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A PROOFS OF LEMMAS AND THEOREMS

A.1 PROOF OF THEOREM 3.2

Theorem A.1. There exists a hedge for P (Y|do(X),W) according to the generalized hedge condition if and only if
P (Y|do(X),W) is unidentifiable in G.

Proof. Let Z ⊆ W be the maximal set such that P (Y |do(X),W) = P (Y |do(X,Z),W \ Z). By Theorem 21 in [4],
P (Y|do(X),W) is identifiable in G if and only if P (Y,X \Z|do(X,Z)) is identifiable in G. By Theorem 3.2, there exists
a hedge for P (Y,W \ Z|do(X,Z)) if and only if p(y,W\Z|do(X,Z)) is unidentifiable in G. Therefore, we can apply the
definition of hedge for P (Y,W\Z|do(X,Z)) to formulate definition 3.1 such that there exists a hedge for P (Y|do(X),W)
according to definition 3.1 if and only if P (Y|do(X),W) is unidentifiable in G.

A.2 PROOF OF LEMMA 3.5

Lemma A.2. Let Y = {Y }.The output of Find-MACS-on-set(G,Y) is the MACS of Y . The MACS of Y is a Y -rooted
C-tree.

Proof. The line 3 of the Algorithm 2 in Section B.2, first gets an induced subgraph of G over An(Y ). That implies every
variable in the resulting graph has a directed path to Y and Y does not have any child in it. Then, in step 4, it recursively calls
on Find-MACS-on-set with GAn(Y ). Then, every variable in GAn(Y ) must be in An(Y ). The execution of the algorithm
will then move to step 6 to get an induced subgraph of GAn(Y ) over C(Y ).

If there is no bidirected path from any variable to Y , then the algorithm will return Y , which is a Y -rooted C-tree. Suppose
otherwise that there is a bidirected path from some variables to Y , then we have two cases: Case i.) The variables M have
bidirected paths to Y , but De(M) ∩An(Y ) \M are not in C(Y ) such that GC(Y ) is not a Y -rooted C-tree. Case ii.) The
variables M have bidirected paths to Y and De(M) ∩An(Y ) \M are in C(Y ) such that GC(Y ) is a Y -rooted C-tree. For
case i, when the algorithm recursively call on itself at Step 7. Since De(M) ∩An(Y )\M are not in C(Y ), M ̸∈ An(Y ) in
GC(Y ). Then it will return Y as G. For case ii, the result trivially follows.

A.3 PROOF OF THEOREM 3.6

Theorem A.3. For some W ∈ Ch(S), if there exists a hedge for P (Y |do(W )), then for any H,J ⊆ V, we have
(Y ̸⊥⊥ S|J)GH

or P (Y |do(H),J) is unidentifiable in G.

Proof. Suppose there exists a Y -rooted C-tree F in G such that there exists a hedge for P (Y |do(W )) for some W ∈ Ch(S).
We will show that for any H,J ⊆ V, we have (Y ̸⊥⊥ S|J)GH

or P (Y |do(H),J) is unidentifiable in G
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First, suppose H does not contain any member in c-forest F . We will show that there exists an inducing path from S to
Y such that (Y ̸⊥⊥ S|J)GH

. Since every member in F \ Y must have only one child and Y does not any children in GF ,
every member in F is in An(Y ). By definition of hedge, W ∈ F . As F is a C-component by the definition of C-tree and
W ∈ Ch(S) and W ∈ F , for a member SW of S that is Pa(W ), we can have a path from SW to Y through the directed
path from W to Y in F along which every variable on that path is a collider. Therefore, there exists an inducing path from
SW to F . By theorem 4.2 in [1], SW cannot be d-separated from Y in G if and only if there exists an inducing path from
SW to Y in G. Therefore, (Y ̸⊥⊥ S|J)GH

for any J ⊆ V. Next, suppose H contains some members of F . By lemma A.17,
that P (Y |do(H),J) is unidentifiable in G for any J ⊆ V.

A.4 PROOF OF THEOREM 3.7

Theorem A.4. If the selection variable S is a parent of MACS TY , then there is no graph surgery estimator in G.

Proof. Let S be a parent of TY , where TY is the MACS of Y in G. By Lemma 3.5, TY is a Y -rooted C-tree. Since
S ∈ Pa(TY ), there exists some members W ∈ Ch(S) that are in TY such that there exists a hedge for P (Y |do(W )) by the
following construction: let F = TY , F

′ = {Y } to be two R-rooted C-forest, where R = {Y }. By Theorem 3.6, the result
follows implying that there is no graph surgery estimator in G.

A.5 PROOF OF THEOREM 3.8

Theorem A.5. Let TY be the MACS of Y in G, H := {H : H ∈ Ch(Y ), Pa(TH) ̸∋ S} and TJ :=
⋃

H∈K TH for any
K ⊆ H, where TH is the MACS with respect to the variable H . Let D = Pa(TY ∪ TJ). If S is not a parent of TY , then
P (Y |do(D),K,W) is identifiable in G and (Y ⊥⊥ S|W,K)GD

for any W ⊆ (TY ∪ TJ) \ (Y ∪K).

Proof. Let TY be the MACS of Y in G. Let H := {H : H ∈ Ch(Y ), Pa(TH) ̸∋ S}, TJ :=
⋃

H∈K TH for some K ⊆ H.
Let D = Pa(TY ∪ TJ). Recall that by the conditions of the theorem, S is not a parent of TY .

Consider any W ⊆ (TY ∪ TJ) \ (Y ∪K). We first prove the following claim.

Claim: P (Y |do(D),K,W) ̸= P (Y |do(D,Z), (K ∪W) \ Z) for any Z ⊂ K ∪W,Z ̸= ∅.

Proof. For the sake of contradiction, suppose there exists a non-empty subset Z where the equality holds. Under the
extended faithfulness assumption, this would only be true if do-calculus Rule 2 is applicable through the following graphical
condition:

(Y ⊥⊥ Z|K ∪W \ Z)GZ,D
(1)

Now observe that any node U in TY ∪ TJ must belong to a TH for some H ∈ K or TY . By definition of TH (or TY ), there
must be a bidirected path from U to H (or Y ) that only goes through nodes in TH (or TY ). By definition of TH (or TY ),
any node along this bidirected path must be an ancestor of H (or Y ). Therefore, there is a d-connecting path from U to H
(or Y ) that starts with an arrow into U . Note that further conditioning cannot break this path since the path only consists
of colliders. Finally, for the case where U belongs to a TH , as the conditioning set contains H , we can concatenate this
path with the edge Y → H to obtain a d-connecting path to Y , since H is a collider along this concatenated path. This
contradicts with the d-separation statement above.

For the sake of contradiction, suppose for some W ⊆ (TY ∪ TJ) \ (Y ∪K), either P (Y |do(D),K,W) is unidentifiable in
G or (Y ̸⊥⊥ S|W,K)GD

.

Suppose P (Y |do(D),K,W) is unidentifiable in G.

By Theorem 3.2, there must exists a hedge for P (Y |do(D),K,W). The claim above implies that the maximal set Z such
that P (Y |do(D),K,W) = P (Y |do(D,Z),K ∪W \ Z) is an empty set by rule 2 of do-calculus.

Since Z = ∅, by Definition 3.1, there exists a hedge for P (Y |do(D),K,W) only if there exists two R-rooted C-forests
F, F ′ such that F ∩ D ̸= ∅ and F ′ ∩ D = ∅ for some R ⊂ An(Y ∪ K ∪ W)GD

. Consider any such R, F, F ′. Since
F ′ ∩D = ∅ and F ′ is a R-rooted C-forest, it must be the case that D ∩R = ∅. Since D ∩R = ∅ and intervening on D
removes the incoming edges of D, any member of An(Y ∪K∪W) will be in TY ∪ TJ such that R ⊆ TY ∪ TJ . But this is
a contradiction due to the following:



Suppose R ⊆ TY ∪ TJ . Since D ∩R = ∅ and F ∩D ̸= ∅, that implies some members of D must have a directed path to
some members in R. If that is the case, then that member of D must also be in TY ∪ TH , where TY is a Y -rooted C-tree
and TH is a H-rooted C-tree for some H ∈ Ch(Y ), which is also in TJ . But this is a contradiction as any member of D
cannot be in TY ∪ TJ by the definition of D. Thus, R ̸⊆ (TY ∪ TJ).

Therefore, there is no hedge for P (Y |do(D),K,W). By Theorem 3.2, P (Y |do(D),K,W) is identifiable in G.

Suppose (Y ̸⊥⊥ S|W,K)GD
.

Next, we will show (Y ⊥⊥ S|W,K)GD
for any W ⊆ (TY ∪ TJ) \ (Y ∪K). Given that S is not a parent of TY , we will

consider two cases separately: i.)S ∈ An(Y ); ii.)S ̸∈ An(Y )

S ∈ An(Y ): Suppose there exists a d-connecting path from S to Y by conditioning on W ∪ K and intervening on D
for some W ⊆ (TY ∪ TJ) \ (Y ∪ K). First, there is no directed path from S to Y in GD since S is not a parent of
TY by the conditions of the theorem and we intervene on D, which is a superset of Pa(TY ) and Y ∈ TY . For some
W ⊆ (TY ∪ TJ) \ (Y ∪K), conditioning on W must have opened paths with colliders that are in An(W). However, since
any member of W is in TY ∪ TJ and any incoming edges of Pa(TY ∪ TJ) are removed in GD and S is not a parent of any
member of TJ by definition of TJ , there cannot be a d-connecting path from S to Y in GD. Therefore, a contradiction. We
have (Y ̸⊥⊥ S|W,K)GD

for any W ⊆ (TY ∪ TJ) \ (Y ∪K) when S ∈ An(Y ).

S ̸∈ An(Y ): we will show i.) there is no d-connecting path from S to Y ends with a member of Ch(Y ) and ii.) there is no
d-connecting path from S to Y ends with a bidirected neighbor of Y .

Show that there is no d-connecting path from S to Y that ends with a member of Ch(Y ). Any child of Y where parents of
its MACS do not contain S will be in TJ =

⋃
H∈K TH for some K ⊆ H and we intervene on Pa(TY ∪ TJ) so that there

is no path from S to any such child of Y . Suppose the d-connecting path from S to Y ends with some other members of
Ch(Y ). However, for any such path, we must have conditioned on the descendants of those children of Y to open the path
from S to Y through some descendants of Y , but any child of Y that is in K, its parents are also intervened such that any
path from S to Y through those children are blocked. For any other children that are not in K either form a collider or their
descendants form a collider to block any other active paths from S to Y . Therefore, there is no d-connecting path from S to
Y that ends with a member of Ch(Y ).

Show that there is no d-connecting path from S to Y ends with a bidirected neighbor of Y . Suppose further that bidirected
neighbor of Y is a child of Y . From above, we have proved there is no d-connecting path from S to Y ends with a member
of Ch(Y ). Suppose that bidirected neighbor of Y is not a child of Y and there exists some d-connecting paths from S to Y
that ends with those bidirected neighbor of Y , for the case where there is no any descendant of those bidirected neighbors of
Y is in W, any path from S to Y along that bidirected neighbor of Y is blocked as there exists a collider along any such
path and that bidirected neighbor is not in TJ . Therefore, there is no d-connecting path from S to Y . For the case where
there exists some descendants of those bidirected neighbors X of Y is in W, but any parent of those descendants must be in
D such that all the incoming edges of any such parent are removed so that any d-connecting path from S to any of those
parents will be blocked. Any d-connecting path from S to the members along the upstream path of those parents to X will
be blocked by a collider along the path by concatenating the path Y → X or M → L for some descendants M,L of X,
where M ̸= L.

Therefore, we have (Y ⊥⊥ S|W,K)GD
.

A.6 PROOF OF THEOREM 3.10

Theorem A.6. Let TY be the MACS of Y in G, TH be the MACS of a child H of Y in G. Define TC :=
⋃

H∈Ch(Y ) TH ,
Z := {Z : Z ∈ (C(Y )∩Nbr(Y ))\(TY ∪TC) s.t. Pa(TY ∪Z) ̸∋ S} and TB :=

⋃
Z∈M TY ∪Z for any M ⊆ Z where TY ∪Z

is the MACS for the set (Y ∪ Z). Let D = Pa(TB). If S is not a parent of TY , then P (Y |do(D),M,W) is identifiable in
G and (Y ⊥⊥ S|W,M)GD

for any W ⊆ (TB) \ (Y ∪M).

Proof. Let TY be the MACS of Y in G, TH be the MACS of a child H of Y in G. Define TC :=
⋃

H∈Ch(Y ) TH . Let
Z := {Z : Z ∈ (C(Y ) ∩ Nbr(Y )) \ (TY ∪ TC) s.t. Pa(TY ∪Z) ̸∋ S} , TB :=

⋃
Z∈M TZ for some M ⊆ Z . Let

D = Pa(TB). Recall that by the conditions of the theorem, S is not a parent of TY .

Consider any W ⊆ (TB) \ (Y ∪M). We first prove the following claim.

Claim: P (Y |do(D),M,W) ̸= P (Y |do(D,Q), (M ∪W) \Q) for any Q ⊂ M ∪W,Q ̸= ∅.



Proof. For the sake of contradiction, suppose there exists a non-empty subset Q where the equality holds. Under the
extended faithfulness assumption, this would only be true if do-calculus Rule 2 is applicable through the following graphical
condition:

(Y ⊥⊥ Q|M ∪W \Q)GQ,D
(2)

Now observe that any node U in TB must belong to a TY ∪Z for some Z ∈ M. By definition of TY ∪Z , there must be a
bidirected path from U to Z and Y that only goes through nodes in TY ∪Z . By definition of TY ∪Z , any node along this
bidirected path must be an ancestor of Z or Y . Therefore, there is a d-connecting path from U to Z or Y that starts with an
arrow into U . Note that further conditioning cannot break this path since the path only consists of colliders. Finally, for the
case where there is a d-connecting path from U to Z , as the conditioning set contains Z, we can concatenate this path with
the edge Y ↔ Z to obtain a d-connecting path to Y , since Z is a collider along this concatenated path. This contradicts with
the d-separation statement above.

For the sake of contradiction, suppose for some W ⊆ (TB) \ (Y ∪M), either P (Y |do(D),M,W) is unidentifiable in G
or (Y ̸⊥⊥ S|W,M)GD

.

Suppose P (Y |do(D),M,W) is unidentifiable in G.

By Theorem 3.2, there must exists a hedge for P (Y |do(D),M,W). The claim above implies that the maximal set Q such
that P (Y |do(D),M,W) = P (Y |do(D,Q),M ∪W \Q) is an empty set by rule 2 of do-calculus.

Since Q = ∅, by Definition 3.1, there exists a hedge for P (Y |do(D),M,W) only if there exists two R-rooted C-forests
F, F ′ such that F ∩ D ̸= ∅ and F ′ ∩ D = ∅ for some R ⊂ An(Y ∪ M ∪ W)GD

. Consider any such R, F, F ′. Since
F ′ ∩D = ∅ and F ′ is a R-rooted C-forest, it must be the case that D ∩R = ∅. Since D ∩R = ∅ and intervening on
D removes the incoming edges of D, any member of An(Y ∪M ∪W) will be in TB such that R ⊆ TB . But this is a
contradiction due to the following:

Suppose R ⊆ TB . Since D ∩ R = ∅ and F ∩ D ̸= ∅, that implies some members of D must have a directed path to
some members in R. If that is the case, then some members of D must also be in TY ∪Z , which is also in TB . But this is a
contradiction as any member of D cannot be in TB by the definition of D. Thus, R ̸⊆ TB .

Therefore, there is no hedge for P (Y |do(D),M,W). By Theorem 3.2, P (Y |do(D),M,W) is identifiable in G.

Suppose (Y ̸⊥⊥ S|W,M)GD
.

Next, we will show (Y ⊥⊥ S|W,M)GD
for any W ⊆ (TB)\ (Y ∪M). Given that S is not a parent of TY , we will consider

two cases separately: i.)S ∈ An(Y ); ii.)S ̸∈ An(Y )

S ∈ An(Y ): Suppose there exists a d-connecting path from S to Y by conditioning on W ∪ M and intervening on D
for some W ⊆ TB \ (Y ∪M). First, there is no directed path from S to Y in GD since S is not a parent of TY by the
conditions of the theorem and we intervene on D, which is a superset of Pa(TY ) and Y ∈ TY since TY ⊂ TB . For some
W ⊆ TB \ (Y ∪M), conditioning on W must have opened paths with colliders that are in An(W). However, since any
member of W is in TB and any incoming edges of Pa(TB) are removed in GD and S is not a parent of any member of
TY ∪Z by definition of TB , there cannot be a d-connecting path from S to Y in GD. Therefore, a contradiction. We have
(Y ̸⊥⊥ S|W,M)GD

for any W ⊆ TB \ (Y ∪M) when S ∈ An(Y ).

S ̸∈ An(Y ): we will show i.) there is no d-connecting path from S to Y ends with a member of Ch(Y ) and ii.) there is no
d-connecting path from S to Y ends with a bidirected neighbor of Y .

Show that there is no d-connecting path from S to Y that ends with a member of Ch(Y ). For the case where there is no
descendant of any children of Y are in W. Since W does not contain any child of Y , any d-connecting path from S to any
child J of Y , we can concatenate this path with the edge Y → J to obtain a blocked path to Y as J is a collider along this
concatenated path. Suppose there exists some descendants of some children of Y that are in W. Note that for any member
in W, its parents are in D such that all incoming edges of those parents are removed and there cannot be a d-connecting
path from S to Y by concatenating the path Y → J for any child J of Y as any J is not in W nor such path can be opened
by conditioning on W.

Show that there is no d-connecting path from S to Y ends with a bidirected neighbor of Y . Suppose further that bidirected
neighbor of Y is a child of Y . From above, we have proved there is no d-connecting path from S to Y ends with a member
of Ch(Y ). Any bidirected neighbor of Y where it is not a child of Y and the parents of its MACS do not contain S will be in
TB =

⋃
Z∈M TY ∪Z for some M ⊆ Z and we intervene on Pa(TB) so that there is no path from S to any such bidirected



neighbor of Y . Suppose the d-connecting path from S to Y ends with some other members of bidirected neighbors that is
not child of Y . Since those bidirected neighbors A are not in W, there exists some descendants of A are in W. However,
for any such descendant, its parent must be in D such that all the incoming edges of that parent are removed. That implies
any such path is blocked. Since no member of A are in W, any d-connecting path will be blocked by concatenating Y → A
and having a collider A ∈ A along that concatenated path. Thus, there is no d-connecting path from S to Y ends with a
bidirected neighbor of Y .

Therefore, we have (Y ⊥⊥ S|W,M)GD
.

A.7 PROOF OF THEOREM 3.11

We will first prove the following lemma.

Lemma A.7. If S ̸∈ An(Y ) and ID4IP (Algorithm 3) returns FAIL, then there is no parent of Y in G.

Proof. For the sake of contradiction, assume there exists some parents of Y in G. Given as the conditions of the lemma,
we know that S ̸∈ An(Y ) and ID4IP returns FAIL. Since S ̸∈ An(Y ), ID4IP will only return FAIL at line 13 since
line 6 requires that S ∈ An(Y ). P (Y |do(Pa(TY )), TY \ Y ) will be a graph surgery estimator by Corollary 3.9. This is a
contradiction because ID4IP returns FAIL at line 13 due to Pset = ∅. Therefore, if S ̸∈ An(Y ) and ID4IP returns FAIL,
there is no parent of Y in G.

Theorem A.8. If there exists a graph surgery estimator, ID4IP outputs a graph surgery estimator.

Claim: Given S ∈ An(Y ), if there exists a graph surgery estimator, ID4IP (Algorithm 3) outputs a graph surgery estimator.

We will first prove the above claim

Proof. As given by the condition, S ∈ An(Y ) and there exists a graph surgery estimator. By Theorem 3.7, S ̸∈ Pa(TY ),
where TY is the MACS of Y . S has no incoming edges by problem set up so S cannot be in TY . Also, since there is a
directed path from S to Y and S is not a parent of TY , S ∈ An(M) for some M ∈ Pa(TY ). By Corollary 3.9, ID4IP will
output a graph surgery estimator at line 7 of the algorithm.

Next, we will prove the theorem.

Proof. With the claim above, we only need to consider the case where S ̸∈ An(Y ). Suppose S ̸∈ An(Y ). Note that since
S ̸∈ An(Y ), this FAIL is returned by line 13 of the algorithm.

We will prove it by using contraposition. Suppose ID4IP returns FAIL, for the sake of contradiction, suppose also there
exists a graph surgery estimator P (Y |do(Q),W) for some Q ⊆ V and some W ⊆ V \Q.

We will consider the following cases where i.)Q = ∅,W ̸= ∅; ii.)Q ̸= ∅,W = ∅; iii.)Q ̸= ∅,W ̸= ∅

i.)Q = ∅,W ̸= ∅. Given Q = ∅,W ̸= ∅, it must be the case that there exists some W ∈ W that has a d-connecting path to
Y . By Lemma A.7, Y has no parents in G. It implies that any such path must end at a child of Y or a bidirected neighbor of
Y . If such path ends at a child of Y , for any such child K of Y , there exists an inducing path from S to K since S ∈ Pa(TK)
and TK is a K-rooted C-tree. It implies that there exists no subset in V such that Y and S can be d-separated by Theorem 4.2
in [1]. Since Q = ∅, we have (Y ̸⊥⊥ S|W)G, which is a contradiction. Similarly, if such path ends at a bidirected neighbor
of Y that is not a child of Y , for any such bidirected neighbor Z of Y , S ∈ Pa(TY ∪Z), which implies (Y ̸⊥⊥ S|W)G. It is
because ID4IP returns FAIL implies that S is a parent of the MACS of {Y,Z} for any bidirected neighbor Z of Y that is
not a child of Y . Observe that any node U in TY ∪Z for any Z, U has a bidirected path to Z. By the definition of TY ∪Z ,
any node along this bidirected path must be an ancestor of Z. Therefore, there is a d-connecting path from U to Z that
starts with an arrow into U . Note that further conditioning cannot break this path since the path only consists of colliders.
As W ̸= ∅, if Z is not in W, then any such member will be d-separated from Y by concatenating any d-connecting path
from U to Z with Y ↔ Z such that P (Y |W) = P (Y ). If Z is in W, then (Y ̸⊥⊥ S|W)G. Therefore, we have reached a
contradiction for the case when Q = ∅,W ̸= ∅.



ii.)Q ̸= ∅,W = ∅. By Lemma A.7, there is no parent of Y in G. Any member of Q must be non-ancestors of Y . Then,
either Y has a directed path to some Q ∈ Q or there is no directed path to any Q ∈ Q such that (Y ⊥⊥ Q)GQ

. By rule 3 of
do-calculus, that implies P (Y |do(Q)) = P (Y ), which is a contradiction.

iii.)Q ̸= ∅,W ̸= ∅. We consider the case where P (Y |do(Q),W) ̸= P (Y |W) and P (Y |do(Q),W) ̸= P (Y |do(Q)) as
we have reached contradiction for those cases. Since there is no parent of Y in G by Lemma A.7, both Q and W must be
non-ancestors of Y . Also, since ID4IP returns FAIL, there is no children H of Y where S ̸∈ Pa(TH) and there is also no
bidirected neigbhor Z of Y such that S ̸∈ Pa(TY ∪Z).

If S is not connected with Y and ID4IP return FAIL, then there will be no children or bidirected neighbors of Y . It is
because S is disconnected with Y implies S ̸∈ Pa(TH) and S ̸∈ Pa(TY ∪Z) for any child and bidirected neighbor of Y . To
see this, suppose there exist some children of Y and bidirected neighbor of Y in G, ID4IP will not return FAIL as any of
those children and bidirected neighbors will be in either TH or TY ∪Z for some children of Y , H and bidirected neighbors Z
of Y . We can have predictors return at line 8 and 10 of Algorithm 3. Thus, it is a contradiction. Since there are no children
of Y and bidirected neighbors of Y and no parents of Y , any variable in V will be d-separated from Y in G so that any
query will be equal to P (Y ) such that there is no graph surgery estimator.

Suppose S is connected with Y . Since S ̸∈ An(Y ), for S to be connected with Y , any path from S to Y must have a
collider. Let J be the largest set such that P (Y |do(Q),W) = P (Y |do(Q∪J),W \J) by rule 2 of do-calculus. In addition,
let M be the largest set such that P (Y |do(Q ∪ J),W \ J) = P (Y |do((Q ∪ J) \M),W \ J) by rule 3 of do-calculus.
If (Q ∪ J) \ M = ∅, then we reach the same contradiction as (i.). Suppose (Q ∪ J) \ M ̸= ∅, it must be the case that
any member in (Q ∪ J) \M is d-connected with Y when conditioning on W \ J in G

(Q∪J)\M as implied by rule 3 of
do-calculus.

Any such d-connecting path from a member A of (Q ∪ J) \M to Y must begin with an outgoing edge of some members N
in (Q ∪ J) \M in G

(Q∪J)\M. Since Y does not have any parents, this d-connecting path must end at some children of Y
or some bidirected neighbors of Y that are in W \ J. However, for any such child H or bidirected neighbor Z of Y , it must
be that S ∈ Pa(TH) and S ∈ Pa(TY ∪Z) as implied by the condition that ID4IP returns FAIL.

For the case where the d-connecting path ends at H , without loss of generality, we consider the following three cases: i. N
is in TH or ii. N ∈ An(TH) \ TH or iii. N ∈ De(TH) \ TH . Note that the case N ∈ TH subsumes the case when H is
also a bidirected neighbor of Y .

i.N ∈ TH : If N is in TH , then P (Y |do(Q),W) is unidentifiable in G by the following construction of hedge condition: for
a query P (Y |do((Q ∪ J) \M),W \ J), we can let R = {H}, which is a proper subset of An(Y ∪ (W \ J)). Also, we
can let F ′ = {H} and F = TH as TH is a H-rooted C-tree. The result then follows Theorem 3.2.

For the next two cases, we will make use of this observation: observe that for any node U in TH . By the definition of TH ,
there must be a bidirected path from U to H that only goes through nodes in TH and any node along this bidirected path
must be an ancestor of H . Therefore, there is a d-connecting path from U to H that starts with an arrow into U . Note that
further conditioning cannot break this path since the path only consists of colliders.

ii.N ∈ An(TH) \ TH : If N is in the An(TH) \ TH and H ∈ W \ J, then (Y ̸⊥⊥ S|W \ J)G
Q∪J\M

. It is because
S ∈ Pa(TH) such that we can construct a d-connecting path from S to Y by concatenating Y → H with the bidirected path
as outlined in the observation. Note that no member in (Q ∪ J) \M can be in TH due to unidentifiability of the query as
shown previously. Therefore, we have a contradiction. If H ̸∈ W \J, then any such path is blocked by H , which contradicts
the fact that (Q ∪ J \M) is non-empty by rule 3 of do-calculus.

iii.N ∈ De(TH) \ TH : If N ∈ De(TH) \ TH and H ∈ W \ J, then we can obtain a d-connecting path from S to Y by
concatenating Y → H with the bidirected path as outlined in the observation, which is a contradiction. If N ∈ De(TH)\TH

and H ̸∈ W \ J, then the such path is blocked by H , which contradict to the fact that (Q ∪ J \M) is non-empty by rule 3
of do-calculus.

For the case where the d-connecting path ends at a bidirected neighbor Z of Y that is not a child of Y , without loss of
generality, we also consider three cases: i.N is in TY ∪Z or ii.N ∈ An(TY ∪Z) \ TY ∪Z or iii.N ∈ De(TY ∪Z).

i.N ∈ TY ∪Z : If N is in TY ∪Z , we can construct two R-rooted C-forests F = TY ∪Z , F
′ = {Y,Z} such that F ∩

N ̸= ∅, F ′ ∩ N = ∅, where R = {Y,Z}, which is the proper subset of An(Y ∪ (W \ J)) such that there exists
a hedge for P (Y |do((Q ∪ J) \ M),W \ J) by the characterization of generalized hedge condition. By Theorem 3.2,
P (Y |do((Q ∪ J) \M),W \ J) is unidentifiable in G, which is a contradiction.



For the next two cases, we will make use of this observation: observe that any node U in TY ∪Z , there must be a bidirected
path from U to Z and Y that only goes through nodes in TY ∪Z . By definition of TY ∪Z , any node along this bidirected path
must be an ancestor of Z or Y . Therefore, there is a d-connecting path from U to Z or Y that starts with an arrow into U .
Note that further conditioning cannot break this path since the path only consists of colliders.

ii.N ∈ An(TY ∪Z) \ TY ∪Z : If N is in An(TY ∪Z) \ TY ∪Z and Z ∈ W \ J , then (Y ̸⊥⊥ S|W \ J)G
Q∪J\M

. It is because
S ∈ Pa(TY ∪Z) such that we can construct a d-connecting path from S to Y by concatenating Y ↔ Z with the bidirected
path as outlined in the observation. Also, no member in (Q ∪ J) \M can be in TY ∪Z due to unidentifiability of the query
as shown previously. If Z ̸∈ W \ J, then any such path is blocked by Z, which contradicts the fact that (Q ∪ J) \M is
non-empty by rule 3 of do-calculus

iii.N ∈ De(TY ∪Z) \ TY ∪Z : If N ∈ De(TY ∪Z) \ TY ∪Z and Z ∈ W \ J, then we can obtain a d-connecting path from
S to Y by concatenating Y ↔ Z with the bidirected path as outlined in the observation. If N ∈ De(TY ∪Z) \ TY ∪Z and
Z ̸∈ W \ J, then such path is blocked by Z, which contradict to the fact that (Q ∪ J) \ M is non-empty by rule 3 of
do-calculus.

Therefore, we reach a contradiction to the case where Q ̸= ∅ and W ̸= ∅.

Thus, there exists no graph surgery estimator. By contraposition, if there exists a graph surgery estimator, ID4IP (Algorithm
3) outputs a graph surgery estimator.

A.8 PROOF OF THEOREM 3.12

Theorem A.9. (Soundness of Algorithm 3:ID4IP) When Algorithm 3:ID4IP returns an estimator, it is a graph surgery
estimator with respect to the given target and the selection variable in G.

Proof. For line 5- 6 in Algorithm 3, the soundness follows Theorem 3.7 where we describe how selection variable being
a parent of Ty implies there is no graph surgery estimator. Then, the soundness of line 7 will follow Corollary 3.9 which
shows how ID4IP can get graph surgery estimators by utilizing the parents of the MACS of Y .

In addition, Theorem 3.8 ensures the correctness of line 8 which utilizes the parents of the MACS of some children of the
target that are not selection variables. For line 10, the soundness follows Theorem 3.10 which shows how ID4IP can find
graph surgery estimators if any by utilizing the parents of the MACS of the bidirected neighbors of Y . Lastly, line 13 follows
Theorem 3.11 which guarantees ID4IP to find at least one graph surgery estimator or show that there is no graph surgery
estimator.

A.9 PROOF OF THEOREM 4.1

In this proof, we will make use of the following theorems for the proof.

Theorem A.10. (Bayes-ball Complexity) [2] Given a causal graph G = (V,E), the time complexity of Bayes-ball
algorithm is O(|V|+ |EV|), where EV are the edges incident to the nodes marked during the algorithm. In the worst case,
it is linear time in the size of the graph.

Theorem A.11. [5] Find-MACS-on-set(G,Y) outputs the MACS of Y in polynomial time in the size of graph.

Proof. Let |Ch(S)| = C. the Graph Surgery Estimator algorithm first finds all supersets of Ch(S). Getting all supersets of
Ch(S) takes the complexity of O(2|V|−C). Then, for each superset M, the Graph Surgery Estimator algorithm finds the
power set of V \ (M ∪ Y ) , which takes O(2|V|\(M∪Y )). Asymptotically, the complexity of finding power set for each
superset becomes O(2|V|−(C+1)) as Ch(S) is the smallest superset of Ch(S). Then, for each member Q of each power set,
two major operations attribute to the complexity of the algorithm are:

1. Using a for-loop to search through each member in Q. Then, it checks for d-separation condition within each loop,
resulting in the complexity of O(|Q| × (|V +EV|)) with the use of Bayes-ball algorithm [2].

2. Calling ID algorithm for checking the identifiability of the returned unconditional query, which takes the complexity of
O(B)



Theorem A.12. (GSE Complexity) Let |Ch(S)| = C, M = Ch(S), Q = V \ (M∪Y ). Given a causal graph G = (V,E)
and disjoint variables X,Y ⊂ V , the time complexity of Graph Surgery Estimator (GSE) (Algorithm 5 in Section B.4) is:
O(22(|V|−C)−1 ×B), where B represents the time complexity of ID algorithm.

Proof. From Theorem A.11 and A.10, we can derive the the complexity of the Graph Surgery Estimator as
O(2|V|−C+|V\(M∪Y )| × |Q| × (|V|+ |EV|)×B), which we can simplify to O(22(|V|−C)−1 ×B).

A.10 PROOF OF THEOREM 4.3

Theorem A.13. (ID4IP Complexity) Given a causal graph G = (V, E) and disjoint variables X,Y ⊆ V, the complexity
of ID4IP (Algorithm 3) is O(|(C(Y )∩Nbr(Y ))\ (TY ∪TC)|+ |Ch(Y )|+1)K+(|TY |−1+ |TJ |+ |T ′

J |− |H′ |− |H|)B),
where K represents the time complexity of Find-MACS-on-set and B represents the time complexity of ID algorithm, TY be
the MACS of Y in G, TH be the MACS of a child H of Y in G, and TC :=

⋃
H∈Ch(Y ) TH .

Proof. By Theorem 4.2, Find-MACS-on-set outputs the MACS of a set in polynomial time in the size of the graph. We
let O(K) be the complexity of Find-MACS-on-set so that line 4 takes O(K). Let O(B) be the time complexity of ID
algorithm. At line 7 of ID4IP, it takes O(|TY | − 1) to search through the sets W and each time it calls on ID algorithm so
that each Greedy-Eval takes O((|TY | − 1)B). The line 8 takes O(|Ch(Y )|K + (|TJ | − |H|)B) because we call on Find-
MACS-on-set |Ch(Y )| many times and each time Find-MACS-on-set takes O(K). Now we have, H := {H : H ∈ Ch(Y ),
Pa(TH) ̸∋ S} and TJ :=

⋃
H∈K TH for any K ⊆ H, where TH is the MACS with respect to the variable H . Therefore,

after finding the MACS of each child of Y , we use Greedy-Eval, which calls on ID algorithm |TJ | − |H| times.

Line 10, similar to line 8, it finds the MACS of each bidirected neighbor of Y that is not child nor parent of Y , which
results in O(|(C(Y ) ∩ Nbr(Y )) \ (TY ∪ TC)|K). Here, we have, H′ := {H ′ : H ′ ∈ (C(Y ) ∩ Nbr(Y )) \ (TY ∪ TC),
Pa(TH′) ̸∋ S} and T ′

J :=
⋃

H′∈K TH′ for any K ⊆ H′, where TH′ is the MACS with respect to the variable H ′. Then,
we will use Greedy-Eval, which calls on ID algorithm |T ′

J | − |H′ | times, where T
′

J ̸= TJ and H′ ̸= H. Therefore,
line 10 takes O(|(C(Y ) ∩Nbr(Y )) \ (TY ∪ TC)|K + (|T ′

J | − |H′ |)B). Therefore, ID4IP takes O(K + (|TY | − 1)B +

|Ch(Y )|K + (|TJ | − |H|)B + |(C(Y ) ∩ Nbr(Y )) \ (TY ∪ TC)|K + (|T ′

J | − |H′ |)B), which can be simplified to
O(|(C(Y ) ∩Nbr(Y )) \ (TY ∪ TC)|+ |Ch(Y )|+ 1)K + (|TY | − 1 + |TJ |+ |T ′

J | − |H′ | − |H|)B)

A.11 PROOF OF LEMMA A.14

Lemma A.14. If there is no hedge for P (Y|do(X)), then P (Y|do(X)) is identifiable in G.

Proof. Suppose there is no hedge for P (Y|do(X)). Therefore, for any R ⊆ An(Y )GX
, there does not exist two R-rooted

C forests F ′ ⊂ F ⊆ V such that F ∩X ̸= ∅ and F ′ ∩X = ∅. Equivalently, it must be the case that for any R ⊆ An(Y )GX

and R-rooted C forests F ′ ⊂ F ⊆ V , either F ∩X = ∅ or F ′ ∩X ̸= ∅.

We consider two cases: i.) there is no bidirected path from X to any of its children ii.) there is a bidirected path from X to
some of its children.

Suppose there is no bidirected path from any of the nodes in X to any of their children in GAn(Y). By Theorem 4 of [7],
the query P (Y|do(X)) is then identifiable.

Suppose there is a bidirected path from some of the nodes in X to some of their children in GAn(Y). For case ii, suppose
there is a bidirected path from X to some of its children in GAn(Y). For any R ⊆ An(Y)GX

, either there is R-rooted
C-forest F ′ such that F ′ ∩X = ∅ but F ∩X ̸= ∅ or there is a R-rooted C-forest F such that F ∩X ̸= ∅ but F ′ ∩X ̸= ∅
for any R-rooted C-forest F ′. Given these conditions, we will show that by soundness of ID algorithm [4] , we will have
p(y|do(x)) being identifiable in G.

We will briefly describe the ID algorithm (Algorithm 3) here. At step 6, the ID algorithm takes the induced subgraph of G
over An(Y), then it partitions GAn(Y) into various induced subgraphs of GAn(Y) over all possible C-components at step
13 of the algorithm. Since there is a hedge for p(y|do(x)) if and only if the ID algorithm returns at step 18 of the algorithm
by the soundness of ID algorithm, we will proceed by showing we will never run into step 18 of the algorithm given the
conditions described in the previous paragraph.



When ID algorithm returns FAIL, the graph G at step 17 may not necessarily refer to the original causal graph G that has
been passed into ID, but rather a subgraph of G after taking step 13 of the algorithm along with the other potential recursive
steps 6 through 11. We use G′ ⊆ G in the rest of the argument for the sake of clarity.

For the sake of contradiction, assume there exists a C-component in some subgraphs of G′ ⊆ G such that C(G′\X) = {S}
and C(G′) = {G′}. By definition, we can construct a R-rooted C-forest F ′ as S such that F ′ ∩ X = ∅ . Now, given
C(G′) = {G′} and by definition of hedge, X ̸∈ R, we can also construct another R-rooted C-forest F such that F ∩X ̸= ∅.
Then, there exists a hedge for P (Y|do(X)), which is a contradiction. Therefore, we will never run into step 5 of the ID
algorithm. Then, ID will return an identifiable query. Therefore, we have that P (Y|do(X)) is identifiable in G.

A.12 PROOF OF THEOREM A.15

Theorem A.15. There exists a hedge for P (Y|do(X)) if and only if P (Y|do(X)) is unidentifiable in G

Proof. By Lemma A.14 and Theorem 4 in [3], the result follows.

A.13 PROOF OF THEOREM A.16

Theorem A.16. P (Y |do(X)) is identifiable if and only if there is no hedge for P (Y |do(X′)) where X′ is the smallest
subset of X such that P (Y |do(X′)) = P (Y |do(X)).

Proof. (⇐) Suppose there is no hedge for P (Y |do(X′)), where X′ is the smallest subset of X such that P (Y |do(X′)) =
p(y|do(x)). Since P (Y |do(X′)) = P (Y |do(X)), there also exists no hedge for P (Y |do(X)). By Lemma A.14, we have
that P (Y |do(X)) is identifiable in G.
(⇒) Suppose there exists a hedge for P (Y |do(X′)), where X′ is the smallest subset of X such that P (Y |do(X′)) =
P (Y |do(X)). Then, by Theorem 4 in [3], we have that P (Y |do(X′)) is unidentifiable so that P (Y |do(X)) is also unidenti-
fiable. By contraposition, p(y|do(x)) is identifiable implies there is no hedge for P (Y |do(X′)), where X′ is the smallest
subset of X such that P (Y |do(X′)) = P (Y |do(X))

A.14 PROOF OF LEMMA A.17

Lemma A.17. Let F be a Y -rooted C-tree in G = (V,E). For any K ∈ F \ {Y } such that K ⊆ J ⊆ V \ {Y } and for
any W ⊆ V \ (J ∪ Y ), P (Y |do(J),W) is unidentifiable in G.

Proof. We will show that there exists a hedge for p(y|do(j),w) according to the definition 3.1. By Theorem 20 in [4], there
exists a unique maximal set Z such that P (Y |do(J),W) = P (Y |do(J,Z),W\Z). Since K ∈ F \{Y } and K ⊆ J, we
have that F ∩ (J ∪ Z) ̸= ∅. Next, we let F ′ = {Y } such that F ′ ∩ (J ∪ Z) = ∅. By definition 3.1, there exists a hedge for
P (Y |do(J),W). By Theorem 3.2, P (Y |do(J),W) is unidentifiable in G.

B ALGORITHMS

In this section, we provide the pseudo-codes of the algorithms that we call as sub-routines from the algorithms in the main
paper.

B.1 COMPUTELOSS

1: Input: A set of targets Y, an intervention set X
2: Output: the value of P (Y|do(X))
3: P = ID(Y,X, G) {Algorithm 3}
4: Ps = P/

∑
Y P

5: L = Compute validation loss l(Ps)
6: Return L

Algorithm 1: computeLoss(Y,X)



B.2 FIND-MACS-ON-SET

1: Input: A causal graph G , an AC-component Y in G
2: Output: TY, a subgraph of G, the maximal ancestral confounded set for Y in G.
3: if ∃X ̸∈ An(Y)G then
4: Return Find-MACS-on-set(GAn(Y),Y)
5: if ∃Y ∈ Y,∃X ̸∈ C(Y )G then
6: Return Find-MACS-on-set(GC(Y ),Y)
7: else
8: Return G

Algorithm 2: Find-MACS-on-set(G,Y)[5]

B.3 ID ALGORITHM

1: Input: a set of target variables Y, a set of random variables for intervention X , a probability distribution P , a causal
graph G

2: Output: Expression for P (Y |do(X)) in terms of P or FAIL(F, F ′)
3: if X = ∅ then
4: Return

∑
V\Y P (v)

5: if V \An(Y)G ̸= ∅ then
6: Return ID(Y,X ∩An(Y)G,

∑
V\An(Y)G

P,GAn(Y))

7: Let W = (V \X) \An(Y)GX

8: if W ̸= ∅ then
9: Return ID(Y,X ∪W, P,G)

10: if C(G \X) = {S1, . . . , Sk} then
11: Return

∑
V\(Y∪X)

∏
i ID(Si,V \ Si, P,G)

12: if C(G \X) = {S} then
13: if C(G) = {G} then
14: Return FAIL(G,G ∩ S)
15: if S ∈ C(G) then
16: Return

∑
S\Y

∏
{i|Vi∈S} P (Vi|V i−1

π )

17: if ∃S s.t. S ⊂ S′ ∈ C(G) then
18: Return ID(Y,X ∩ S′,

∏
{i|Vi∈S} P (Vi|V (i−1)

π \ S), GS′)

Algorithm 3: ID(Y,X, P,G) [4]

B.4 GRAPH SURGERY ESTIMATOR ALGORITHM

In this section, we present the main algorithms in [6].

1: Input: Acyclic Directed Mixed Graph (ADMG) G = (V,E), disjoint variable sets X,Y,Z ⊂ V
2: Output: Unconditional query P (Y|do(X),Z)
3: X′ = X
4: Y′ = Y
5: Z′ = Z
6: while ∃Z ∈ Zs.t.(Y ⊥⊥ Z|X,Z \ {Z})GX,Z

do
7: X′ = X′ ∪ Z
8: Z′ = Z′ \ {Z}
9: Y′ = Y ∪ Z

10: Return X′, Y′ of unconditional query P (Y′|do(X′))
Algorithm 4: Unconditional Query: UQ(X,Y,Z;G)[6]



1: Input: ADMG G, mutable variables M, target T
2: Ouput: Expression for the surgery estimator or FAIL if there is no stable estimator.
3: SID = ∅
4: Loss = ∅
5: for Z ∈ P(V \ (M ∪ {T})) do
6: if T ̸∈ M then
7: X,Y = UQ(M, {T},Z,G)
8: try
9: P = ID(X,Y, G)

10: Ps = P/
∑

Y P
11: Compute the validation loss l(Ps)
12: SID.append(Ps); Loss.append(l(Ps))
13: catch
14: continue
15: X,Y =UQ(M, {T},Z;GT )
16: X = X ∪ {T}
17: Y = Y \ {T}
18: if Y ∩ (T ∪ Ch(T )) = ∅ then
19: continue
20: try
21: P = ID(X,Y, G)
22: Ps = P/

∑
Y P

23: Compute the validation loss l(Ps)
24: SID.append(Ps); Loss.append(l(Ps))
25: catch
26: continue
27: if SID = ∅ then
28: Return FAIL
29: Return Ps ∈ SID with lowest corresponding Loss

Algorithm 5: Graph Surgery Estimator (G,M, Y )[6]
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Figure 1: Semi-synthetic experimental results



C.2 ALARM CAUSAL GRAPH
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Figure 2: Semi-synthetic causal graph: Alarm
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