q2, q5) = {1, 2},
F1(q3, q3) = {1, 2},F1(q3, q4) =,F1(q3, q5) = {1, 2}.

An expert designs such a mapping by asking questions about the task structure. For instance, for the transition q1, q5 in the
reward machine in Figure 3, the expert should ask: Is there a transition s, a, s′ in the labeled contextual MDP M̄L such that
it causes the agent to hit the wall, i.e., (q1, q5), for some context c but lets the agent pass through the door, i.e., (q1, q2),
for a different context c′? The idea is to find the context parameters i ∈ {1, . . . , dim(C)} for which a change of value, e.g.
c[i] ̸= c′[i], prevents a transition (q, q′) in the reward machine from happening. For (q1, q5), the mapping outputs the first
context parameter, F(q1, q5) = {1}, as the identifier, since it determines the position of the first door. In other words, when
the agent is in the second room and can move into the first door/wall with an up action, then the position of the first door
determines whether it moves into the door, or the wall. However, the position of the second door does not identify which
transition will happen.

Figure 2 demonstrates the progression of the rate of successful task completion in contexts drawn from the target context
distribution.
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Figure 2: Two-door Environment: Progression of the successful episodes ratio in contexts drawn from the target context
distribution over curriculum updates.

B.2.2 Custom Swimmer-v3 Environment

Case study 3 is based on a variation of the Swimmer-v3 environment from OpenAI gym Brockman et al. [2016]. The
original environment consists of a robot that moves like a worm by applying force on 2 joints. The objective is to move
towards the right of the initial position as fast as possible. The state and action spaces are 8 and 2-dimensional continuous
spaces, respectively. We set the maximum number of steps in an episode to 10000. We design the reward-machine-context
mapping F3 for case study 3 as:

F2(q0, q0) = {2},F2(q0, q1) = {2},F2(q1, q1) = {1},F2(q1, q2) = {1},F2(q2, q2) = {}.

Figure 3 demonstrates the progression of the expected discounted return with respect to the target context distribution.
Figure 5a illustrates how self-paced RL algorithms update context distribution parameters, i.e., mean and variance of normal
distributions, during the training.
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Figure 3: Customized-Swimmer Environment: Progression of the expected discounted return with respect to the target
context distribution.
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Figure 4: Customized HalfCheetah-v3 Environment: Progression of the successful episodes ratio in contexts drawn from the
target context distribution over curriculum updates.

B.2.3 Custom HalfCheetah-v3 Environment

Case study 3 is based on a variation of the HalfCheetah-v3 environment from OpenAI gym Brockman et al. [2016]. The
original environment consists of a 2-dimensional robot, shaped like a cheetah. The objective is to make the cheetah run
forward, which corresponds to the right of the scene, as fast as possible by applying torque on 6 joints. The state and action
spaces are 18 and 6-dimensional continuous spaces, respectively. We set the maximum number of steps in an episode to
2000. We design the reward-machine-context mapping F3 for case study 3 as:

F3(q0, q0) = {1},F3(q0, q1) = {1},F3(q1, q1) = {2},F3(q1, q2) = {2},
F3(q2, q2) = {1},F3(q2, q3) = {1},F3(q3, q3) = {3},F3(q3, q4) = {3}.

To support the discussion of results in customized HalfCheetah-v3, we provide two tables. Table 4 shows the expected
discounted return and expected success rate achieved by the final policies in every training run of RM-guided SPRL and
Intermediate SPRL. Table 5 provides the means of Gaussian context distributions generated at the final iteration in every
training run of RM-guided SPRL and Intermediate SPRL. In the last training run of Intermediate SPRL, the trained agent
fails to learn a policy that can complete the task and the curriculum does not converge to the target context distribution.
Figure 4 demonstrates the progression of the rate of successful task completion in contexts drawn from the target context
distribution. Figure 5b illustrates how self-paced RL algorithms update context distribution parameters, i.e., mean and
variance of normal distributions, during the training.



Table 4: Customized HalfCheetah-v3: Expected discounted returns and success rates achieved by policies from the final
iteration of every training run.

Algorithm Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 Seed 8 Seed 9 Seed 10

RM-guided SPRL 455.37 472.31 479.13 506.75 446.76 472.85 501.31 467.63 507.10 499.94
100% 100% 100% 100% 99% 100% 100% 100% 100% 100%

Intermediate SPRL 475.57 488.74 467.48 475.58 492.25 509.89 485.06 493.68 492.13 -0.47
100% 100% 100% 100% 100% 100% 100% 100% 100% 0%

Table 5: Customized HalfCheetah-v3: Means of Gaussian context distributions generated at the final iteration of every
training run. Note that the mean of the target context distribution is (4, 7, 10).

Algorithm Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 Seed 8 Seed 9 Seed 10

RM-guided SPRL
3.99 3.99 4.00 4.00 4.00 4.00 4.00 3.99 3.99 3.99
7.00 6.99 6.99 7.00 6.99 7.00 7.00 6.99 6.99 7.00
9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.997 10.00 9.99

Intermediate SPRL
3.98 3.99 3.96 3.95 3.99 3.98 3.98 3.98 3.98 0.11
6.98 6.98 6.97 6.96 6.99 6.97 6.99 6.97 6.98 1.44
9.98 9.99 9.94 9.96 9.99 9.98 9.99 9.97 9.99 3.74
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(a) Customized Swimmer-v3 environment.
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(b) Customized HalfCheetah-v3 environment.

Figure 5: Progression of the statistics (mean and variance) of context distributions generated in the curriculum.
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