
Variable Importance Matching for Causal Inference
(Supplementary material)

Quinn Lanners1 Harsh Parikh2 Alexander Volfovsky3 Cynthia Rudin2 David Page1

1Dept. of Biostatistics, Duke University, Durham, NC, USA.
2Dept. of Computer Science, Duke University, Durham, NC, USA.
3Dept. of Statistical Science, Duke University, Durham, NC, USA.

A PROOFS FOR THEOREMS IN SECTION 5

Theorem 5.1 (Closeness in X implies closeness in Y ). Consider a p-dimensional covariate space where for t′ ∈ {0, 1},
f (t′)(Xi) = E[Yi|X = Xi, T = t′] = Xiβ

(t′). Construct M ∈ Rp×p where for all l, r ∈ {1, ..., p}Ml,l = |β(t′)
l | and for

l ̸= r Ml,r = 0. Then, ∀i, j, we have that dM(Xi,Xj) ≥
∣∣∣f (t′)(Xi)− f (t′)(Xj)

∣∣∣.
Proof for Theorem 5.1.

dM(Xi,Xj) =

p∑
l=1

Ml,l|Xi,l −Xj,l| =
p∑

l=1

|β(t′)
l ||Xi,l −Xj,l| ≥

∣∣∣∣∣
p∑

l=1

β
(t′)
l (Xi,l −Xj,l)

∣∣∣∣∣
=

∣∣∣f (t′)(Xi)− f (t′)(Xj)
∣∣∣ .

QED

Theorem 5.2 (Optimality of M). Using the setup of Theorem 5.1, let supp(X) = Rp. Consider an arbitrary diagonal
Mahalanobis distance matrix M̃ ∈ Rp×p where ∥M̃∥1 = ∥β(t′)∥1 and M̃l,l > 0 when |β(t′)

l | > 0. For some ϵ ≥ 0 and
X1 ∈ Rp, define SM̃,ϵ

(X1) := {X2 : X2 ∈ Rp, dM̃(X1,X2) = ϵ}. Then,

sup
X2∈SM,ϵ(X1)

|f (t′)(X1)− f (t′)(X2)| ≤ sup
X3∈SM̃,ϵ

(X1)

|f (t′)(X1)− f (t′)(X3)|.

In what follows, we recall that a diagonal Mahalanobis distance matrix, M̃, is:

• diagonal: for all l, r ∈ {1, ..., p}, l ̸= r, M̃l,r = 0.

• non-negative entries: for all l ∈ {1, ..., p}, M̃l,l ≥ 0.

To prove this result, we first prove the following two lemmas.

Lemma 1 (Maximum Absolute Difference in Expected Outcomes under M). Consider a p-dimensional covariate space
where supp(X) = Rp and for t′ ∈ {0, 1}, f (t′)(Xi) = E[Yi|X = Xi, T = t′] = Xiβ

(t′). Define L := {l :
∣∣∣β(t′)

l

∣∣∣ > 0}.

Construct any diagonal Mahalanobis distance matrix, M̃, where ∥M̃∥1 = ∥β(t′)∥1 and M̃l,l > 0 when |β(t′)
l | > 0. Then,

for some ϵ ≥ 0 and X1 ∈ Rp, let SM̃,ϵ
(X1) be as defined in Theorem 5.2. We can conclude that

sup
X3∈SM̃,ϵ

(X1)

|f (t′)(X1)− f (t′)(X3)| = ϵmax
l∈L

{
|β(t′)

l |
M̃l,l

}
.

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).



Proof of Lemma 1.

sup
X3∈SM̃,ϵ

(X1)

|f (t′)(X1)− f (t′)(X3)| = sup
X3∈SM̃,ϵ

(X1)

∣∣∣∣∣∑
l∈L

β
(t′)
l (X1,l −X3,l)

∣∣∣∣∣ .
Note that since supp(X) = Rp, with probability strictly greater than zero there exists an X1 and X3 such that
dM̃(X1,X3) = ϵ and for all l ∈ L, X1,l > X3,l when β

(t′)
l > 0 and X1,l < X3,l when β

(t′)
l < 0. Then,

sup
X3∈SM̃,ϵ

(X1)

∣∣∣∣∣∑
l∈L

β
(t′)
l (X1,l −X3,l)

∣∣∣∣∣ = sup
X3∈SM̃,ϵ

(X1)

{∑
l∈L

∣∣∣β(t′)
l (X1,l −X3,l)

∣∣∣}

= sup
X3∈SM̃,ϵ

(X1)

{∑
l∈L

|β(t′)
l |

M̃l,l

M̃l,l |X1,l −X3,l|

}
.

Note that
{∑

l∈L

|β(t′)
l |

M̃l,l
M̃l,l |X1,l −X3,l| : X3 ∈ SM̃,ϵ

(X1)

}
is maximized at ϵmaxl∈L

{
|β(t′)

l |
M̃l,l

}
. It is known that if the

maximum value of a set is in the set, the supremum of that set equals the maximum value of that set. Therefore, we conclude
that,

sup
X3∈SM̃,ϵ

(X1)

{∑
l∈L

|β(t′)
l |

M̃l,l

M̃l,l |X1,l −X3,l|

}
= ϵmax

l∈L

{
|β(t′)

l |
M̃l,l

}
.

QED

Lemma 2 Under the same setup as Lemma 1, maxl∈L

{
|β(t′)

l |
M̃l,l

}
≥ 1.

Proof of Lemma 2. First note that
∑
l∈L

M̃l,l ≤
p∑

l=1

M̃l,l =
p∑

l=1

|β(t′)
l | =

∑
l∈L

|β(t′)
l |. There are two possible cases. In case

one, ∀l ∈ L, M̃l,l = Ml,l = |β(t′)
l |. Then maxl∈L

|β(t′)
l |

M̃l,l
= 1. In case two, there exists l ∈ L for which M̃l,l ̸= |β(t′)

l |. But

then there must exist an l′ ∈ L for which M̃l′,l′ < |β(t′)
l′ | =⇒ maxl∈L

|β(t′)
l |

M̃l,l
> 1. QED

Proof of Theorem 5.2. First note that M is a diagonal Mahalanobis distance matrix, ∥M∥1 = ∥β(t′)∥1, and Ml,l > 0

when |β(t′)
l | > 0. The proof of the theorem then follows directly from Lemma 1 and Lemma 2.

sup
X2∈SM,ϵ(X1)

|f (t′)(X1)− f (t′)(X2)| = ϵmax
l∈L

{
|β(t′)

l |
Ml,l

}

= ϵmax
l∈L

{
|β(t′)

l |
|β(t′)

l |

}
= ϵ

≤ ϵmax
l∈L

{
|β(t′)

l |
M̃l,l

}
= sup

X3∈SM̃,ϵ
(X1)

|f (t′)(X1)− f (t′)(X3)|.

Where ϵ ≤ ϵmaxl∈L

{
|β(t′)

l |
M̃l,l

}
because of Lemma 2. QED

Theorem 5.3 (Consistency of LCM). For t′ ∈ {0, 1}, let f (t′)(Xi) = E[Yi|X = Xi, T = t′]. Let f (t′) be Lipschitz
continuous and,

supp
(
f (t′)

)
:=

{
j : importance of X·,j in f (t′) is > 0

}
.

Denote dM∗ as the distance metric learned by LCM in Section 4 and let Γ (M∗) = {j : M∗
j,j > 0}. LCM is consistent for

CATE estimation if supp
(
f (0)

)⋃
supp

(
f (1)

)
⊆ Γ (M∗).



Proof of Theorem 5.3. First, let us introduce the concept of a smooth distance metric (defined in Parikh et al. [2022]).

Definition A.1 (Smooth Distance Metric). d : X×X → R+ is a smooth distance metric if there exists a monotonically
increasing bounded function δd(·) with zero intercepts, such that ∀i, j ∈ S if Ti = Tj = t′ and d(Xi,Xj) ≤ a then
|E [Yi(t

′)|Xi]− E [Yj(t
′)|Xj ]| ≤ δd(a).

Theorem 1 in [Parikh et al., 2022] shows that matching with a smooth distance metric guarantees consistency of CATE
estimates.

Recovering the correct support for the potential outcome functions implies that restricting to only variables in the recovered
support, the potential outcomes are independent of the covariates: (Y (1), Y (0)) ⊥ X | {X·,j}j∈supp(f(0))∪supp(f(1)). Also,
note that if {Xi,j}j∈supp(f(0))∪supp(f(1)) is close to {Xk,j}j∈supp(f(0))∪supp(f(1)) then f (0)(Xi) is close to f (0)(Xk) and
f (1)(Xi) is close to f (1)(Xk) by the definition of support and the Lipschitz continuity assumption. Thus, if supp(f (0)) ∪
supp(f (1)) ⊆ Γ(M∗) then d∗M is a smooth distance metric. This guarantees the consistency of our estimates. QED

Consistency of LASSO. Much work has been done on the consistency of LASSO for feature selection [Zhang et al.,
2016]. The ability for LASSO to recover the correct support even in the case of non-linear targets makes it more robust to
model misspecification. LASSO is consistent for support recovery if f(Xi, t) = E[Yi|X = Xi, T = t′] satisfies one of the
following conditions:

(i) f(Xi, t
′) = Xiβ

(t′)

(ii) f(Xi, t
′) = g

(
Xiβ

(t′)
)

where β(t′)
k ̸= 0 for k ∈ {1, .., r}, for some r ≤ p, and, if r < p, β(t)

k = 0 for k ∈ {r, ..., p},
and the following conditions are met:

(a) Cov(X,X) is invertible.
(b) The eigenvalues of Σr,r = Cov(X1:r,X1:r) are such that 0 < c1 ≤ Λ (Σr,r) ≤ c2 < ∞. Where Λ (Σr,r) are the

eigenvalues of Σr,r.
(c) E[Y (t′)]4 < ∞
(d) g is differentiable almost everywhere and for t ∼ N (0, 1), E(|g(t)|) < ∞ and E(|g′(t)|) < ∞.

(e) For all i, E
[
XT

i Xi

∣∣∣g (Xiβ
(t′)

)∣∣∣2] < ∞.

B METHOD IMPLEMENTATION FOR EXPERIMENTS

In this section we outline how we implemented each method used in our experiments. To calculate CATE estimates for all
samples, we employed the same η-fold cross-fitting strategy for each method. In particular, we train models to estimate
the Ŷi(t

′) = f (t′)(Xi) for t′ ∈ {0, 1} using Sn,tr and perform estimation on Sn,est. The only method that we did not use
cross-fitting for was GenMatch, which does not use the outcome to learn it’s distance metric and thus does not require a
training set. All references to scikit-learn refer the Python machine learning package from Pedregosa et al. [2011].

• LASSO Coefficient Matching: We implemented the method described in this paper in Python. We use scikit-learn’s
LassoCV to learn dM∗ and NearestNeighbors with metric=’manhattan’ to perform nearest neighbor
matching.

• Linear and Nonparametric Prognostic Score Matching: We follow the notion of a prognostic score outlined in
Hansen [2008]. In particular, we employ a double prognostic score matching method were we model both the control and
treatment space separately as Ŷi(t

′) = f (t′)(Xi) for t′ ∈ {0, 1}. For linear PGM we use scikit-learn’s LassoCV as our
prognostic score models and for nonparametric PGM we use GradientBoostingRegressor for our prognostic
score models. We then match with replacement on [f (0)(Xi), f

(1)(Xi] using scikit-learn’s NearestNeighbors
with metric=’euclidean’ to perform nearest neighbor matching. We estimated CATEs with the same mean
estimator as LCM.

• MALTS Matching: We use the method developed in Parikh et al. [2022] that was implemented in Python [Parikh,
2020]. We use the package’s mean CATE estimator with smooth_cate=False.

• MatchIt: We use MatchIt’s implementation of GenMatch [Ho et al., 2007]. We kept the default setting of ratio=1,
which set K = 1 for matching. But we matched with replacement to be in line with LCM and the other matching
methods we compared with.



• Linear and Nonparametric TLearner: We use the EconML TLearner implementation from Battocchi et al. [2019]. For
Linear TLearner we use scikit-learn’s LassoCV for our models and for Nonparametric TLearner we use scikit-learn’s
GradientBoostingRegressor for our models.

• AHB: We use the method developed in Morucci et al. [2020] that was implemented in R [Lab, 2022]. We use the
package’s AHB_fast_match implementation with the default settings.

• Bart T-Learner: We use the dbarts R package from Dorie et al. [2019]. We train a BART model on Sn,tr to model
Ŷi(t

′) = f (t′)(Xi) for t′ ∈ {0, 1}. We then estimate CATEs for each j ∈ Sn,est as f (1)(Xj)− f (0)(Xj).

• Linear DoubleML: We use the econml.dml.DML class in the econml Python package from Battocchi et al. [2019].
We fit a model on Sn,tr setting model_y=WeightedLassoCV, model_t=LogisticRegressionCV, and
model_final=LassoCV. We then estimate CATEs for each j ∈ Sn,est using the .effect() method.

• Causal Forest DoubleML: We use the econml.dml.CausalForestDML class in the econml Python
package from Battocchi et al. [2019]. We fit a model on Sn,tr setting model_y=WeightedLassoCV and
model_t=LogisticRegressionCV. We then estimate CATEs for each j ∈ Sn,est using the .effect()
method.

• Causal Forest: We use the implementation of causal forest from the grf R package from Battocchi et al. [2019]. We fit
a model on Sn,tr with the default package settings. We then used the fit model to estimate CATEs for each j ∈ Sn,est.

C EXPERIMENTAL DETAILS FOR SECTION 6 AND SECTION 7

In this section, we describe the data generating processes used and provide further details regarding the setup of each
experiment conducted in this paper. The source code necessary to reproduce all of the experiments in this paper is located in
the GitHub repository: https://github.com/almost-matching-exactly/variable_imp_matching.

C.1 DATA GENERATION PROCESSES

Here we outline the data generation processes (DGPs) not fully outlined in the main text.

Sine and Exponential DGPs. Used in Sections 6.2 and 7.1. We generate the covariates and treatment assignments for the
Sine and Exponential DGPs in a similar manner. For both, we generate data as follows:

Xi,1, . . . , Xi,p
iid∼ Uniform(−α, β)

ϵi,y
iid∼ N (0, σ2), ϵi,t

iid∼ N (0, 1)

Ti = 1

[
expit

(
Xi,1 +Xi,2 + ϵi,t

)
> 0.5

]
Yi = TiYi(1) + (1− Ti)Yi(0) + ϵi,y,

where expit is the logistic sigmoid: expit(x) = 1
1+e−x .

For Sine we set α = β = π, σ2 = 0.1 and calculate the potential outcomes as

Yi(0) = sin(Xi,1), Yi(1) = sin(Xi,1)− sin(Xi,2).

For Exponential we set α = β = 3, σ2 = 1 and calculate the potential outcomes as

Yi(0) = 2eXi,1 −
3∑

j=2

eXi,j , Yi(1) = 2eXi,1 −
3∑

j=2

eXi,j + eXi,4 .

Quadratic DGP. Used in Sections 6.3 and 7.3. This quadratic data generation process is also described in Parikh et al.
[2022]. This DGP includes both linear and quadratic terms. For each sample, let Xi be a p-dimensional vector where the
first k ≤ p covariates are relevant and κ ≤ k is the number of covariates relevant to determining the treatment choice. The
DGP is outlined below.

https://github.com/almost-matching-exactly/variable_imp_matching


Xi,p
iid∼ N (1, 1.5), ϵi,yϵi,t

iid∼ N (0, 1), s1, . . . , s|k|
iid∼ Uniform{−1, 1}

αj |sj
iid∼ N (10sj , 9), β1, . . . , β|k|

iid∼ N (1, 0.25)

Yi(0) =
∑
j≤k

αjXi,j

Yi(1) =
∑
j≤k

αjXi,j +
∑
j≤k

βjXi,j +
∑
j≤k

∑
j′≤k

Xi,jXi,j′

Ti = 1

[
expit

(∑
j≤κ

Xi,j − κ+ ϵi,t

)
> 0.5

]
Yi = TiYi(1) + (1− Ti)Yi(0) + ϵi,y

Where expit(x) = 1
1+e−x .

Basic Quadratic DGP. Used in Section 7.2. This DGP is a quadratic DGP centered at zero. We generate each sample as
shown.

Xi,1, . . . , Xi,10
iid∼ N (0, 2.5), ϵi,y

iid∼ N (0, 1), Ti ∼ Bernoulli(0.5)

Yi(0) = X2
i,1, Yi(1) = X2

i,1 + 10

Yi = TiYi(1) + (1− Ti)Yi(0) + ϵi,y

C.2 EXPERIMENTAL DETAILS

In Table 1 we provide details on the experiments shown in this paper. We include additional notes for selected experiments
below:

• Section 6.1: Accuracy and Auditability: We included the school id as a categorical covariate in our dataset. After
preprocessing the categorical covariates, we had 6 continuous covariates and 98 binary covariates that we used as input
to each model. We used only two splits due to the small occurrence rate of many of the categorical values. We repeated
the cross-fitting process 50 times to smooth out treatment effect estimates for each method. All of the results in this
section are for the combined 50 iterations.

• Section 6.3: Scalability: The matchit package only performs k:1 matching, so we kept K=1 for GenMatch (which is the
default value). Reported runtimes were measured on a Slurm cluster with VMware, where each VM was an Intel(R)
Xeon(R) CPU E5-2699 v4 @ 2.20GHz. For measuring runtime, we ran each method 20 times on each dataset size. We
report the average runtime for each method on each dataset. The variability across the 20 runs was negligible so we
ommitted bars showing the standard deviation from the final plot. Each individual runtime measurement was ran on a
separate Slurm job that was allocated a single core with 16GB RAM.

• Section 7.3: LCM-Augmented-PGM: For ease of implementation, we did not perform cross-fitting for this experiment.
Rather, we just used half of the samples (2500) for training and the other half of the samples (2500) for estimation.

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we include additional experimental results using LCM. We first discuss further findings from experiments in
Section 6 and Section 7. We then show results of additional experiments comparing LCM to non-matching methods and
matching methods with equal weights after feature selection.

Section 6.1: Accuracy and Auditability. Figure 1 in this document is an expanded plot of Figure 1(a) in the main text.
The supplementary material’s Figure 1 includes S3, X1, and all other effect modifiers X2, C1=1, C1=13, and C1=14. As
mentioned in the caption of Figure 1(a) in the main text, S3 indicates the self-reported prior achievements of students and
X1 indicates school-level average mindset score of the students. X2 is a school-level continuous covariate that measures
the school’s achievement level and C1 is a categorical covariate for race/ethnicity. We measure closeness in continuous
covariates using the same mean absolute difference metric used in Figure 1(a) in the main text. Whereas, we measure



Table 1: Details of Experiments in Sections 6 and 7. The Additional Information column indicates if further details for that
experiment are included in Section C.2.

Section Dataset # Samples # Covariates K η Additional Notes
6.1: Accuracy and
Auditability

ACIC 2018 Learning
Mindset Dataset 10,000 10 10 2 Y

6.2: Nonlinear
Outcome

Sine 5000 100 10 10
Exponential 5000 100 10 10

6.3: Scalability Linear + Quadratic Varies Varies
10 (1 for
GenMatch
- see notes)

2 Y

7.1: Metalearner
LCM Sine 500 10 10 5

7.2: Feature
Importance Matching Simple Quadratic 500 10 10 5

7.3: LCM-
Augmented-PGM Linear + Quadratic 5000 20

25 using PGM
followed by
5 using LCM

N/A Y

Figure 1: Closeness in important covariates for matched groups produced by LCM, linear PGM, and nonparametric (NP)
PGM. Smaller values imply better and tighter matches.

closeness in categorical covariates as the percent of samples in a match group that do not have the same label as the query
unit (% Mismatch). LCM matches much more tightly on all of the continuous covariates. For categorical covariates, while
LCM matches tighter than PGM methods, it struggles compared to continuous covariates. We theorize this is due to the low
occurrence rate of these features. In particular, C1=1 in 9.5%, C1=13 in 1.8% and C1=14 in 6.2% of samples. Therefore, it
is difficult to find matches that have the same C1 value and are also similar in all of the other important covariates. LCM
sometimes prioritizes matching almost-exactly on other covariates at the expense of these rare categorical covariates.

Carvalho et al. [2019] also states that although XC (Urbanicity) is not an effect modifier it is strongly related to X1 (student’s
fixed mindsets - summarized at the school level) and X2 (school achievement level) which are true effect modifiers. Because
of this, seven of the eight methods that are summarized in Carvalho et al. [2019] identified XC as an effect modifier. Carvalho
et al. [2019] further shows that, in this dataset, marginally the true cates for XC=3 are much lower than other values of XC.
We show in Figure 2 that LCM also identifies this trend in XC.

For Section 6.1, we did not compare to other almost-matching-exactly methods (i.e. MALTS, AHB, GenMatch) due to the
large size of the dataset. The ACIC 2018 Learning Mindset Dataset has 50,000 samples and >100 covariates after encoding
the categorical features. Results from Section 6.3 highlight how intractable it would be to run other AME methods on a
dataset of this size.

Section 6.2: Nonlinear Outcomes. Figure 3 shows CATE estimation accuracy for the same experiment in Section 6.2 with



Figure 2: Marginal CATE estimates produced by LCM, Linear PGM, and Nonparametric PGM for the categorical school-
level covariate of urbanicty (XC).

the number of covariates increased to 500 for both the Sine and Exponential datasets. Given that we used 10 splits for
this experiment, the training set in each fold had 500 samples. Note that LCM’s accuracy does not suffer in this extremely
high-dimensional setting where the number of samples equals the number of covariates. These results further highlight the
ability of LCM to scale to very high-dimensional data even in the case of nonlinear outcome functions.

Section 7.1: Metalearner LCM. For the Metalearner LCM, here we show the effect of learning unique distance metrics for
calculating control vs treated KNNs. We measure the distance between query unit’s covariate values and the values of the
ten nearest neighbors’ of each treatment type. In particular, we calculate the mean absolute difference between a query unit’s
value and the values of its ten nearest neighbors. As explained in Section 7.1, X1 is a relevant covariate to the outcome
under both treatment regimes, whereas X2 is only relevant to the outcome under treatment. X3 is unimportant in both setting
and shown as a reference point. Figure 4 shows that while LCM’s nearest neighbors are equally close on X0 and X1 in both
treatment spaces, Metalearner LCM considers X2 as unimportant when calculating KNNs who are in the control group. This
highlights how Metalearner LCM is able to adapt to outcome spaces that are different under different treatment regimes.

LCM vs Machine Learning Methods. Previous almost-matching-exactly literature has established that AME methods
perform as well as (and often better than) machine learning methods like BART, causal forest, and double machine learning
for estimating CATEs [Parikh et al., 2022, Morucci et al., 2020, Wang et al., 2017]. For this reason, this paper focuses
on comparing LCM to matching methods and particularly other AME methods. However, here we include an experiment
comparing the CATE estimation accuracy of LCM to various machine learning methods on a high-dimensional non-linear
dataset.

We use the Quadratic DGP with 25 relevant covariates, 2 of which are relevant to the treatment choice, and 125 irrelevant
covariates. We generate 2500 samples and set η = 5. We run LCM with two configurations. LCM Mean is run with K = 10
and uses a mean estimator inside the match groups. LCM Linear is run with K = 40 and uses linear regression as the
estimator inside the match groups. We compare to state-of-the-art machine learning methods double machine learning
(DML), causal forest, and BART TLearner. Figure 5 shows that LCM Mean performs on par with the machine learning
methods on this dataset, further highlighting the accuracy our method. LCM Linear improves upon LCM Mean, showing
that we can achieve better accuracy with more sophisticated estimators if we are willing to increase the size of the match
groups.

LCM vs Feature Selection. Here we show CATE estimation accuracy of LCM compared to matching equally on the
covariates after feature selection. To compare with LCM, we estimate CATEs using feature selection by simply following
the same steps as LCM but replacing the M∗ with an M ∈ Rp×p such that Ml,l = 1 when M∗

l,l > 0 and Ml,l = 0 when
M∗

l,l = 0. We refer to this method as LASSO FS. We also compare to an Oracle feature selector in which we assume that we
know which covariates are important and match equally only on the important covariates.



Figure 3: Comparing LCM’s and Linear PGM’s performances for high-dimensional nonlinear synthetically generated
datasets Sine and Exponential.

Figure 4: Measure of how tightly the KNN groups are for LCM versus Metalearner LCM under different treatment regimes.



Figure 5: Estimated CATE absolute error relative to the true ATE for LCM Mean, LCM Linear, and state-of-the-art machine
learning methods. DML stands for double machine learning.

Figure 6: Estimated CATE absolute error relative to the true ATE for LCM and matching equally on covariates after LASSO
and Oracle feature selection.

We run our analysis on three of the data generation processes used earlier in this paper. Namely, we run on the Sine,
Exponential, and Quadratic DGPs described in Section C.1. We generate 5000 samples and 100 covariates for each DGP
and have two important covariates for Sine, four important covariates for Exponential, and five important covariates for
Quadratic. All tests set η = 5 and K = 10. Figure 6 shows that LCM outperforms LASSO feature selection and performs
on par with an Oracle feature selector. This highlights how using the relative weights of feature importance values in a
distance metric, and thus matching tighter on covariates that more heavily contribute to the outcome, ultimately leads to
more accurate CATE estimates.

References

Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Paul Oka, Miruna Oprescu, and Vasilis Syrgkanis. EconML: A
Python Package for ML-Based Heterogeneous Treatment Effects Estimation. https://github.com/py-why/EconML, 2019.
Version 0.14.0.

Carlos Carvalho, Avi Feller, Jared Murray, Spencer Woody, and David Yeager. Assessing treatment effect variation in
observational studies: Results from a data challenge, 2019. URL https://arxiv.org/abs/1907.07592.

Vincent Dorie, Hugh Chipman, Robert McCulloch, Armon Dadgar, R Core Team, Guido U Draheim, Maarten Bosmans,
Christophe Tournayre, Michael Petch, Rafael de Lucena Valle, et al. Package ‘dbarts’. 2019.

Ben B. Hansen. The prognostic analogue of the propensity score. Biometrika, 95(2):481–488, 2008. ISSN 00063444,
14643510. URL http://www.jstor.org/stable/20441477.

https://arxiv.org/abs/1907.07592
http://www.jstor.org/stable/20441477


Daniel E Ho, Kosuke Imai, Gary King, and Elizabeth A Stuart. Matching as nonparametric preprocessing for reducing
model dependence in parametric causal inference. Political analysis, 15(3):199–236, 2007.

Almost Matching Exactly Lab. AME-ahb-r-package. https://github.com/almost-matching-exactly/
AHB-R-package, 2022.

Marco Morucci, Vittorio Orlandi, Sudeepa Roy, Cynthia Rudin, and Alexander Volfovsky. Adaptive hyper-box matching for
interpretable individualized treatment effect estimation. In Conference on Uncertainty in Artificial Intelligence, pages
1089–1098. PMLR, 2020.

Harsh Parikh. AME-pymalts. https://github.com/almost-matching-exactly/MALTS, 2020.

Harsh Parikh, Alexander Volfovsky, and Cynthia Rudin. Malts: Matching after learning to stretch. Journal of Machine
Learning Research, 23(240), 2022.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Tianyu Wang, Sudeepa Roy, Cynthia Rudin, and Alexander Volfovsky. FLAME: A fast large-scale almost matching exactly
approach to causal inference. arXiv preprint arXiv:1707.06315, 2017.

Yue Zhang, Soumya Ray, and Weihong Guo. On the consistency of feature selection with lasso for non-linear targets. In
Proceedings of the 33rd International Conference on Machine Learning (ICML), volume 48, page 183–191, 2016.

https://github.com/almost-matching-exactly/AHB-R-package
https://github.com/almost-matching-exactly/AHB-R-package
https://github.com/almost-matching-exactly/MALTS

	Proofs for Theorems in Section 5
	Method Implementation for Experiments
	Experimental Details for Section 6 and Section 7
	Data Generation Processes
	Experimental Details

	Additional Experimental Results

