
Risk-Aware Curriculum Generation for Heavy-Tailed Task Distributions
(Supplementary Material)

Cevahir Koprulu 1 Thiago D. Simão2 Nils Jansen2 Ufuk Topcu1

1University of Texas at Austin
2Radboud University, Nijmegen

A AUTOMATED CURRICULUM GENERATION ALGORITHMS

This section summarizes the automated curriculum generation methods considered in the empirical evaluation.

SPDL [6]: We use Self-paced Deep Reinforcement Learning to generate the primary curriculum. The main document
provides more details.

CURROT [7]: Curriculum RL via Constrained Optimal Transport formulates the curriculum generation problem as
constrained optimal transport by generating a context distribution that minimizes the Wasserstein distance to the target
context distribution and satisfies two constraints: the discounted return should be higher than some pre-determined
threshold in every context with non-zero probability and the Wasserstein distance to the previous context distribution
should be lower than some distance threshold.

PLR [4]: Prioritized Level Replay addresses procedural context generation environments, where a level is an allegorically
created unique environment instance. PLR samples the next training level by prioritizing the ones with a higher average
magnitude of generalized advantage estimate [10], that is the discounted sum of all temporal-difference errors occurring
in the future.

VDS [11]: Value Disagreement based Sampling addresses the goal-conditioned setting and uses the epistemic uncertainty
of the value function to sample goals. Intuitively, the value function confidently assigns low and high values to hard
and easy goals, respectively, but it is uncertain about the values of the goals that are at the boundary of the current
policy’s ability. To generate a curriculum, VDS samples these goals for which the value function has high epistemic
uncertainty.

GOALGAN [2]: Goal Generative Adversarial Network also addresses the goal-conditioned setting. The proposed approach
uses a goal discriminator to determine whether a goal is at the intermediate difficulty for the current policy, and a goal
generator that generates goals that are at such level of difficulty.

ALP-GMM [8]: Absolute Learning Progress with Gaussian Mixture Models generates a Gaussian mixture model over
the absolute learning progress of task parameters, e.g., contexts in our setting, and uses a bandit scheme to choose a
Gaussian as an arm whose utility is the absolute learning progress. The chosen Gaussian distribution is used to draw
the next task parameter.

B EXPERIMENTAL DETAILS

This section discusses the hyperparameter selection process for the evaluated curriculum generation algorithms and additional
details regarding the environments used in the experiments.

B.1 ALGORITHM HYPERPARAMETERS

RACGEN, RACGEN-N, SPDL, and SPDL-N generate curricula, primary, via the self-paced RL framework, which has
four parameters: performance constraint threshold δ, KL divergence threshold ϵ, number of curriculum iterations K, and

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<cevahir.koprulu@utexas.edu>?Subject=Your UAI 2023 paper


Table 1: Self-paced RL parameter values used in RACGEN, RACGEN-N, SPDL, and SPDL-N.

Environment δ ϵ
PointMass-2D 4.0 0.25
LunarLander-2D -100 0.025

Table 2: Selected values for parameters of CURROT, PLR, and VDS.

Environment δ ϵWass ρ β p LR nep nbatch

PointMass-2D 4.0 0.5 0.45 0.15 0.85 0.01 5 40
LunarLander-2D -50 0.5 0.45 0.15 0.85 0.01 3 40

number of rollouts per policy update M . For every environment, we chose δ to be around the midpoint between the minimum
and maximum possible discounted return. To select KL divergence threshold ϵ, we ran a grid search over {0.5, 0.25, 0.1}
for the point-mass environment and {0.1, 0.05, 0.01} for the lunar lander environment. We selected the values that yield the
best performing RACGEN curricula, and use the same values for RACGEN-N, SPDL, and SPDL-N. For the point-mass
environment, we set K = 300, based on the experiments of Klink et al. [6] in the same environment, and set M = 30 after a
search over {30, 40}, similar to the previous grid search. For the lunar lander environment, we set K = 250, and ran a grid
search for M over {30, 40} and chose 40 based on the best performing RACGEN curriculum.

RACGEN, RACGEN-N, and DEFAULT-CEM use a CEM module to generate auxiliary curricula. There are four parameters
that CEM utilizes: smoothing risk level β, final risk level α, initial risk level α0, risk level scheduling factor ρ. We illustrate
the pitfalls of heavy-tailed target context distributions based on a point-mass environment with 1D context space, where we
set α = 0.2. We use this value for both environments in the experiments. Based on the discussion in Greenberg et al. [3], we
set β = 0.5 to care for the mean of the lower 50% of the samples. We set α0 = 1 to start soft-risk scheduling by identifying
contexts that have returns lower than the expectation of the returns. We compute ρ to have a certain number of curriculum
updates until α is reached. We ran grid searches over {10, 15, 20} and {40, 80, 120} for point-mass and lunar-lander
environments, respectively. Based on the best performing RACGEN, we set ρ so that it decays to α from 1.0 in 20 and 80
curriculum updates in point-mass and lunar lander environments, respectively, for methods RACGEN, RACGEN-N, and
DEFAULT-CEM. The algorithms using a CEM module also need M pri and M aux to be set. As M = M pri +M aux, we set
M aux to 20 and 10 for point-mass and lunar-lander environments, respectively.

CURROT has two main parameters: performance constraint threshold δ and Wasserstein distance threshold ϵWass, similar
to the self-paced RL algorithm we employ for RACGEN. Following the logic described by the developers of CURROT
[7], we set δ to be half-way between the minimum and maximum discounted returns. In addition, ϵWass is usually set to a
high value such as 0.5, so we keep the same approach. PLR has three parameters: the staleness coefficient ρ, the score
temperature β, and the replay probability p. We ran a grid search over (ρ, β, p) ∈ {0.15, 0.45}×{0.15, 0.45}×{0.7, 0.85}.
VDS has three parameters to set: the learning rate LR for the Q-function ensemble, the number of epochs nep, and the
number of minibatches nbatch. We ran a grid search over (LR, nep, nbatch) ∈ {0.0001, 0.001} × {3, 5} × {20, 40}. Table 2
consists of the final parameter values used in point-mass and lunar lander environments for CURROT, PLR, and VDS.

GOALGAN has three parameters: the random noise added to each context sample δnoise, the number of rollouts between
context distribution updates nGG

rollout, and the percentage of samples drawn from the success buffer psuccess. We ran a grid
search over (δnoise, n

GG
rollout, psuccess) ∈ {0.05, 0.1} × {100, 200} × {0.1, 0.2}. ALP-GMM has three parameters: the ratio of

randomly sampled contexts prand, the number of completed learning episodes before updating the context distribution nAG
rollout,

and the size of the past trajectory buffer sbuffer. We ran a grid search over (prand, n
AG
rollout, sbuffer) ∈ {0.1, 0.2} × {50, 100} ×

{500, 1000}. Table 3 shows the final parameter used for GOALGAN, and ALP-GMM.

Table 3: Selected values for parameters of GOALGAN and ALP-GMM

Environment δnoise nGG
rollout psuccess prand nAG

rollout sbuffer

PointMass-2D 0.05 200 0.1 0.1 50 500
LunarLander-2D 0.1 200 0.2 0.1 100 500



7 3 0 3 7
Context c: Door position

Goal

Start

Optimal path

(a) Visualized point-mass environment.

0.00.3 2.5 4.2 7.1 8.0
Return (r)

1.0001.000

0.825
0.790

0.095

0.000

Fr
ac

tio
n 

of
 c

on
te

xt
s w

ith
 re

tu
rn

 >
r

RACGEN
RACGEN-N

CURROT
SPDL

SPDL-N
ALP-GMM

Default-CEM
Default

PLR
VDS

GoalGAN

(b) Performance profiles in point mass environment.

Figure 1: Point-mass environment: (a) Visualization of Point-mass environment with 2D context space: Context c determines
the position and the width of the door. (b) Performance profiles of evaluated algorithms in the point mass environment:
the fraction of episodes where the final policies achieve discounted returns greater than r. It presents the median over 10
independent training runs.

B.2 ENVIRONMENT DESCRIPTIONS

Point-mass environment. Fig. 1b further demonstrates that RACGEN achieves higher returns in high and medium-risk
contexts than the remaining methods. The figure shows the fraction of contexts (y-axis) where an algorithm learns a policy
that achieves a return higher than the return r (x-axis). The plot shows the median over 5 runs. First, we notice that RACGEN
almost always achieves returns higher than −46, with DEFAULT following closely and the rest achieving lower returns in
high-risk contexts. At r = −30, DEFAULT starts to perform worse than RACGEN, which supports our previous argument
that RACGEN achieves the highest minimum returns, indeed. The curve of RACGEN stays on the top until r = 62, which
demonstrates that RACGEN performs the best in most of the contexts. However, as we discussed in Figure 6 of the main
document, RACGEN does not yield the highest returns in low-risk contexts since its curve goes under the others in terms of
the portion of contexts with high returns, more specifically for returns r ∈ [62, 74] ∪ [82, 100].

We use the environment studied by Klink et al. [5, 6, 7], which has a two-dimensional context space. A context in the
point-mass environment determines the position and the width of the door, that the agent needs to pass to eventually reach
the goal position. As the algorithm of choice, we employ the stable-baselines3 [9] implementation of PPO with an MLP
policy of 3 hidden layers, 128 neurons at each layer. We set the batch size to 128, Generalized Advantage Estimator factor to
0.99, and the number of steps in between updates to 6144. The discount factor of the point-mass environment is 0.95. We
leave the values of the rest of the parameters as set in the stable-baselines3 implementation of PPO. An illustration of the
point-mass environment is in Fig. 1a.

Lunar-lander environment. The lunar-lander environment we use is the third version in OpenAI Gym [1], which has a
two-dimensional context space. A context in the lunar-lander environment determines the gravity and the wind power of
the planet that a pod needs to land on. We again utilize the stable-baselines3 [9] implementation of PPO with the default
MLP policy. We set the number of epochs for surrogate loss optimization to 4, Generalized Advantage Estimator factor to
0.99, and the number of steps in between updates to 10240. The discount factor of the lunar-lander environment is 0.99. We
leave the values of the rest of the parameters as set in the stable-baselines3 implementation of PPO. An illustration of the
lunar-lander environment is in Fig. 2a.

B.3 DETAILED ANALYSIS OF RESULTS

Fig. 2b shows the progression of the expected discounted return in contexts drawn from the target context distribution.

Point-mass environment. Fig. 1b demonstrates that RACGEN achieves higher returns in 79.2% of the contexts, whereas
the remaining methods perform poorly in contrast. The figure shows the fraction of contexts (y-axis) where an algorithm
learns a policy that achieves a return higher than the return r (x-axis). The curves correspond to the median over 10 runs.
DEFAULT and DEFAULT-CEM mostly achieve returns around r = 2.5, as the final policies learn to push the point mass to
the middle section of the wall. Such behavior is suboptimal when the task is to pass doors away from the middle section. In



(a) Visualized lunar-lander.

0.0 0.5 1.0 1.5 2.0
Number of environment interactions ×106

100

50

0

50

Ex
pe

ct
ed

 d
is

co
un

te
d 

re
tu

rn

RACGEN
SPDL
Default

Default-CEM
GoalGAN
CURROT

PLR
VDS
ALP-GMM

(b) Expected discounted return progression in lunar lander.

Figure 2: Lunar-lander environment: (a) Visualization of the environment, where Context c determines the wind and the
gravity. (b) Expected discounted return with respect to the target context distribution in the lunar-lander environment. The
bold lines are the median and the lightly shaded regions cover the first and third quartiles of 5 independent training runs.

Table 4: Statistics of distributions of discounted returns collected by policies trained under listed algorithms in the lunar-
lander environment. We use the discounted returns collected in 100 contexts (drawn from the target context distribution) by
policies from 5 independent runs (in total 500 discounted returns per algorithm)

Algorithms Maximum (Upper Whisker) 3rd Quartile Median 1st Quartile Minimum (Lower Whisker)
RACGEN 88.57 48.89 31.74 15.77 -30.25
DEFAULT-CEM 101.45 48.22 30.77 11.22 -44.11
DEFAULT 92.08 43.86 27.45 11.37 -34.29
SPDL 90.13 44.22 25.02 -1.45 -67.89
CURROT 79.79 36.67 22.29 7.94 -33.52
PLR 74.91 30.76 15.29 -0.81 -47.93
GOALGAN 93.51 35.20 15.19 -7.67 -68.93
VDS 90.00 27.87 8.06 -17.44 -85.32
ALP-GMM 90.07 24.68 5.51 -20.32 -80.70

comparison, RACGEN and RACGEN-N yield lower returns in 20% of the contexts, as the learned policies sometimes
approach the door but fail to pass it. The curve of RACGEN stays on top of all evaluated methods for r ∈ [4.2, 7.2],
as RACGEN generates Cauchy context distributions instead of Gaussian when the target context distribution is Cauchy.
Although GOALGAN achieves higher returns than RACGEN in less than 10% of the contexts, the figure for the distribution
of returns in the main document indicates that such cases are outliers.

Lunar-lander environment. Table 4 consists of the numerical values from the boxplots in Figure 6. As we indicate in
Section 6.2, RACGEN outperforms all algorithms regarding median, the first and third quartiles, and minimum values.
However, DEFAULT-CEM is the best performer considering the maximum return achieved. As RACGEN attends risky
contexts much more than easy ones, it may have overlooked high-return contexts more than the baselines.

In Table 4, we also observe that RACGEN has a tighter range and less spread-out low outliers than DEFAULT-CEM. Even
though both approaches identify and oversample rare and risky contexts using their CEM modules, RACGEN performs
better in such contexts. Furthermore, DEFAULT (without a curriculum and a CEM module) yields higher first quartile and
minimum values than DEFAULT-CEM. Thus, we argue that RACGEN is more robust than the baselines.

Table 5 provides the median returns in contexts, namely, the median in a context across independent training runs. As we
focus on the median returns, we disregard training runs that yield unusually high or low returns in a context. In this case,
RACGEN outperforms all algorithms in every statistic. Therefore, Table 5 also supports our argument that RACGEN is
more advantageous than all state-of-the-art algorithms and baselines in the lunar lander experiment.



Table 5: Statistics of distributions of discounted returns collected by policies trained under listed algorithms in the lunar-
lander environment, where we focus on the median return across 5 independent runs in 100 contexts drawn from the target
context distribution.

Algorithms Maximum (Upper Whisker) 3rd Quartile Median 1st Quartile Minimum (Lower Whisker)
RACGEN 69.53 42.79 32.42 23.39 0.40
DEFAULT-CEM 66.03 39.86 29.89 18.78 -5.74
DEFAULT 56.14 35.03 27.72 20.49 -0.48
SPDL 64.18 38.16 27.45 15.16 -17.56
CURROT 52.07 30.37 22.01 15.13 -7.23
PLR 41.47 24.13 16.29 8.15 -11.97
GOALGAN 48.23 24.21 14.01 5.88 -12.67
VDS 44.06 20.97 8.14 -4.88 -41.83
ALP-GMM 42.04 17.19 6.23 -5.17 -36.37

References

[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.
Openai gym, 2016.

[2] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic Goal Generation for Reinforcement
Learning Agents. In ICML, pages 1514–1523. PMLR, 2018.

[3] Ido Greenberg, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor. Efficient Risk-Averse Reinforcement
Learning. In NeurIPS, 2022.

[4] Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In ICML, pages 4940–4950. PMLR,
2021.

[5] Pascal Klink, Carlo D' Eramo, Jan R Peters, and Joni Pajarinen. Self-paced deep reinforcement learning. In NeurIPS,
pages 9216–9227. Curran Associates, Inc., 2020.

[6] Pascal Klink, Hany Abdulsamad, Boris Belousov, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. A probabilistic
interpretation of self-paced learning with applications to reinforcement learning. JMLR, 22:182:1–182:52, 2021.

[7] Pascal Klink, Haoyi Yang, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. Curriculum reinforcement learning via
constrained optimal transport. In ICML, pages 11341–11358. PMLR, 2022.

[8] Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms for curriculum learning
of deep rl in continuously parameterized environments. In CoRL, pages 835–853. PMLR, 2020.

[9] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann. Stable-
baselines3: Reliable reinforcement learning implementations. JMLR, 22(268):1–8, 2021.

[10] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional continuous
control using generalized advantage estimation. In ICLR, 2016.

[11] Yunzhi Zhang, Pieter Abbeel, and Lerrel Pinto. Automatic curriculum learning through value disagreement. In
NeurIPS, pages 7648–7659. Curran Associates, Inc., 2020.


	Automated Curriculum Generation Algorithms
	Experimental Details
	Algorithm Hyperparameters
	Environment Descriptions
	Detailed Analysis of Results


