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A PROOF OF PROPOSITION 2

We use the proof technique proposed by Xie and Frazier
[2012] to prove Proposition 2. By Proposition 1, the follow-
ing value function is obtained:
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The first equality holds because G0 is determinant and inde-
pendent of the policy π, the second equality holds because of
the tower property of conditional expectation and the third
equality is true because Gt+1 depends on Ft only through
St and vt. We define the stage-wise expected reward gained
by obtaining the label for the vt-th instance at the state St as:
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Therefore, the value function takes the following form:

V (S0) = G0(S
0) + sup

π
Eπ

(
T−1∑
t=0

R(St, vt|S0)

)
. (4)

B PROOF OF THEOREM 1

To prove the theorem, we first elaborate on the process
of belief propagation. Let us take a simple factor graph
FG = (V ∪ F,E′) which is a path graph. Let the path be
v1 − f1 − v2 − f2 − v3. f1, f2 represent the pairwise vertex
dependency between vertices v1, v2 and v2, v3, respectively.
The message from vertex v3 to f2 is initialized with the pos-
terior probability of v3 (ωv3). At current timestamp, let the
chosen vertex be v1. Therefore, the messages are propagated
from v3 to v1 as part of forward propagation. For simplicity,
let us consider the label to be +1. The message from vertex
v3 to factor f2 is

µ
v3→f2

(+1) = ωv3(+1),

Following Eq. (2), the message from factor f2 to vertex v2

is

µ
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)
= ϕf2(+1) ∗ ωv3(+1).

Similarly, µv2→f1 = ϕf2(+1) ∗ ωv3(+1) and µf1→v1 =
ϕf1(+1) ∗ ϕf2(+1) ∗ ωv3(+1). From the forward propa-
gation we can observe that the messages propagated are
dependent on factor initialization and posterior probability
of the start vertex. Similar observation can be made for back-
ward propagation too since both process follow same steps.
Therefore, we can conclude that the messages are only up-
dated due to factor initialization and posterior probabilities.
Since factor initialization is fixed and does not change with
timestamp, the messages are updated only due to the change
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in posterior probabilities. From Eq. (3), the marginal proba-
bility of each vertex is dependent on its posterior probability
and messages from neighbors. Since messages are updated
only due to the change in the posterior probabilities, we
can conclude that the marginal probability of each vertex is
updated only due to its posterior probability and posterior
probabilities of leaf vertices in the graph.

Considering any factor graph FG, when a vertex vt is cho-
sen, the messages are propagated from leaf vertices to the
vertex vt and from vertex vt back to the leaf vertices. Each
leaf vertex and vt pair is essentially a path graph. Therefore,
our conclusion that the marginal probability of each vertex
is updated only due to its posterior probability and posterior
probabilities of leaf vertices in the graph is valid for any
factor graph FG.

B.1 CONSISTENCY OF GRAPHOBA-OPT

To prove the consistency of GraphOBA-OPT, we utilize the
observations from Chen et al. [2013]. As per GraphOBA-
OPT, in each iteration we choose a vertex vt such that

vt = argmax
v

(
R+(St, vt) =̇ max(R1(S

t, vt), R2(S
t, vt))

)
.

(5)
Let us consider the computation of expected reward
R+(St, vt). Since the update to posterior probability of
each vertex v ∈ V only occurs due to the obtained label.
At a given timestamp, when computing R1(S

t, vt) or
R2(S

t, vt), only the posterior probability of vertex vt
changes. Therefore, the value of the reward only depends on
the effect of this change on the graph. As per Eq. (10), the
reward is the change in the sum of marginal probabilities in
the graph
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To compute the change in the sum of marginal probabili-
ties in the graph, we first compute the change in marginal
probability of vertex v at timestamp t following Chen et al.
[2013]. We have
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Since the messages from neighbors do not change between

two timestamps if v is chosen at timestamp t for obtaining
the label. Therefore, h(P t+1
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but the steps are valid even if v′ /∈ N (v)), then

h(P t+1
v′ (xv′))− h(P t

v′(xv′)) = (h(ωt
v′(xv′)

∏
j∈N (v′)

µt+1

j→v′
(xv′))

−h(ωt
v′(xv′)

∏
j∈N (v′)

µt

j→v′
(xv′))).

since ωt
v′(xv) does not change between timestamps t and

t+ 1. Now considering the messages from neighbors, the
messages from all the neighbors except from the factor f ′

that connects v to v′ do not change between timestamps t
and t+ 1. Therefore,
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Since ∀v′ ∈ {V − v}, the change in marginal probability
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The calculation of h(ωt+1
v (xv)) − h(ωt

v(xv)) is the
same posterior calculation as in Chen et al. [2013].
Following the same proof of Chen et al. [2013], we
have lim

at
v+btv→∞

h(ωt+1
v (xv)) − h(ωt

v(xv)) = 0. There-

fore, for any v ∈ V , lim
at
v+btv→∞

h(P t+1
v (+1)) −

h(P t
v(+1)) = 0. Therefore, lim

at
v+btv→∞

R(St, vt) = 0, and

thus lim
at
v+btv→∞

R+(St, vt) = 0. Applying other observations

from Chen et al. [2013], we have that in any sample path
(v0, yv0 , ..., vt−1, yvt−1

), GraphOBA-OPT will label each
instance infinitely many times as T goes to infinity. Due to
our consideration that workers are reliable, if we label each
vertex infinitely many times, we will converge to θv for each
v ∈ V . Therefore, the accuracy will be 100% almost surely
implying that GraphOBA-OPT is a consistent policy.
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Figure 1: Performance comparison on datasets that follow homophily setting. The plots show the performance on the entire
datasets.
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Figure 2: Performance comparison on WebKB and Bitcoin
datasets. The plots show the performance on the entire
datasets.

B.2 CONSISTENCY OF GRAPHOBA-EXP

As per GraphOBA-EXP, in each iteration we choose a vertex
vt such that

R(St, vt) = p1 ∗R1(S
t, vt) + p2 ∗R2(S

t, vt). (7)

As part of the proof in Section B.1, we show that
R1(S

t, vt) > 0 and R2(S
t, vt) < 0 when atv ≥ btv + 1,

R1(S
t, vt) < 0 and R2(S

t, vt) > 0 when btv ≥ atv + 1
and R1(S

t, vt), R2(S
t, vt) > 0 when atv = btv. Therefore,

when atv = btv , R(St, vt) > 0, but when atv ̸= btv , R(St, vt)
can be 0.

However, even though the change in posterior probability of
vt can be the same when computing R1 and R2 especially
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Figure 3: Ablation study results of experiments with differ-
ent beta and factor initialization on the Cora dataset. We
report the performance of GraphOBA-EXP.

at the start of execution since all the vertices are initialized
with Beta prior distribution Beta(0.1, 0.1), the effect of
this change on the graph depends on pairwise vertex de-
pendency initialization in factor vertices. If the probability
of vertices v1 and v2 having the same label is not equal to
0.5 then R1(S

t, vt) ̸= R2(S
t, vt) and if it is equal to 0.5

then R1(S
t, vt) = R2(S

t, vt). Therefore, R(St, vt) ̸= 0
when atv ̸= btv if the probability of vertices v1 and v2 having
the same label is not equal to 0.5. Since we assume that
the pairwise vertex dependency among vertices is known,
therefore R(St, vt) ̸= 0. Furthermore, there will be at least
one vertex in the graph such that R(St, vt) > 0 since all
vertices of the graph do not have the same label and pairwise
vertex dependency among all pairs of adjacent vertices is



not same.

Since R(St, vt) > 0 for any positive integers atv and btv,
we can follow the proof technique used in Section B.1 and
show that GraphOBA-EXP is a consistent policy.

C ADDITIONAL EXPERIMENTS

We conduct experiments without splitting the dataset into
train and test sets. Figure 1 compares our proposed ap-
proaches with the baselines on datasets that follow a ho-
mophily setting. We provide pseudo code for optimal pol-
icy π∗ computation for GraphOBA-OPT and GraphOBA-
EXP in Algorithm 1. From the results, we can observe
that GraphOBA-EXP outperforms the baselines on all three
datasets, and GraphOBA-OPT comes second. The results
are similar to the results in 1 in the main paper, suggesting
that the proposed reward function is efficient and the poli-
cies that follow the proposed reward function choose the
right vertex to label at each timestamp t. Figure 2 compares
GraphOBA-EXP and GraphOBA-OPT with the baselines
on WebKB and Bitcoin datasets. The results show that the
proposed approaches outperform the baselines for the We-
bKB dataset and achieve similar performance on the Bitcoin
dataset. The results are similar to the results in Figure 2
in the main paper and suggest the importance of knowing
dependency among adjacent vertices.

Algorithm 1 Pseudo code for the optimal policy π∗ compu-
tation for GraphOBA-OPT/GraphOBA-EXP

Input: Unlabeled graph G = (V,E), budget T
Output: Inferred true labels for each vertex v ∈ V

for t in 0...T − 1 do
Estimate reward for all vertices of graph G following Eq.

(14)/Eq. (15).
Choose the vertex v with the highest estimated reward to

request worker label yvt .
Propagate the labeling information throughout the graph G

using belief propagation following Eq. (1) and Eq. (2).
Compute marginal probability of each vertex v ∈ V following
Eq. (3) to infer true label.
return Inferred true label of each vertex v ∈ V .

We observe volatility in performance of OPTKG+BP in
Figure 1 (c) for Pubmed dataset, a large dataset with 19717
vertices. Since the budget considered in our experiments is
lower than two times the number of vertices in the graph,
OPTKG follows a round-robin policy. We conduct addition
experiment to understand the reason for the volatility, the
results are shown in Table 1. The goal of the experiment is to
understand the distribution of vertices chosen by the policies
to obtain worker labels. The vertices for which the worker
labels are obtained are kept in the set of labeled vertices, and
the remaining vertices form the set of unlabeled vertices. For
each unlabeled vertex, we find the distance of the nearest
labeled vertex and report the mean distance of all vertices.

Table 1: Experiment to understand the reason for volatility
in the performance of OPTKG+BP in Figure 1 (c). We
report the mean distance of unlabeled vertices to the nearest
labeled vertex.

Budget
(T)

OPTKG
+BP

Uniform
+BP

GraphOBA-
OPT

GraphOBA-
EXP

50 4.437 3.713 3.132 3.131
100 3.889 3.400 2.865 2.865
150 3.805 3.103 2.655 2.638
200 3.694 2.988 2.520 2.505
250 3.556 2.863 2.420 2.398
300 3.360 2.771 2.359 2.325
350 3.173 2.702 2.293 2.248
400 3.065 2.631 2.205 2.158
450 2.999 2.552 2.153 2.099
500 2.924 2.511 2.101 2.032

The results in Table 1 show that OPTKG+BP has the largest
mean distance compared to other methods. A higher mean
distance implies that the labeled vertices are concentrated
in a small part of the graph, whereas a lower mean dis-
tance implies the labeled vertices are distributed throughout
the graph. If labeled vertices are concentrated, when a new
worker label is obtained, the newly inferred labels for un-
labeled vertices are sensitive to the newly obtained worker
label since the new label information is propagated in one
direction from the region with more concentrated labeled
nodes to the more sparsely labeled regions. Due to this, the
labels of all the unlabeled vertices change to the new label,
resulting in volatility. If labeled vertices are distributed, the
sensitivity for new worker labels is less since the new label
information propagates in multiple directions, so that unla-
beled nodes can receive information from multiple labeled
nodes, resulting in more stability. Furthermore, the volatility
decreases as the budget increases since the labeled vertices
are no more concentrated in one part of the graph. Figure
1 (c) shows the decrease in volatility with the budget. For
the experiments in Figure 1, we do not shuffle the indexes
of the vertices, and since OPTKG follows a round-robin
policy, it results in the labeled vertices being concentrated
in a small part of the graph. The volatility of OPTKG+BP
can be reduced by shuffling the indexes of the vertices.

From the discussion in Section 5.5, we observe that the per-
formance of the proposed approach may be sensitive to the
initialization of pairwise vertex dependency among adjacent
vertices. Therefore, we conduct experiments with different
initialization for pairwise vertex dependency and show the
results in Figure 3. In the figure, Pr(same label) represents
the probability of connect vertices having the same label.
From the results, we observe that initializing the pairwise
vertex dependency among connect vertices with the proba-
bility of both vertices having the same label between 0.65
and 0.7 results in the best performance. The results suggest



that initializing with moderate pairwise vertex dependency
among connect vertices is preferred and initializing with
very high values can result in a bias towards the label of
adjacent vertex, and with very low values can result in over-
sensitivity towards the labels provided by the workers.

Furthermore, we conduct experiments with different initial-
ization of α and β and show the results in Figure 3. From
the results, we observe that the performance of the proposed
approach is not sensitive to the initialization of α and β.

D DATASET PREPROCESSING

None of the five benchmark datasets considered for our
experiments are binary-class datasets. Therefore, we first
obtain the class distribution in the datasets to convert the
datasets from multi-class to binary-class. Then, we combine
classes to obtain a nearly equal distribution of vertices. We
relabel each vertex with the new binary classes and use the
updated datasets for our experiments. Note that we do not
assign different labels to the vertices belonging to the same
class. Therefore, for some of the datasets, the distribution is
not equal.
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