Fixed-Budget Best-Arm Identification with Heterogeneous Reward Variances (Supplementary Material)

Anusha Lalitha Kousha Kalantari Yifei Ma Anoop Deoras Branislav Kveton

AWS AI Labs
\{anlalith,kkalant,yifeim, adeoras,bkveton\}@amazon.com

A PROOF OF THEOREM 3

First, we decompose the probability of choosing a suboptimal arm. For any $s \in[m]$, let $E_{s}=\left\{1 \in \mathcal{A}_{s+1}\right\}$ be the event that the best arm is not eliminated in stage s and \bar{E}_{s} be its complement. Then by the law of total probability,

$$
\mathbb{P}(\hat{I} \neq 1)=\mathbb{P}\left(\bar{E}_{m}\right)=\sum_{s=1}^{m} \mathbb{P}\left(\bar{E}_{s}, E_{s-1} \ldots, E_{1}\right) \leq \sum_{s=1}^{m} \mathbb{P}\left(\bar{E}_{s} \mid E_{s-1} \ldots, E_{1}\right)
$$

We bound $\mathbb{P}\left(\bar{E}_{s} \mid E_{s-1} \ldots, E_{1}\right)$ based on the observation that the best arm can be eliminated only if the estimated mean rewards of at least a half of the arms in \mathcal{A}_{s} are at least as high as that of the best arm. Specifically, let $\mathcal{A}_{s}^{\prime}=\mathcal{A}_{s} \backslash\{1\}$ be the set of all arms in stage s but the best arm and

$$
N_{s}^{\prime}=\sum_{i \in \mathcal{A}_{s}^{\prime}} \mathbb{1}\left\{\hat{\mu}_{s, i} \geq \hat{\mu}_{s, 1}\right\}
$$

Then by the Markov's inequality,

$$
\mathbb{P}\left(\bar{E}_{s} \mid E_{s-1} \ldots, E_{1}\right) \leq \mathbb{P}\left(\left.N_{s}^{\prime} \geq \frac{n_{s}}{2} \right\rvert\, E_{s-1} \ldots, E_{1}\right) \leq \frac{2 \mathbb{E}\left[N_{s}^{\prime} \mid E_{s-1} \ldots, E_{1}\right]}{n_{s}}
$$

The key step in bounding the above expectation is understanding the probability that any arm has a higher estimated mean reward than the best one. We bound this probability next.

Lemma 1. For any stage $s \in[m]$ with the best arm, $1 \in \mathcal{A}_{s}$, and any suboptimal arm $i \in \mathcal{A}_{s}$, we have

$$
\mathbb{P}\left(\hat{\mu}_{s, i} \geq \hat{\mu}_{s, 1}\right) \leq \exp \left[-\frac{n_{s} \Delta_{i}^{2}}{4 \sum_{j \in \mathcal{A}_{s}} \sigma_{j}^{2}}\right]
$$

Proof. The proof is based on concentration inequalities for sub-Gaussian random variables [Boucheron et al., 2013]. In particular, since $\hat{\mu}_{s, i}-\mu_{i}$ and $\hat{\mu}_{s, 1}-\mu_{1}$ are sub-Gaussian with variance proxies $\sigma_{i}^{2} / N_{s, i}$ and $\sigma_{1}^{2} / N_{s, 1}$, respectively; their difference is sub-Gaussian with a variance proxy $\sigma_{i}^{2} / N_{s, i}+\sigma_{1}^{2} / N_{s, 1}$. It follows that

$$
\begin{aligned}
\mathbb{P}\left(\hat{\mu}_{s, i} \geq \hat{\mu}_{s, 1}\right) & =\mathbb{P}\left(\hat{\mu}_{s, i}-\hat{\mu}_{s, 1} \geq 0\right)=\mathbb{P}\left(\left(\hat{\mu}_{s, i}-\mu_{i}\right)-\left(\hat{\mu}_{s, 1}-\mu_{1}\right)>\Delta_{i}\right) \\
& \leq \exp \left[-\frac{\Delta_{i}^{2}}{2\left(\frac{\sigma_{i}^{2}}{N_{s, i}}+\frac{\sigma_{1}^{2}}{N_{s, 1}}\right)}\right]=\exp \left[-\frac{n_{s} \Delta_{i}^{2}}{4 \sum_{j \in \mathcal{A}_{s}} \sigma_{j}^{2}}\right],
\end{aligned}
$$

where the last step follows from the definitions of $N_{s, i}$ and $N_{s, 1}$ in Lemma 1.

The last major step is bounding $\mathbb{E}\left[N_{s}^{\prime} \mid E_{s-1} \ldots, E_{1}\right]$ with the help of Lemma 1 . Starting with the union bound, we get

$$
\begin{aligned}
\mathbb{E}\left[N_{s}^{\prime} \mid E_{s-1} \ldots, E_{1}\right] & \leq \sum_{i \in \mathcal{A}_{s}^{\prime}} \mathbb{P}\left(\hat{\mu}_{s, i} \geq \hat{\mu}_{s, 1}\right) \leq \sum_{i \in \mathcal{A}_{s}^{\prime}} \exp \left[-\frac{n_{s} \Delta_{i}^{2}}{4 \sum_{j \in \mathcal{A}_{s}} \sigma_{j}^{2}}\right] \\
& \leq n_{s} \max _{i \in \mathcal{A}_{s}^{\prime}} \exp \left[-\frac{n_{s} \Delta_{i}^{2}}{4 \sum_{j \in \mathcal{A}_{s}} \sigma_{j}^{2}}\right]=n_{s} \exp \left[-\frac{n_{s} \min _{i \in \mathcal{A}_{s}^{\prime}} \Delta_{i}^{2}}{4 \sum_{j \in \mathcal{A}_{s}} \sigma_{j}^{2}}\right]
\end{aligned}
$$

Now we chain all inequalities and get

$$
\mathbb{P}(\hat{I} \neq 1) \leq 2 \sum_{s=1}^{m} \exp \left[-\frac{n_{s} \min _{i \in \mathcal{A}_{s}^{\prime}} \Delta_{i}^{2}}{4 \sum_{j \in \mathcal{A}_{s}} \sigma_{j}^{2}}\right]
$$

To get the final claim, we use that

$$
m=\log _{2} K, \quad n_{s}=\frac{n}{\log _{2} K}, \quad \min _{i \in \mathcal{A}_{s}^{\prime}} \Delta_{i}^{2} \geq \Delta_{\min }^{2}, \quad \sum_{j \in \mathcal{A}_{s}} \sigma_{j}^{2} \leq \sum_{j \in \mathcal{A}} \sigma_{j}^{2}
$$

This concludes the proof.

B PROOF OF THEOREM 4

This proof has the same steps as that in Appendix A. The only difference is that $N_{s, i}$ and $N_{s, 1}$ in Lemma 1 are replaced with their lower bounds, based on the following lemma.

Lemma 2. Fix stage s and arm $i \in \mathcal{A}_{s}$ in SHVar. Then

$$
N_{s, i} \geq \frac{\sigma_{i}^{2}}{\sigma_{\max }^{2}}\left(\frac{n_{s}}{\left|\mathcal{A}_{s}\right|}-1\right)
$$

where $\sigma_{\max }=\max _{i \in \mathcal{A}} \sigma_{i}$ is the maximum reward noise and n_{s} is the budget in stage s.
Proof. Let J be the most pulled arm in stage s and $\ell \in\left[n_{s}\right]$ be the round where arm J is pulled the last time. By the design of SHVar, since arm J is pulled in round ℓ,

$$
\frac{\sigma_{J}^{2}}{N_{s, \ell, J}} \geq \frac{\sigma_{i}^{2}}{N_{s, \ell, i}}
$$

holds for any arm $i \in \mathcal{A}_{s}$. This can be further rearranged as

$$
N_{s, \ell, i} \geq \frac{\sigma_{i}^{2}}{\sigma_{J}^{2}} N_{s, \ell, J}
$$

Since arm J is the most pulled arm in stage s and ℓ is the round of its last pull,

$$
N_{s, \ell, J}=N_{s, J}-1 \geq \frac{n_{s}}{\left|\mathcal{A}_{s}\right|}-1
$$

Moreover, $N_{s, i} \geq N_{s, \ell, i}$. Now we combine all inequalities and get

$$
\begin{equation*}
N_{s, i} \geq \frac{\sigma_{i}^{2}}{\sigma_{J}^{2}}\left(\frac{n_{s}}{\left|\mathcal{A}_{s}\right|}-1\right) \tag{1}
\end{equation*}
$$

To eliminate dependence on random J, we use $\sigma_{J} \leq \sigma_{\max }$. This concludes the proof.

When plugged into Lemma 1, we get

$$
\mathbb{P}\left(\hat{\mu}_{s, i} \geq \hat{\mu}_{s, 1}\right) \leq \exp \left[-\frac{\Delta_{i}^{2}}{2\left(\frac{\sigma_{i}^{2}}{N_{s, i}}+\frac{\sigma_{1}^{2}}{N_{s, 1}}\right)}\right] \leq \exp \left[-\frac{\left(\frac{n_{s}}{\left|\mathcal{A}_{s}\right|}-1\right) \Delta_{i}^{2}}{4 \sigma_{\max }^{2}}\right]
$$

This completes the proof.

C PROOF OF THEOREM 5

This proof has the same steps as that in Appendix A. The main difference is that $N_{s, i}$ and $N_{s, 1}$ in Lemma 1 are replaced with their lower bounds, based on the following lemma.

Lemma 3. Fix stage s and arm $i \in \mathcal{A}_{s}$ in SHAdaVar. Then

$$
N_{s, i} \geq \frac{\sigma_{i}^{2}}{\sigma_{\max }^{2}} \alpha\left(\left|\mathcal{A}_{s}\right|, n_{s}, \delta\right)\left(\frac{n_{s}}{\left|\mathcal{A}_{s}\right|}-1\right)
$$

where $\sigma_{\max }=\max _{i \in \mathcal{A}} \sigma_{i}$ is the maximum reward noise, n_{s} is the budget in stage s, and

$$
\alpha(k, n, \delta)=\frac{1-2 \sqrt{\frac{\log (1 / \delta)}{n / k-2}}}{1+2 \sqrt{\frac{\log (1 / \delta)}{n / k-2}}+\frac{2 \log (1 / \delta)}{n / k-2}}
$$

is an arm-independent constant.
Proof. Let J be the most pulled arm in stage s and $\ell \in\left[n_{s}\right]$ be the round where arm J is pulled the last time. By the design of SHAdaVar, since arm J is pulled in round ℓ,

$$
\frac{U_{s, \ell, J}}{N_{s, \ell, J}} \geq \frac{U_{s, \ell, i}}{N_{s, \ell, i}}
$$

holds for any arm $i \in \mathcal{A}_{s}$. Analogously to (1), this inequality can be rearranged and loosened as

$$
\begin{equation*}
N_{s, i} \geq \frac{U_{s, \ell, i}}{U_{s, \ell, J}}\left(\frac{n_{s}}{\left|\mathcal{A}_{s}\right|}-1\right) \tag{2}
\end{equation*}
$$

We bound $U_{s, \ell, i}$ from below using the fact that $U_{s, \ell, i} \geq \sigma_{i}^{2}$ holds with probability at least $1-\delta$, based on the first claim in Lemma 2. To bound $U_{s, \ell, J}$, we apply the second claim in Lemma 2 to bound $\hat{\sigma}_{s, \ell, J}^{2}$ in $U_{s, \ell, J}$, and get that

$$
U_{s, \ell, J} \leq \sigma_{J}^{2} \frac{1+2 \sqrt{\frac{\log (1 / \delta)}{N_{s, \ell, J}-1}}+\frac{2 \log (1 / \delta)}{N_{s, \ell, J}-1}}{1-2 \sqrt{\frac{\log (1 / \delta)}{N_{s, \ell, J}-1}}}
$$

holds with probability at least $1-\delta$. Finally, we plug both bounds into (2) and get

$$
N_{s, i} \geq \frac{\sigma_{i}^{2}}{\sigma_{J}^{2}} \frac{1-2 \sqrt{\frac{\log (1 / \delta)}{N_{s}, \ell, J-1}}}{1+2 \sqrt{\frac{\log (1 / \delta)}{N_{s, \ell, J}-1}}+\frac{2 \log (1 / \delta)}{N_{s, \ell, J}-1}}\left(\frac{n_{s}}{\left|\mathcal{A}_{s}\right|}-1\right)
$$

To eliminate dependence on random J, we use that $\sigma_{J} \leq \sigma_{\max }$ and $N_{s, \ell, J} \geq n_{s} /\left|\mathcal{A}_{s}\right|-1$. This yields our claim and concludes the proof of Lemma 3.

Similarly to Lemma 2, this bound is asymptotically tight when all reward variances are identical. Also $\alpha\left(\left|\mathcal{A}_{s}\right|, n_{s}, \delta\right) \rightarrow 1$ as $n_{s} \rightarrow \infty$. Therefore, the bound has the same shape as that in Lemma 2.
The application of Lemma 3 requires more care. Specifically, it relies on high-probability confidence intervals derived in Lemma 2, which need $N_{s, t, i}>4 \log (1 / \delta)+1$. This is guaranteed whenever $n \geq K \log _{2} K(4 \log (1 / \delta)+1)$. Moreover, since the confidence intervals need to hold in any stage s and round t, and for any arm i, we need a union bound over $K n$ events. This leads to the following claim.
Suppose that $n \geq K \log _{2} K(4 \log (1 / \delta)+1)$. Then, when Lemma 3 is plugged into Lemma 1 , we get that

$$
\mathbb{P}\left(\hat{\mu}_{s, i} \geq \hat{\mu}_{s, 1}\right) \leq \exp \left[-\frac{\Delta_{i}^{2}}{2\left(\frac{\sigma_{i}^{2}}{N_{s, i}}+\frac{\sigma_{1}^{2}}{N_{s, 1}}\right)}\right] \leq \exp \left[-\frac{\alpha\left(\left|\mathcal{A}_{s}\right|, n_{s}, K n \delta\right)\left(\frac{n_{s}}{\left|\mathcal{A}_{s}\right|}-1\right) \Delta_{i}^{2}}{4 \sigma_{\max }^{2}}\right]
$$

This completes the proof.

References

Stephane Boucheron, Gabor Lugosi, and Pascal Massart. Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, 2013.

