Finding Invariant Predictors Efficiently via Causal Structure (Supplementary Material)

Kenneth Lee Md Musfiqur Rahman ${ }^{1}$ Murat Kocaoglu ${ }^{1}$
${ }^{1}$ School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA

A PROOFS OF LEMMAS AND THEOREMS

A. 1 PROOF OF THEOREM 3.2

Theorem A.1. There exists a hedge for $P(\mathbf{Y} \mid \operatorname{do}(\mathbf{X}), \mathbf{W})$ according to the generalized hedge condition if and only if $P(\mathbf{Y} \mid d o(\mathbf{X}), \mathbf{W})$ is unidentifiable in G.

Proof. Let $\mathbf{Z} \subseteq \mathbf{W}$ be the maximal set such that $P(Y \mid d o(\mathbf{X}), \mathbf{W})=P(Y \mid d o(\mathbf{X}, \mathbf{Z}), \mathbf{W} \backslash \mathbf{Z})$. By Theorem 21 in [4], $P(\mathbf{Y} \mid d o(\mathbf{X}), \mathbf{W})$ is identifiable in G if and only if $P(Y, \mathbf{X} \backslash \mathbf{Z} \mid d o(\mathbf{X}, \mathbf{Z}))$ is identifiable in G. By Theorem 3.2 there exists a hedge for $P(Y, \mathbf{W} \backslash \mathbf{Z} \mid d o(\mathbf{X}, \mathbf{Z}))$ if and only if $p(y, \mathbf{W} \backslash \mathbf{Z} \mid d o(\mathbf{X}, \mathbf{Z}))$ is unidentifiable in G. Therefore, we can apply the definition of hedge for $P(Y, \mathbf{W} \backslash \mathbf{Z} \mid d o(\mathbf{X}, \mathbf{Z}))$ to formulate definition 3.1 such that there exists a hedge for $P(\mathbf{Y} \mid d o(\mathbf{X}), \mathbf{W})$ according to definition 3.1 if and only if $P(\mathbf{Y} \mid \operatorname{do}(\mathbf{X}), \mathbf{W})$ is unidentifiable in G.

A. 2 PROOF OF LEMMA 3.5

Lemma A.2. Let $\mathbf{Y}=\{Y\}$.The output of Find-MACS-on-set (G, \mathbf{Y}) is the MACS of Y. The MACS of Y is a Y-rooted C-tree.

Proof. The line $\mathbf{3}$ of the Algorithm 2 in Section B.2 first gets an induced subgraph of G over $\operatorname{An}(Y)$. That implies every variable in the resulting graph has a directed path to Y and Y does not have any child in it. Then, in step 4, it recursively calls on Find-MACS-on-set with $G_{A n(Y)}$. Then, every variable in $G_{A n(Y)}$ must be in $A n(Y)$. The execution of the algorithm will then move to step 6 to get an induced subgraph of $G_{A n(Y)}$ over $C(Y)$.

If there is no bidirected path from any variable to Y, then the algorithm will return Y, which is a Y-rooted C-tree. Suppose otherwise that there is a bidirected path from some variables to Y, then we have two cases: Case i.) The variables \mathbf{M} have bidirected paths to Y, but $D e(\mathbf{M}) \cap A n(Y) \backslash \mathbf{M}$ are not in $C(Y)$ such that $G_{C(Y)}$ is not a Y-rooted C-tree. Case ii.) The variables \mathbf{M} have bidirected paths to Y and $D e(\mathbf{M}) \cap A n(Y) \backslash \mathbf{M}$ are in $C(Y)$ such that $G_{C(Y)}$ is a Y-rooted C-tree. For case i, when the algorithm recursively call on itself at Step 7. Since $\operatorname{De}(\mathbf{M}) \cap A n(Y) \backslash \mathbf{M}$ are not in $C(Y), \mathbf{M} \notin A n(Y)$ in $G_{C(Y)}$. Then it will return Y as G. For case ii, the result trivially follows.

A. 3 PROOF OF THEOREM 3.6

Theorem A.3. For some $W \in C h(S)$, if there exists a hedge for $P(Y \mid d o(W))$, then for any $\mathbf{H}, \mathbf{J} \subseteq \mathbf{V}$, we have $(Y \not \Perp S \mid \mathbf{J})_{G_{\bar{H}}}$ or $P(Y \mid d o(\mathbf{H}), \mathbf{J})$ is unidentifiable in G.

Proof. Suppose there exists a Y-rooted C-tree F in G such that there exists a hedge for $P(Y \mid d o(W))$ for some $W \in C h(S)$. We will show that for any $\mathbf{H}, \mathbf{J} \subseteq \mathbf{V}$, we have $(Y \not \Perp S \mid \mathbf{J})_{G_{\bar{H}}}$ or $P(Y \mid d o(\mathbf{H})$, $\mathbf{J})$ is unidentifiable in G

First, suppose \mathbf{H} does not contain any member in c-forest F. We will show that there exists an inducing path from S to Y such that $(Y \not \Perp S \mid \mathbf{J})_{G_{\bar{H}}}$. Since every member in $F \backslash Y$ must have only one child and Y does not any children in G_{F}, every member in F is in $A n(Y)$. By definition of hedge, $W \in F$. As F is a C-component by the definition of C-tree and $W \in C h(S)$ and $W \in F$, for a member S_{W} of S that is $P a(W)$, we can have a path from S_{W} to Y through the directed path from W to Y in F along which every variable on that path is a collider. Therefore, there exists an inducing path from S_{W} to F. By theorem 4.2 in [1], S_{W} cannot be d-separated from Y in G if and only if there exists an inducing path from S_{W} to Y in G. Therefore, $(Y \not \perp \mathbf{S} \mid \mathbf{J})_{G_{\bar{H}}}$ for any $\mathbf{J} \subseteq \mathbf{V}$. Next, suppose \mathbf{H} contains some members of F. By lemma A.17, that $P(Y \mid d o(\mathbf{H}), \mathbf{J})$ is unidentifiable in G for any $\mathbf{J} \subseteq \mathbf{V}$.

A. 4 PROOF OF THEOREM 3.7

Theorem A.4. If the selection variable S is a parent of $M A C S T_{Y}$, then there is no graph surgery estimator in G.

Proof. Let S be a parent of T_{Y}, where T_{Y} is the MACS of Y in G. By Lemma 3.5, T_{Y} is a Y-rooted C-tree. Since $S \in P a\left(T_{Y}\right)$, there exists some members $W \in C h(S)$ that are in T_{Y} such that there exists a hedge for $P(Y \mid d o(W))$ by the following construction: let $F=T_{Y}, F^{\prime}=\{Y\}$ to be two \mathbf{R}-rooted C-forest, where $\mathbf{R}=\{Y\}$. By Theorem 3.6, the result follows implying that there is no graph surgery estimator in G.

A.5 PROOF OF THEOREM 3.8

Theorem A.5. Let T_{Y} be the MACS of Y in $G, \mathcal{H}:=\left\{H: H \in C h(Y), P a\left(T_{H}\right) \not \supset S\right\}$ and $T_{J}:=\bigcup_{H \in \mathbf{K}} T_{H}$ for any $\mathbf{K} \subseteq \mathcal{H}$, where T_{H} is the MACS with respect to the variable H. Let $\mathbf{D}=P a\left(T_{Y} \cup T_{J}\right)$. If S is not a parent of T_{Y}, then $P(Y \mid \operatorname{do}(\mathbf{D}), \mathbf{K}, \mathbf{W})$ is identifiable in G and $(Y \Perp S \mid \mathbf{W}, \mathbf{K})_{G_{\bar{D}}}$ for any $\mathbf{W} \subseteq\left(T_{Y} \cup T_{J}\right) \backslash(Y \cup \mathbf{K})$.

Proof. Let T_{Y} be the MACS of Y in G. Let $\mathcal{H}:=\left\{H: H \in C h(Y), P a\left(T_{H}\right) \not \supset S\right\}, T_{J}:=\bigcup_{H \in \mathbf{K}} T_{H}$ for some $\mathbf{K} \subseteq \mathcal{H}$. Let $\mathbf{D}=\operatorname{Pa}\left(T_{Y} \cup T_{J}\right)$. Recall that by the conditions of the theorem, S is not a parent of T_{Y}.
Consider any $\mathbf{W} \subseteq\left(T_{Y} \cup T_{J}\right) \backslash(Y \cup \mathbf{K})$. We first prove the following claim.
Claim: $P(Y \mid d o(\mathbf{D}), \mathbf{K}, \mathbf{W}) \neq P(Y \mid d o(\mathbf{D}, \mathbf{Z}),(\mathbf{K} \cup \mathbf{W}) \backslash \mathbf{Z})$ for any $\mathbf{Z} \subset \mathbf{K} \cup \mathbf{W}, \mathbf{Z} \neq \emptyset$.

Proof. For the sake of contradiction, suppose there exists a non-empty subset \mathbf{Z} where the equality holds. Under the extended faithfulness assumption, this would only be true if do-calculus Rule 2 is applicable through the following graphical condition:

$$
\begin{equation*}
(Y \Perp \mathbf{Z} \mid \mathbf{K} \cup \mathbf{W} \backslash Z)_{G_{\mathbf{Z}, \overline{\mathbf{D}}}} \tag{1}
\end{equation*}
$$

Now observe that any node U in $T_{Y} \cup T_{J}$ must belong to a T_{H} for some $H \in \mathbf{K}$ or T_{Y}. By definition of T_{H} (or T_{Y}), there must be a bidirected path from U to H (or Y) that only goes through nodes in T_{H} (or T_{Y}). By definition of T_{H} (or T_{Y}), any node along this bidirected path must be an ancestor of H (or Y). Therefore, there is a d-connecting path from U to H (or Y) that starts with an arrow into U. Note that further conditioning cannot break this path since the path only consists of colliders. Finally, for the case where U belongs to a T_{H}, as the conditioning set contains H, we can concatenate this path with the edge $Y \rightarrow H$ to obtain a d-connecting path to Y, since H is a collider along this concatenated path. This contradicts with the d-separation statement above.

For the sake of contradiction, suppose for some $\mathbf{W} \subseteq\left(T_{Y} \cup T_{J}\right) \backslash(Y \cup \mathbf{K})$, either $P(Y \mid d o(\mathbf{D}), \mathbf{K}, \mathbf{W})$ is unidentifiable in G or $(Y \not \Perp \perp S \mid \mathbf{W}, \mathbf{K})_{G_{\bar{D}}}$.

Suppose $P(Y \mid d o(\mathbf{D}), \mathbf{K}, \mathbf{W})$ is unidentifiable in G.
By Theorem 3.2, there must exists a hedge for $P(Y \mid d o(\mathbf{D}), \mathbf{K}, \mathbf{W})$. The claim above implies that the maximal set \mathbf{Z} such that $P(Y \mid d o(\overline{\mathbf{D}}), \mathbf{K}, \mathbf{W})=P(Y \mid d o(\mathbf{D}, \mathbf{Z}), \mathbf{K} \cup \mathbf{W} \backslash \mathbf{Z})$ is an empty set by rule 2 of do-calculus.
Since $\mathbf{Z}=\emptyset$, by Definition 3.1, there exists a hedge for $P(Y \mid d o(\mathbf{D}), \mathbf{K}, \mathbf{W})$ only if there exists two \mathbf{R}-rooted C-forests F, F^{\prime} such that $F \cap \mathbf{D} \neq \emptyset$ and $F^{\prime} \cap \mathbf{D}=\emptyset$ for some $\mathbf{R} \subset A n(Y \cup \mathbf{K} \cup \mathbf{W})_{G_{\bar{D}}}$. Consider any such $\mathbf{R}, F, F^{\prime}$. Since $F^{\prime} \cap \mathbf{D}=\emptyset$ and F^{\prime} is a R-rooted C-forest, it must be the case that $\mathbf{D} \cap \mathbf{R}=\emptyset$. Since $\mathbf{D} \cap \mathbf{R}=\emptyset$ and intervening on \mathbf{D} removes the incoming edges of \mathbf{D}, any member of $A n(Y \cup \mathbf{K} \cup \mathbf{W})$ will be in $T_{Y} \cup T_{J}$ such that $\mathbf{R} \subseteq T_{Y} \cup T_{J}$. But this is a contradiction due to the following:

Suppose $\mathbf{R} \subseteq T_{Y} \cup T_{J}$. Since $\mathbf{D} \cap \mathbf{R}=\emptyset$ and $F \cap \mathbf{D} \neq \emptyset$, that implies some members of \mathbf{D} must have a directed path to some members in \mathbf{R}. If that is the case, then that member of \mathbf{D} must also be in $T_{Y} \cup T_{H}$, where T_{Y} is a Y-rooted C-tree and T_{H} is a H-rooted C-tree for some $H \in C h(Y)$, which is also in T_{J}. But this is a contradiction as any member of \mathbf{D} cannot be in $T_{Y} \cup T_{J}$ by the definition of \mathbf{D}. Thus, $\mathbf{R} \nsubseteq\left(T_{Y} \cup T_{J}\right)$.

Therefore, there is no hedge for $P(Y \mid d o(\mathbf{D}), \mathbf{K}, \mathbf{W})$. By Theorem 3.2, $P(Y \mid d o(\mathbf{D}), \mathbf{K}, \mathbf{W})$ is identifiable in G.
Suppose $(Y \not \Perp \perp S \mid \mathbf{W}, \mathbf{K})_{G_{\overline{\mathrm{D}}}}$.
Next, we will show $(Y \Perp S \mid \mathbf{W}, \mathbf{K})_{G_{\overline{\mathrm{D}}}}$ for any $\mathbf{W} \subseteq\left(T_{Y} \cup T_{J}\right) \backslash(Y \cup \mathbf{K})$. Given that S is not a parent of T_{Y}, we will consider two cases separately: i.) $S \in A n(Y)$; ii. $) S \notin A n(Y)$
$S \in A n(Y)$: Suppose there exists a d-connecting path from S to Y by conditioning on $\mathbf{W} \cup \mathbf{K}$ and intervening on \mathbf{D} $\overline{\text { for some } \mathbf{W}} \subseteq\left(T_{Y} \cup T_{J}\right) \backslash(Y \cup \mathbf{K})$. First, there is no directed path from S to Y in $G_{\overline{\mathbf{D}}}$ since S is not a parent of T_{Y} by the conditions of the theorem and we intervene on \mathbf{D}, which is a superset of $P a\left(T_{Y}\right)$ and $Y \in T_{Y}$. For some $\mathbf{W} \subseteq\left(T_{Y} \cup T_{J}\right) \backslash(Y \cup \mathbf{K})$, conditioning on \mathbf{W} must have opened paths with colliders that are in $\operatorname{An}(\mathbf{W})$. However, since any member of \mathbf{W} is in $T_{Y} \cup T_{J}$ and any incoming edges of $P a\left(T_{Y} \cup T_{J}\right)$ are removed in $G_{\overline{\mathbf{D}}}$ and S is not a parent of any member of T_{J} by definition of T_{J}, there cannot be a d-connecting path from S to Y in $G_{\overline{\mathbf{D}}}$. Therefore, a contradiction. We have $(Y \not \Perp S \mid \mathbf{W}, \mathbf{K})_{G_{\overline{\mathrm{D}}}}$ for any $\mathbf{W} \subseteq\left(T_{Y} \cup T_{J}\right) \backslash(Y \cup \mathbf{K})$ when $S \in A n(Y)$.
$S \notin A n(Y)$: we will show i.) there is no d-connecting path from S to Y ends with a member of $C h(Y)$ and $i i$.) there is no d-connecting path from S to Y ends with a bidirected neighbor of Y.

Show that there is no d-connecting path from S to Y that ends with a member of $C h(Y)$. Any child of Y where parents of its MACS do not contain S will be in $T_{J}=\bigcup_{H \in \mathbf{K}} T_{H}$ for some $\mathbf{K} \subseteq \mathcal{H}$ and we intervene on $\operatorname{Pa}\left(T_{Y} \cup T_{J}\right)$ so that there is no path from S to any such child of Y. Suppose the d-connecting path from S to Y ends with some other members of $C h(Y)$. However, for any such path, we must have conditioned on the descendants of those children of Y to open the path from S to Y through some descendants of Y, but any child of Y that is in \mathbf{K}, its parents are also intervened such that any path from S to Y through those children are blocked. For any other children that are not in \mathbf{K} either form a collider or their descendants form a collider to block any other active paths from S to Y. Therefore, there is no d-connecting path from S to Y that ends with a member of $C h(Y)$.
Show that there is no d-connecting path from S to Y ends with a bidirected neighbor of Y. Suppose further that bidirected neighbor of Y is a child of Y. From above, we have proved there is no d-connecting path from S to Y ends with a member of $C h(Y)$. Suppose that bidirected neighbor of Y is not a child of Y and there exists some d-connecting paths from S to Y that ends with those bidirected neighbor of Y, for the case where there is no any descendant of those bidirected neighbors of Y is in \mathbf{W}, any path from S to Y along that bidirected neighbor of Y is blocked as there exists a collider along any such path and that bidirected neighbor is not in T_{J}. Therefore, there is no d-connecting path from S to Y. For the case where there exists some descendants of those bidirected neighbors \mathbf{X} of Y is in \mathbf{W}, but any parent of those descendants must be in \mathbf{D} such that all the incoming edges of any such parent are removed so that any d-connecting path from S to any of those parents will be blocked. Any d-connecting path from S to the members along the upstream path of those parents to \mathbf{X} will be blocked by a collider along the path by concatenating the path $Y \rightarrow X$ or $M \rightarrow L$ for some descendants M, L of \mathbf{X}, where $M \neq L$.

Therefore, we have $(Y \Perp S \mid \mathbf{W}, \mathbf{K})_{G_{\overline{\mathrm{D}}}}$.

A. 6 PROOF OF THEOREM 3.10

Theorem A.6. Let T_{Y} be the MACS of Y in G, T_{H} be the MACS of a child H of Y in G. Define $T_{\mathbf{C}}:=\bigcup_{H \in C h(Y)} T_{H}$, $\mathcal{Z}:=\left\{Z: Z \in(C(Y) \cap N b r(Y)) \backslash\left(T_{Y} \cup T_{\mathbf{C}}\right)\right.$ s.t. $\left.P a\left(T_{Y \cup Z}\right) \not \supset S\right\}$ and $T_{B}:=\bigcup_{Z \in \mathbf{M}} T_{Y \cup Z}$ for any $\mathbf{M} \subseteq \mathcal{Z}$ where $T_{Y \cup Z}$ is the MACS for the set $(Y \cup Z)$. Let $\mathbf{D}=P a\left(T_{B}\right)$. If S is not a parent of T_{Y}, then $P(Y \mid \operatorname{do}(\mathbf{D}), \mathbf{M}, \mathbf{W})$ is identifiable in G and $(Y \Perp S \mid \mathbf{W}, \mathbf{M})_{G_{\overline{\mathrm{D}}}}$ for any $\mathbf{W} \subseteq\left(T_{B}\right) \backslash(Y \cup \mathbf{M})$.

Proof. Let T_{Y} be the MACS of Y in G, T_{H} be the MACS of a child H of Y in G. Define $T_{\mathbf{C}}:=\bigcup_{H \in C h(Y)} T_{H}$. Let $\mathcal{Z}:=\left\{Z: Z \in(C(Y) \cap N b r(Y)) \backslash\left(T_{Y} \cup T_{\mathbf{C}}\right)\right.$ s.t. $\left.P a\left(T_{Y \cup Z}\right) \not \supset S\right\}, T_{B}:=\bigcup_{Z \in \mathbf{M}} T_{Z}$ for some $\mathbf{M} \subseteq \mathcal{Z}$. Let $\mathbf{D}=\operatorname{Pa}\left(T_{B}\right)$. Recall that by the conditions of the theorem, S is not a parent of T_{Y}.
Consider any $\mathbf{W} \subseteq\left(T_{B}\right) \backslash(Y \cup \mathbf{M})$. We first prove the following claim.
Claim: $P(Y \mid d o(\mathbf{D}), \mathbf{M}, \mathbf{W}) \neq P(Y \mid d o(\mathbf{D}, \mathbf{Q}),(\mathbf{M} \cup \mathbf{W}) \backslash \mathbf{Q})$ for any $\mathbf{Q} \subset \mathbf{M} \cup \mathbf{W}, \mathbf{Q} \neq \emptyset$.

Proof. For the sake of contradiction, suppose there exists a non-empty subset \mathbf{Q} where the equality holds. Under the extended faithfulness assumption, this would only be true if do-calculus Rule 2 is applicable through the following graphical condition:

$$
\begin{equation*}
(Y \Perp \mathbf{Q} \mid \mathbf{M} \cup \mathbf{W} \backslash Q)_{G_{\underline{\mathbf{Q}}, \overline{\mathrm{D}}}} \tag{2}
\end{equation*}
$$

Now observe that any node U in T_{B} must belong to a $T_{Y \cup Z}$ for some $Z \in \mathbf{M}$. By definition of $T_{Y \cup Z}$, there must be a bidirected path from U to Z and Y that only goes through nodes in $T_{Y \cup Z}$. By definition of $T_{Y \cup Z}$, any node along this bidirected path must be an ancestor of Z or Y. Therefore, there is a d-connecting path from U to Z or Y that starts with an arrow into U. Note that further conditioning cannot break this path since the path only consists of colliders. Finally, for the case where there is a d-connecting path from U to Z, as the conditioning set contains Z, we can concatenate this path with the edge $Y \leftrightarrow Z$ to obtain a d-connecting path to Y, since Z is a collider along this concatenated path. This contradicts with the d-separation statement above.

For the sake of contradiction, suppose for some $\mathbf{W} \subseteq\left(T_{B}\right) \backslash(Y \cup \mathbf{M})$, either $P(Y \mid \operatorname{do}(\mathbf{D}), \mathbf{M}, \mathbf{W})$ is unidentifiable in G or $(Y \not \Perp S \mid \mathbf{W}, \mathbf{M})_{G_{\overline{\mathbf{D}}}}$.
Suppose $P(Y \mid d o(\mathbf{D}), \mathbf{M}, \mathbf{W})$ is unidentifiable in G.
By Theorem 3.2, there must exists a hedge for $P(Y \mid d o(\mathbf{D}), \mathbf{M}, \mathbf{W})$. The claim above implies that the maximal set \mathbf{Q} such that $P(Y \mid d o(\mathbf{D}), \mathbf{M}, \mathbf{W})=P(Y \mid d o(\mathbf{D}, \mathbf{Q}), \mathbf{M} \cup \mathbf{W} \backslash \mathbf{Q})$ is an empty set by rule 2 of do-calculus.
Since $\mathbf{Q}=\emptyset$, by Definition 3.1, there exists a hedge for $P(Y \mid d o(\mathbf{D}), \mathbf{M}, \mathbf{W})$ only if there exists two \mathbf{R}-rooted C-forests F, F^{\prime} such that $F \cap \mathbf{D} \neq \emptyset$ and $F^{\prime} \cap \mathbf{D}=\emptyset$ for some $\mathbf{R} \subset A n(Y \cup \mathbf{M} \cup \mathbf{W})_{G_{\bar{D}}}$. Consider any such $\mathbf{R}, F, F^{\prime}$. Since $F^{\prime} \cap \mathbf{D}=\emptyset$ and F^{\prime} is a R-rooted C-forest, it must be the case that $\mathbf{D} \cap \mathbf{R}=\emptyset$. Since $\mathbf{D} \cap \mathbf{R}=\emptyset$ and intervening on \mathbf{D} removes the incoming edges of \mathbf{D}, any member of $A n(Y \cup \mathbf{M} \cup \mathbf{W})$ will be in T_{B} such that $\mathbf{R} \subseteq T_{B}$. But this is a contradiction due to the following:
Suppose $\mathbf{R} \subseteq T_{B}$. Since $\mathbf{D} \cap \mathbf{R}=\emptyset$ and $F \cap \mathbf{D} \neq \emptyset$, that implies some members of \mathbf{D} must have a directed path to some members in \mathbf{R}. If that is the case, then some members of \mathbf{D} must also be in $T_{Y \cup Z}$, which is also in T_{B}. But this is a contradiction as any member of \mathbf{D} cannot be in T_{B} by the definition of \mathbf{D}. Thus, $\mathbf{R} \nsubseteq T_{B}$.

Therefore, there is no hedge for $P(Y \mid d o(\mathbf{D}), \mathbf{M}, \mathbf{W})$. By Theorem 3.2, $P(Y \mid d o(\mathbf{D}), \mathbf{M}, \mathbf{W})$ is identifiable in G.
Suppose $(Y \not \Perp \backslash S \mid \mathbf{W}, \mathbf{M})_{G_{\overline{\mathrm{D}}}}$.
Next, we will show $(Y \Perp S \mid \mathbf{W}, \mathbf{M})_{G_{\bar{D}}}$ for any $\mathbf{W} \subseteq\left(T_{B}\right) \backslash(Y \cup \mathbf{M})$. Given that S is not a parent of T_{Y}, we will consider two cases separately: i.) $S \in A n(Y) ;$ ii. $) S \notin A n(Y)$
$S \in A n(Y)$: Suppose there exists a d-connecting path from S to Y by conditioning on $\mathbf{W} \cup \mathbf{M}$ and intervening on \mathbf{D} $\overline{\text { for some } \mathbf{W}} \subseteq T_{B} \backslash(Y \cup \mathbf{M})$. First, there is no directed path from S to Y in $G_{\overline{\mathbf{D}}}$ since S is not a parent of T_{Y} by the conditions of the theorem and we intervene on \mathbf{D}, which is a superset of $P a\left(T_{Y}\right)$ and $Y \in T_{Y}$ since $T_{Y} \subset T_{B}$. For some $\mathbf{W} \subseteq T_{B} \backslash(Y \cup \mathbf{M})$, conditioning on \mathbf{W} must have opened paths with colliders that are in $A n(\mathbf{W})$. However, since any member of \mathbf{W} is in T_{B} and any incoming edges of $P a\left(T_{B}\right)$ are removed in $G_{\overline{\mathbf{D}}}$ and S is not a parent of any member of $T_{Y \cup Z}$ by definition of T_{B}, there cannot be a d-connecting path from S to Y in $G_{\overline{\mathbf{D}}}$. Therefore, a contradiction. We have $(Y \not \Perp S \mid \mathbf{W}, \mathbf{M})_{G_{\overline{\mathbf{D}}}}$ for any $\mathbf{W} \subseteq T_{B} \backslash(Y \cup \mathbf{M})$ when $S \in A n(Y)$.
$S \notin A n(Y)$: we will show i.) there is no d-connecting path from S to Y ends with a member of $C h(Y)$ and $i i$.) there is no

Show that there is no d-connecting path from S to Y that ends with a member of $C h(Y)$. For the case where there is no descendant of any children of Y are in \mathbf{W}. Since \mathbf{W} does not contain any child of Y, any d-connecting path from S to any child J of Y, we can concatenate this path with the edge $Y \rightarrow J$ to obtain a blocked path to Y as J is a collider along this concatenated path. Suppose there exists some descendants of some children of Y that are in \mathbf{W}. Note that for any member in \mathbf{W}, its parents are in \mathbf{D} such that all incoming edges of those parents are removed and there cannot be a d-connecting path from S to Y by concatenating the path $Y \rightarrow J$ for any child J of Y as any J is not in \mathbf{W} nor such path can be opened by conditioning on \mathbf{W}.
Show that there is no d-connecting path from S to Y ends with a bidirected neighbor of Y. Suppose further that bidirected neighbor of Y is a child of Y. From above, we have proved there is no d-connecting path from S to Y ends with a member of $C h(Y)$. Any bidirected neighbor of Y where it is not a child of Y and the parents of its MACS do not contain S will be in $T_{B}=\bigcup_{Z \in \mathbf{M}} T_{Y \cup Z}$ for some $\mathbf{M} \subseteq \mathcal{Z}$ and we intervene on $P a\left(T_{B}\right)$ so that there is no path from S to any such bidirected
neighbor of Y. Suppose the d-connecting path from S to Y ends with some other members of bidirected neighbors that is not child of Y. Since those bidirected neighbors \mathbf{A} are not in \mathbf{W}, there exists some descendants of \mathbf{A} are in \mathbf{W}. However, for any such descendant, its parent must be in \mathbf{D} such that all the incoming edges of that parent are removed. That implies any such path is blocked. Since no member of \mathbf{A} are in \mathbf{W}, any d-connecting path will be blocked by concatenating $Y \rightarrow A$ and having a collider $A \in \mathbf{A}$ along that concatenated path. Thus, there is no d-connecting path from S to Y ends with a bidirected neighbor of Y.

Therefore, we have $(Y \Perp S \mid \mathbf{W}, \mathbf{M})_{G_{\overline{\mathbf{D}}}}$.

A. 7 PROOF OF THEOREM 3.11

We will first prove the following lemma.
Lemma A.7. If $S \notin A n(Y)$ and ID4IP (Algorithm 3) returns FAIL, then there is no parent of Y in G.

Proof. For the sake of contradiction, assume there exists some parents of Y in G. Given as the conditions of the lemma, we know that $S \notin A n(Y)$ and ID4IP returns FAIL. Since $S \notin A n(Y)$, ID4IP will only return FAIL at line 13 since line 6 requires that $S \in A n(Y) . P\left(Y \mid d o\left(P a\left(T_{Y}\right)\right), T_{Y} \backslash Y\right)$ will be a graph surgery estimator by Corollary 3.9 This is a contradiction because ID4IP returns FAIL at line 13 due to $P_{\text {set }}=\emptyset$. Therefore, if $S \notin A n(Y)$ and ID4IP returns FAIL, there is no parent of Y in G.

Theorem A.8. If there exists a graph surgery estimator, ID4IP outputs a graph surgery estimator.

Claim: Given $S \in A n(Y)$, if there exists a graph surgery estimator, ID4IP (Algorithm 3) outputs a graph surgery estimator. We will first prove the above claim

Proof. As given by the condition, $S \in A n(Y)$ and there exists a graph surgery estimator. By Theorem 3.7, $S \notin P a\left(T_{Y}\right)$, where T_{Y} is the MACS of $Y . S$ has no incoming edges by problem set up so S cannot be in T_{Y}. Also, since there is a directed path from S to Y and S is not a parent of $T_{Y}, S \in A n(M)$ for some $M \in P a\left(T_{Y}\right)$. By Corollary 3.9. ID4IP will output a graph surgery estimator at line 7 of the algorithm.

Next, we will prove the theorem.

Proof. With the claim above, we only need to consider the case where $S \notin A n(Y)$. Suppose $S \notin A n(Y)$. Note that since $S \notin A n(Y)$, this FAIL is returned by line $\mathbf{1 3}$ of the algorithm.
We will prove it by using contraposition. Suppose ID4IP returns FAIL, for the sake of contradiction, suppose also there exists a graph surgery estimator $P(Y \mid d o(\mathbf{Q}), \mathbf{W})$ for some $\mathbf{Q} \subseteq \mathbf{V}$ and some $\mathbf{W} \subseteq \mathbf{V} \backslash \mathbf{Q}$.
We will consider the following cases where i.) $\mathbf{Q}=\emptyset, \mathbf{W} \neq \emptyset$; ii.) $\mathbf{Q} \neq \emptyset, \mathbf{W}=\emptyset$; iii.) $\mathbf{Q} \neq \emptyset, \mathbf{W} \neq \emptyset$
i.) $\mathbf{Q}=\emptyset, \mathbf{W} \neq \emptyset$. Given $\mathbf{Q}=\emptyset, \mathbf{W} \neq \emptyset$, it must be the case that there exists some $W \in \mathbf{W}$ that has a d-connecting path to Y. By Lemma A.7, Y has no parents in G. It implies that any such path must end at a child of Y or a bidirected neighbor of Y. If such path ends at a child of Y, for any such child K of Y, there exists an inducing path from S to K since $S \in P a\left(T_{K}\right)$ and T_{K} is a K-rooted C-tree. It implies that there exists no subset in \mathbf{V} such that Y and S can be d-separated by Theorem 4.2 in [1]. Since $\mathbf{Q}=\emptyset$, we have $(Y \not \Perp S \mid \mathbf{W})_{G}$, which is a contradiction. Similarly, if such path ends at a bidirected neighbor of Y that is not a child of Y, for any such bidirected neighbor Z of $Y, S \in P a\left(T_{Y \cup Z}\right)$, which implies $(Y \not \Perp S \mid \mathbf{W})_{G}$. It is because ID4IP returns FAIL implies that S is a parent of the MACS of $\{Y, Z\}$ for any bidirected neighbor Z of Y that is not a child of Y. Observe that any node U in $T_{Y \cup Z}$ for any Z, U has a bidirected path to Z. By the definition of $T_{Y \cup Z}$, any node along this bidirected path must be an ancestor of Z. Therefore, there is a d-connecting path from U to Z that starts with an arrow into U. Note that further conditioning cannot break this path since the path only consists of colliders. As $\mathbf{W} \neq \emptyset$, if Z is not in \mathbf{W}, then any such member will be d-separated from Y by concatenating any d-connecting path from U to Z with $Y \leftrightarrow Z$ such that $P(Y \mid \mathbf{W})=P(Y)$. If Z is in \mathbf{W}, then $(Y \not \perp|S| \mathbf{W})_{G}$. Therefore, we have reached a contradiction for the case when $\mathbf{Q}=\emptyset, \mathbf{W} \neq \emptyset$.
ii.) $\mathbf{Q} \neq \emptyset, \mathbf{W}=\emptyset$. By Lemma A.7, there is no parent of Y in G. Any member of Q must be non-ancestors of Y. Then, either Y has a directed path to some $Q \in \mathbf{Q}$ or there is no directed path to any $Q \in \mathbf{Q}$ such that $(Y \Perp \mathbf{Q})_{G_{\overline{\mathbf{Q}}}}$. By rule 3 of do-calculus, that implies $P(Y \mid d o(\mathbf{Q}))=P(Y)$, which is a contradiction.
iii. $) \mathbf{Q} \neq \emptyset, \mathbf{W} \neq \emptyset$. We consider the case where $P(Y \mid d o(\mathbf{Q}), \mathbf{W}) \neq P(Y \mid \mathbf{W})$ and $P(Y \mid \operatorname{do}(\mathbf{Q}), \mathbf{W}) \neq P(Y \mid d o(\mathbf{Q}))$ as we have reached contradiction for those cases. Since there is no parent of Y in G by Lemma A.7, both \mathbf{Q} and \mathbf{W} must be non-ancestors of Y. Also, since ID4IP returns FAIL, there is no children H of Y where $S \notin P a\left(T_{H}\right)$ and there is also no bidirected neigbhor Z of \mathbf{Y} such that $S \notin P a\left(T_{Y \cup Z}\right)$.

If S is not connected with Y and ID4IP return FAIL, then there will be no children or bidirected neighbors of Y. It is because S is disconnected with Y implies $S \notin P a\left(T_{H}\right)$ and $S \notin P a\left(T_{Y \cup Z}\right)$ for any child and bidirected neighbor of Y. To see this, suppose there exist some children of Y and bidirected neighbor of Y in G, ID4IP will not return FAIL as any of those children and bidirected neighbors will be in either T_{H} or $T_{Y \cup Z}$ for some children of Y, H and bidirected neighbors Z of Y. We can have predictors return at line $\mathbf{8}$ and $\mathbf{1 0}$ of Algorithm 3. Thus, it is a contradiction. Since there are no children of Y and bidirected neighbors of Y and no parents of Y, any variable in \mathbf{V} will be d-separated from Y in G so that any query will be equal to $P(Y)$ such that there is no graph surgery estimator.
Suppose S is connected with Y. Since $S \notin A n(Y)$, for S to be connected with Y, any path from S to Y must have a collider. Let \mathbf{J} be the largest set such that $P(Y \mid d o(\mathbf{Q}), \mathbf{W})=P(Y \mid d o(\mathbf{Q} \cup \mathbf{J}), \mathbf{W} \backslash \mathbf{J})$ by rule 2 of do-calculus. In addition, let \mathbf{M} be the largest set such that $P(Y \mid d o(\mathbf{Q} \cup \mathbf{J}), \mathbf{W} \backslash \mathbf{J})=P(Y \mid d o((\mathbf{Q} \cup \mathbf{J}) \backslash \mathbf{M}), \mathbf{W} \backslash \mathbf{J})$ by rule 3 of do-calculus. If $(\mathbf{Q} \cup \mathbf{J}) \backslash \mathbf{M}=\emptyset$, then we reach the same contradiction as (i.). Suppose $(\mathbf{Q} \cup \mathbf{J}) \backslash \mathbf{M} \neq \emptyset$, it must be the case that any member in $(\mathbf{Q} \cup \mathbf{J}) \backslash \mathbf{M}$ is d-connected with Y when conditioning on $\mathbf{W} \backslash \mathbf{J}$ in $G_{(\mathbf{Q} \cup \mathbf{J}) \backslash \mathbf{M}}$ as implied by rule 3 of do-calculus.

Any such d-connecting path from a member A of $(\mathbf{Q} \cup \mathbf{J}) \backslash \mathbf{M}$ to Y must begin with an outgoing edge of some members N in $(\mathbf{Q} \cup \mathbf{J}) \backslash \mathbf{M}$ in $G_{(\mathbf{Q} \cup \mathbf{J}) \backslash \mathbf{M}}$. Since Y does not have any parents, this d-connecting path must end at some children of Y or some bidirected neighbors of Y that are in $\mathbf{W} \backslash \mathbf{J}$. However, for any such child H or bidirected neighbor Z of Y, it must be that $S \in P a\left(T_{H}\right)$ and $S \in P a\left(T_{Y \cup Z}\right)$ as implied by the condition that ID4IP returns FAIL.

For the case where the d-connecting path ends at H, without loss of generality, we consider the following three cases: $i . N$ is in T_{H} or $i i . N \in A n\left(T_{H}\right) \backslash T_{H}$ or iii. $N \in D e\left(T_{H}\right) \backslash T_{H}$. Note that the case $N \in T_{H}$ subsumes the case when H is also a bidirected neighbor of Y.
$i . N \in T_{H}$: If N is in T_{H}, then $P(Y \mid d o(\mathbf{Q}), \mathbf{W})$ is unidentifiable in G by the following construction of hedge condition: for a query $P(Y \mid d o((\mathbf{Q} \cup \mathbf{J}) \backslash \mathbf{M}), \mathbf{W} \backslash \mathbf{J})$, we can let $\mathbf{R}=\{H\}$, which is a proper subset of $A n(Y \cup(\mathbf{W} \backslash \mathbf{J}))$. Also, we can let $F^{\prime}=\{H\}$ and $F=T_{H}$ as T_{H} is a H-rooted C-tree. The result then follows Theorem 3.2,

For the next two cases, we will make use of this observation: observe that for any node U in T_{H}. By the definition of T_{H}, there must be a bidirected path from U to H that only goes through nodes in T_{H} and any node along this bidirected path must be an ancestor of H. Therefore, there is a d-connecting path from U to H that starts with an arrow into U. Note that further conditioning cannot break this path since the path only consists of colliders.
$\underline{i i . N \in A n\left(T_{H}\right) \backslash T_{H}}$: If N is in the $A n\left(T_{H}\right) \backslash T_{H}$ and $H \in \mathbf{W} \backslash \mathbf{J}$, then $(Y \not \Perp \quad S \mid \mathbf{W} \backslash \mathbf{J})_{G_{\overline{\mathbf{Q U J} \backslash \mathbf{M}}}}$. It is because $S \in P a\left(T_{H}\right)$ such that we can construct a d-connecting path from S to Y by concatenating $Y \rightarrow H$ with the bidirected path as outlined in the observation. Note that no member in $(\mathbf{Q} \cup \mathbf{J}) \backslash \mathbf{M}$ can be in T_{H} due to unidentifiability of the query as shown previously. Therefore, we have a contradiction. If $H \notin \mathbf{W} \backslash \mathbf{J}$, then any such path is blocked by H, which contradicts the fact that $(\mathbf{Q} \cup \mathbf{J} \backslash \mathbf{M})$ is non-empty by rule 3 of do-calculus.
iii. $N \in D e\left(T_{H}\right) \backslash T_{H}$: If $N \in D e\left(T_{H}\right) \backslash T_{H}$ and $H \in \mathbf{W} \backslash \mathbf{J}$, then we can obtain a d-connecting path from S to Y by $\overline{\text { concatenating } Y \rightarrow H}$ with the bidirected path as outlined in the observation, which is a contradiction. If $N \in D e\left(T_{H}\right) \backslash T_{H}$ and $H \notin \mathbf{W} \backslash \mathbf{J}$, then the such path is blocked by H, which contradict to the fact that $(\mathbf{Q} \cup \mathbf{J} \backslash \mathbf{M})$ is non-empty by rule 3 of do-calculus.

For the case where the d-connecting path ends at a bidirected neighbor Z of Y that is not a child of Y, without loss of generality, we also consider three cases: $i . N$ is in $T_{Y \cup Z}$ or $i i . N \in A n\left(T_{Y \cup Z}\right) \backslash T_{Y \cup Z}$ or $i i i . N \in D e\left(T_{Y \cup Z}\right)$.
$i . N \in T_{Y \cup Z}$: If N is in $T_{Y \cup Z}$, we can construct two R-rooted C-forests $F=T_{Y \cup Z}, F^{\prime}=\{Y, Z\}$ such that $F \cap$ $N \neq \emptyset, F^{\prime} \cap N=\emptyset$, where $\mathbf{R}=\{Y, Z\}$, which is the proper subset of $A n(Y \cup(\mathbf{W} \backslash \mathbf{J}))$ such that there exists a hedge for $P(Y \mid d o((\mathbf{Q} \cup \mathbf{J}) \backslash \mathbf{M}), \mathbf{W} \backslash \mathbf{J})$ by the characterization of generalized hedge condition. By Theorem 3.2, $P(Y \mid \operatorname{do}((\mathbf{Q} \cup \mathbf{J}) \backslash \mathbf{M}), \mathbf{W} \backslash \mathbf{J})$ is unidentifiable in G, which is a contradiction.

For the next two cases, we will make use of this observation: observe that any node U in $T_{Y \cup Z}$, there must be a bidirected path from U to Z and Y that only goes through nodes in $T_{Y \cup Z}$. By definition of $T_{Y \cup Z}$, any node along this bidirected path must be an ancestor of Z or Y. Therefore, there is a d-connecting path from U to Z or Y that starts with an arrow into U. Note that further conditioning cannot break this path since the path only consists of colliders.

 path as outlined in the observation. Also, no member in $(\mathbf{Q} \cup \mathbf{J}) \backslash \mathbf{M}$ can be in $T_{Y \cup Z}$ due to unidentifiability of the query as shown previously. If $Z \notin \mathbf{W} \backslash \mathbf{J}$, then any such path is blocked by Z, which contradicts the fact that $(\mathbf{Q} \cup \mathbf{J}) \backslash \mathbf{M}$ is non-empty by rule 3 of do-calculus
iii. $N \in \operatorname{De}\left(T_{Y \cup Z}\right) \backslash T_{Y \cup Z}$: If $N \in D e\left(T_{Y \cup Z}\right) \backslash T_{Y \cup Z}$ and $Z \in \mathbf{W} \backslash \mathbf{J}$, then we can obtain a d-connecting path from \bar{S} to Y by concatenating $Y \leftrightarrow Z$ with the bidirected path as outlined in the observation. If $N \in D e\left(T_{Y \cup Z}\right) \backslash T_{Y \cup Z}$ and $Z \notin \mathbf{W} \backslash \mathbf{J}$, then such path is blocked by Z, which contradict to the fact that $(\mathbf{Q} \cup \mathbf{J}) \backslash \mathbf{M}$ is non-empty by rule 3 of do-calculus.

Therefore, we reach a contradiction to the case where $\mathbf{Q} \neq \emptyset$ and $\mathbf{W} \neq \emptyset$.
Thus, there exists no graph surgery estimator. By contraposition, if there exists a graph surgery estimator, ID4IP (Algorithm 3) outputs a graph surgery estimator.

A. 8 PROOF OF THEOREM 3.12

Theorem A.9. (Soundness of Algorithm 3;ID4IP) When Algorithm 3-ID4IP returns an estimator, it is a graph surgery estimator with respect to the given target and the selection variable in G.

Proof. For line 5.6 in Algorithm 3, the soundness follows Theorem 3.7 where we describe how selection variable being a parent of T_{y} implies there is no graph surgery estimator. Then, the soundness of line 7 will follow Corollary 3.9 which shows how ID4IP can get graph surgery estimators by utilizing the parents of the MACS of Y.

In addition, Theorem 3.8 ensures the correctness of line 8 which utilizes the parents of the MACS of some children of the target that are not selection variables. For line $\mathbf{1 0}$, the soundness follows Theorem 3.10 which shows how ID4IP can find graph surgery estimators if any by utilizing the parents of the MACS of the bidirected neighbors of Y. Lastly, line 13 follows Theorem 3.11 which guarantees ID4IP to find at least one graph surgery estimator or show that there is no graph surgery estimator.

A. 9 PROOF OF THEOREM 4.1

In this proof, we will make use of the following theorems for the proof.
Theorem A.10. (Bayes-ball Complexity) [2] Given a causal graph $G=(\mathbf{V}, \mathbf{E})$, the time complexity of Bayes-ball algorithm is $O\left(|\mathbf{V}|+\left|\mathbf{E}_{\mathbf{V}}\right|\right)$, where $\mathbf{E}_{\mathbf{V}}$ are the edges incident to the nodes marked during the algorithm. In the worst case, it is linear time in the size of the graph.

Theorem A.11. [5] Find-MACS-on-set (G, \mathbf{Y}) outputs the MACS of \mathbf{Y} in polynomial time in the size of graph.
Proof. Let $|C h(S)|=C$. the Graph Surgery Estimator algorithm first finds all supersets of $C h(S)$. Getting all supersets of $C h(S)$ takes the complexity of $O\left(2^{|\mathbf{V}|-C}\right)$. Then, for each superset M, the Graph Surgery Estimator algorithm finds the power set of $\mathbf{V} \backslash(\mathbf{M} \cup Y)$, which takes $O\left(2^{\mid \mathbf{V} \backslash \backslash(\mathbf{M} \cup Y)}\right)$. Asymptotically, the complexity of finding power set for each superset becomes $O\left(2^{|\mathbf{V}|-(C+1)}\right)$ as $C h(S)$ is the smallest superset of $C h(S)$. Then, for each member \mathbf{Q} of each power set, two major operations attribute to the complexity of the algorithm are:

1. Using a for-loop to search through each member in \mathbf{Q}. Then, it checks for d-separation condition within each loop, resulting in the complexity of $O\left(|\mathbf{Q}| \times\left(\left|\mathbf{V}+\mathbf{E}_{\mathbf{V}}\right|\right)\right)$ with the use of Bayes-ball algorithm [2].
2. Calling ID algorithm for checking the identifiability of the returned unconditional query, which takes the complexity of $O(B)$

Theorem A.12. (GSE Complexity) Let $|C h(S)|=C, \mathbf{M}=C h(S), \mathbf{Q}=\mathbf{V} \backslash(\mathbf{M} \cup Y)$. Given a causal graph $G=(\mathbf{V}, \mathbf{E})$ and disjoint variables $\mathbf{X}, \mathbf{Y} \subset V$, the time complexity of Graph Surgery Estimator (GSE) (Algorithm 5 in Section B.4) is: $O\left(2^{2(|\mathbf{V}|-C)-1} \times B\right)$, where B represents the time complexity of ID algorithm.

Proof. From Theorem A.11 and A.10, we can derive the the complexity of the Graph Surgery Estimator as $O\left(2^{|\mathbf{V}|-C+|\mathbf{V} \backslash(\mathbf{M} \cup Y)|} \times|\mathbf{Q}| \times\left(|\mathbf{V}|+\left|\mathbf{E}_{\mathbf{V}}\right|\right) \times B\right)$, which we can simplify to $O\left(2^{2(|\mathbf{V}|-C)-1} \times B\right)$.

A.10 PROOF OF THEOREM 4.3

Theorem A.13. (ID4IP Complexity) Given a causal graph $G=(\mathbf{V}, E)$ and disjoint variables $\mathbf{X}, \mathbf{Y} \subseteq \mathbf{V}$, the complexity of ID4IP (Algorithm 3) is $\left.O\left(\left|(C(Y) \cap N b r(Y)) \backslash\left(T_{Y} \cup T_{\mathbf{C}}\right)\right|+|C h(Y)|+1\right) K+\left(\left|T_{Y}\right|-1+\left|T_{J}\right|+\left|T_{J}^{\prime}\right|-\left|\mathcal{H}^{\prime}\right|-|\mathcal{H}|\right) B\right)$, where K represents the time complexity of Find-MACS-on-set and B represents the time complexity of ID algorithm, T_{Y} be the MACS of Y in G, T_{H} be the MACS of a child H of Y in G, and $T_{\mathbf{C}}:=\bigcup_{H \in C h(Y)} T_{H}$.

Proof. By Theorem4.2. Find-MACS-on-set outputs the MACS of a set in polynomial time in the size of the graph. We let $O(K)$ be the complexity of Find-MACS-on-set so that line 4 takes $O(K)$. Let $O(B)$ be the time complexity of ID algorithm. At line 7 of ID4IP, it takes $O\left(\left|T_{Y}\right|-1\right)$ to search through the sets \mathbf{W} and each time it calls on ID algorithm so that each Greedy-Eval takes $O\left(\left(\left|T_{Y}\right|-1\right) B\right)$. The line $\mathbf{8}$ takes $O\left(|C h(Y)| K+\left(\left|T_{J}\right|-|\mathcal{H}|\right) B\right)$ because we call on Find-MACS-on-set $|C h(Y)|$ many times and each time Find-MACS-on-set takes $O(K)$. Now we have, $\mathcal{H}:=\{H: H \in C h(Y)$, $\left.P a\left(T_{H}\right) \not \supset S\right\}$ and $T_{J}:=\bigcup_{H \in \mathbf{K}} T_{H}$ for any $\mathbf{K} \subseteq \mathcal{H}$, where T_{H} is the MACS with respect to the variable H. Therefore, after finding the MACS of each child of Y, we use Greedy-Eval, which calls on ID algorithm $\left|T_{J}\right|-|\mathcal{H}|$ times.

Line 10, similar to line $\mathbf{8}$, it finds the MACS of each bidirected neighbor of Y that is not child nor parent of Y, which results in $O\left(\left|(C(Y) \cap N b r(Y)) \backslash\left(T_{Y} \cup T_{\mathbf{C}}\right)\right| K\right)$. Here, we have, $\mathcal{H}^{\prime}:=\left\{H^{\prime}: H^{\prime} \in(C(Y) \cap N b r(Y)) \backslash\left(T_{Y} \cup T_{\mathbf{C}}\right)\right.$, $\left.P a\left(T_{H^{\prime}}\right) \not \supset S\right\}$ and $T_{J}^{\prime}:=\bigcup_{H^{\prime} \in \mathbf{K}} T_{H^{\prime}}$ for any $\mathbf{K} \subseteq \mathcal{H}^{\prime}$, where $T_{H^{\prime}}$ is the MACS with respect to the variable H^{\prime}. Then, we will use Greedy-Eval, which calls on ID algorithm $\left|T_{J}^{\prime}\right|-\left|\mathcal{H}^{\prime}\right|$ times, where $T_{J}^{\prime} \neq T_{J}$ and $\mathcal{H}^{\prime} \neq \mathcal{H}$. Therefore, line 10 takes $O\left(\left|(C(Y) \cap N b r(Y)) \backslash\left(T_{Y} \cup T_{\mathbf{C}}\right)\right| K+\left(\left|T_{J}^{\prime}\right|-\left|\mathcal{H}^{\prime}\right|\right) B\right)$. Therefore, ID4IP takes $O\left(K+\left(\left|T_{Y}\right|-1\right) B+\right.$ $\left.|C h(Y)| K+\left(\left|T_{J}\right|-|\mathcal{H}|\right) B+\left|(C(Y) \cap N b r(Y)) \backslash\left(T_{Y} \cup T_{\mathbf{C}}\right)\right| K+\left(\left|T_{J}^{\prime}\right|-\left|\mathcal{H}^{\prime}\right|\right) B\right)$, which can be simplified to $\left.O\left(\left|(C(Y) \cap N b r(Y)) \backslash\left(T_{Y} \cup T_{\mathbf{C}}\right)\right|+|C h(Y)|+1\right) K+\left(\left|T_{Y}\right|-1+\left|T_{J}\right|+\left|T_{J}^{\prime}\right|-\left|\mathcal{H}^{\prime}\right|-|\mathcal{H}|\right) B\right)$

A. 11 PROOF OF LEMMA A. 14

Lemma A.14. If there is no hedge for $P(\mathbf{Y} \mid d o(\mathbf{X}))$, then $P(\mathbf{Y} \mid d o(\mathbf{X}))$ is identifiable in G.

Proof. Suppose there is no hedge for $P(\mathbf{Y} \mid \operatorname{do}(\mathbf{X}))$. Therefore, for any $\mathbf{R} \subseteq A n(Y)_{G_{\bar{X}}}$, there does not exist two \mathbf{R}-rooted C forests $F^{\prime} \subset F \subseteq V$ such that $F \cap \mathbf{X} \neq \emptyset$ and $F^{\prime} \cap \mathbf{X}=\emptyset$. Equivalently, it must be the case that for any $\mathbf{R} \subseteq A n(Y)_{G_{\overline{\mathbf{X}}}}$ and \mathbf{R}-rooted C forests $F^{\prime} \subset F \subseteq V$, either $F \cap \mathbf{X}=\emptyset$ or $F^{\prime} \cap \mathbf{X} \neq \emptyset$.

We consider two cases: i.) there is no bidirected path from \mathbf{X} to any of its children $i i$.) there is a bidirected path from \mathbf{X} to some of its children.

Suppose there is no bidirected path from any of the nodes in X to any of their children in $G_{A n(Y)}$. By Theorem 4 of [7], the query $P(\mathbf{Y} \mid \operatorname{do}(\mathbf{X}))$ is then identifiable.

Suppose there is a bidirected path from some of the nodes in X to some of their children in $G_{A n(\mathrm{Y})}$. For case $i i$, suppose there is a bidirected path from \mathbf{X} to some of its children in $G_{A n(\mathbf{Y})}$. For any $\mathbf{R} \subseteq A n(\mathbf{Y})_{G_{\overline{\mathbf{X}}}}$, either there is \mathbf{R}-rooted C-forest F^{\prime} such that $F^{\prime} \cap \mathbf{X}=\emptyset$ but $F \cap \mathbf{X} \neq \emptyset$ or there is a \mathbf{R}-rooted C-forest F such that $F \cap \mathbf{X} \neq \emptyset$ but $F^{\prime} \cap \mathbf{X} \neq \emptyset$ for any R-rooted C-forest F^{\prime}. Given these conditions, we will show that by soundness of ID algorithm [4], we will have $p(\mathbf{y} \mid d o(\mathbf{x}))$ being identifiable in G.
We will briefly describe the ID algorithm (Algorithm 3) here. At step 6, the ID algorithm takes the induced subgraph of G over $\operatorname{An}(\mathbf{Y})$, then it partitions $G_{A n(\mathbf{Y})}$ into various induced subgraphs of $G_{A n(\mathbf{Y})}$ over all possible C-components at step 13 of the algorithm. Since there is a hedge for $p(\mathbf{y} \mid d o(\mathbf{x}))$ if and only if the ID algorithm returns at step 18 of the algorithm by the soundness of ID algorithm, we will proceed by showing we will never run into step 18 of the algorithm given the conditions described in the previous paragraph.

When ID algorithm returns FAIL, the graph G at step 17 may not necessarily refer to the original causal graph G that has been passed into ID, but rather a subgraph of G after taking step 13 of the algorithm along with the other potential recursive steps 6 through 11 . We use $G^{\prime} \subseteq G$ in the rest of the argument for the sake of clarity.

For the sake of contradiction, assume there exists a C-component in some subgraphs of $G^{\prime} \subseteq G$ such that $C\left(G^{\prime} \backslash \mathbf{X}\right)=\{S\}$ and $C\left(G^{\prime}\right)=\left\{G^{\prime}\right\}$. By definition, we can construct a \mathbf{R}-rooted C-forest F^{\prime} as S such that $F^{\prime} \cap \mathbf{X}=\emptyset$. Now, given $C\left(G^{\prime}\right)=\left\{G^{\prime}\right\}$ and by definition of hedge, $\mathbf{X} \notin \mathbf{R}$, we can also construct another \mathbf{R}-rooted \mathbf{C}-forest F such that $F \cap \mathbf{X} \neq \emptyset$. Then, there exists a hedge for $P(\mathbf{Y} \mid d o(\mathbf{X}))$, which is a contradiction. Therefore, we will never run into step 5 of the ID algorithm. Then, ID will return an identifiable query. Therefore, we have that $P(\mathbf{Y} \mid d o(\mathbf{X}))$ is identifiable in G.

A. 12 PROOF OF THEOREM A. 15

Theorem A.15. There exists a hedge for $P(\mathbf{Y} \mid d o(\mathbf{X}))$ if and only if $P(\mathbf{Y} \mid d o(\mathbf{X}))$ is unidentifiable in G

Proof. By Lemma A. 14 and Theorem 4 in [3], the result follows.

A. 13 PROOF OF THEOREM A.16

Theorem A.16. $P(Y \mid d o(\mathbf{X}))$ is identifiable if and only if there is no hedge for $P\left(Y \mid d o\left(\mathbf{X}^{\prime}\right)\right)$ where \mathbf{X}^{\prime} is the smallest subset of \mathbf{X} such that $P\left(Y \mid \operatorname{do}\left(\mathbf{X}^{\prime}\right)\right)=P(Y \mid \operatorname{do}(\mathbf{X}))$.

Proof. (\Leftarrow) Suppose there is no hedge for $P\left(Y \mid d o\left(\mathbf{X}^{\prime}\right)\right)$, where \mathbf{X}^{\prime} is the smallest subset of \mathbf{X} such that $P\left(Y \mid d o\left(\mathbf{X}^{\prime}\right)\right)=$ $p(y \mid d o(\mathbf{x}))$. Since $P\left(Y \mid d o\left(\mathbf{X}^{\prime}\right)\right)=P(Y \mid d o(\mathbf{X}))$, there also exists no hedge for $P(Y \mid d o(\mathbf{X}))$. By Lemma A.14, we have that $P(Y \mid d o(\mathbf{X}))$ is identifiable in G.
(\Rightarrow) Suppose there exists a hedge for $P\left(Y \mid d o\left(\mathbf{X}^{\prime}\right)\right)$, where \mathbf{X}^{\prime} is the smallest subset of \mathbf{X} such that $P\left(Y \mid d o\left(\mathbf{X}^{\prime}\right)\right)=$ $P(Y \mid d o(\mathbf{X}))$. Then, by Theorem 4 in [3], we have that $P\left(Y \mid d o\left(\mathbf{X}^{\prime}\right)\right)$ is unidentifiable so that $P(Y \mid d o(\mathbf{X}))$ is also unidentifiable. By contraposition, $p(y \mid d o(\mathbf{x}))$ is identifiable implies there is no hedge for $P\left(Y \mid d o\left(\mathbf{X}^{\prime}\right)\right)$, where \mathbf{X}^{\prime} is the smallest subset of \mathbf{X} such that $P\left(Y \mid d o\left(\mathbf{X}^{\prime}\right)\right)=P(Y \mid d o(\mathbf{X}))$

A. 14 PROOF OF LEMMA A. 17

Lemma A.17. Let F be a Y-rooted C-tree in $G=(\mathbf{V}, \mathbf{E})$. For any $K \in F \backslash\{Y\}$ such that $K \subseteq \mathbf{J} \subseteq \mathbf{V} \backslash\{Y\}$ and for any $\mathbf{W} \subseteq \mathbf{V} \backslash(\mathbf{J} \cup Y), P(Y \mid \operatorname{do}(\mathbf{J}), \mathbf{W})$ is unidentifiable in G.

Proof. We will show that there exists a hedge for $p(y \mid d o(\mathbf{j}), \mathbf{w})$ according to the definition 3.1] By Theorem 20 in [4], there exists a unique maximal set \mathbf{Z} such that $P(Y \mid d o(\mathbf{J}), \mathbf{W})=P(Y \mid d o(\mathbf{J}, \mathbf{Z}), \mathbf{W} \backslash \mathbf{Z})$. Since $K \in F \backslash\{Y\}$ and $K \subseteq \mathbf{J}$, we have that $F \cap(\mathbf{J} \cup \mathbf{Z}) \neq \emptyset$. Next, we let $F^{\prime}=\{Y\}$ such that $F^{\prime} \cap(\mathbf{J} \cup \mathbf{Z})=\emptyset$. By definition 3.1, there exists a hedge for $P(Y \mid d o(\mathbf{J}), \mathbf{W})$. By Theorem 3.2. $P(Y \mid d o(\mathbf{J}), \mathbf{W})$ is unidentifiable in G.

B ALGORITHMS

In this section, we provide the pseudo-codes of the algorithms that we call as sub-routines from the algorithms in the main paper.

B. 1 COMPUTELOSS

```
Input: A set of targets \(\mathbf{Y}\), an intervention set \(\mathbf{X}\)
Output: the value of \(P(\mathbf{Y} \mid d o(\mathbf{X}))\)
\(P=\mathbf{I D}(\mathbf{Y}, \mathbf{X}, G)\{\) Algorithm 3\}
\(P_{s}=P / \sum_{Y} P\)
\(L=\) Compute validation loss \(l\left(P_{s}\right)\)
Return \(L\)
```

Algorithm 1: computeLoss(\mathbf{Y}, \mathbf{X})

B. 2 FIND-MACS-ON-SET

Input: A causal graph G, an AC-component \mathbf{Y} in G
Output: $T_{\mathbf{Y}}$, a subgraph of G, the maximal ancestral confounded set for \mathbf{Y} in G.
if $\exists X \notin A n(\mathbf{Y})_{G}$ then
Return Find-MACS-on-set $\left(G_{A n(\mathbf{Y})}, \mathbf{Y}\right)$
if $\exists Y \in \mathbf{Y}, \exists X \notin C(Y)_{G}$ then
Return Find-MACS-on-set $\left(G_{C(Y)}, \mathbf{Y}\right)$
else
Return G
Algorithm 2: Find-MACS-on-set (G, \mathbf{Y}) [5]

B. 3 ID ALGORITHM

```
Input: a set of target variables \(\mathbf{Y}\), a set of random variables for intervention \(\mathbf{X}\), a probability distribution \(P\), a causal
graph \(G\)
Output: Expression for \(P(Y \mid d o(\mathbf{X}))\) in terms of \(P\) or FAIL \(\left(F, F^{\prime}\right)\)
if \(\mathbf{X}=\emptyset\) then
    Return \(\sum_{\mathbf{V} \backslash \mathbf{Y}} P(\mathbf{v})\)
if \(\mathbf{V} \backslash A n(\mathbf{Y})_{G} \neq \emptyset\) then
    Return ID \(\left(\mathbf{Y}, \mathbf{X} \cap A n(\mathbf{Y})_{G}, \sum_{\mathbf{V} \backslash A n(\mathbf{Y})_{G}} P, G_{A n(\mathbf{Y})}\right)\)
Let \(\mathbf{W}=(\mathbf{V} \backslash \mathbf{X}) \backslash \operatorname{An}(\mathbf{Y})_{G_{\overline{\mathbf{X}}}}\)
if \(\mathbf{W} \neq \emptyset\) then
    Return ID \((\mathbf{Y}, \mathbf{X} \cup \mathbf{W}, P, G)\)
if \(C(G \backslash \mathbf{X})=\left\{S_{1}, \ldots, S_{k}\right\}\) then
    Return \(\sum_{\mathbf{V} \backslash(\mathbf{Y} \cup \mathbf{X})} \prod_{i} \mathbf{I D}\left(S_{i}, \mathbf{V} \backslash S_{i}, P, G\right)\)
if \(C(G \backslash \mathbf{X})=\{S\}\) then
    if \(C(G)=\{G\}\) then
        Return \(\operatorname{FAIL}(G, G \cap S)\)
        if \(S \in C(G)\) then
            Return \(\sum_{S \backslash \mathbf{Y}} \prod_{\left\{i \mid V_{i} \in S\right\}} P\left(V_{i} \mid V_{\pi}^{i-1}\right)\)
        if \(\exists S\) s.t. \(S \subset S^{\prime} \in C(G)\) then
            Return ID(Y, X \(\left.\cap S^{\prime}, \prod_{\left\{i \mid V_{i} \in S\right\}} P\left(V_{i} \mid V_{\pi}^{(i-1)} \backslash S\right), G_{S^{\prime}}\right)\)
```

 Algorithm 3: \(\operatorname{ID}(\mathbf{Y}, \mathbf{X}, P, G)\) [4]

B. 4 GRAPH SURGERY ESTIMATOR ALGORITHM

In this section, we present the main algorithms in [6].

```
Input: Acyclic Directed Mixed Graph (ADMG) \(G=(\mathbf{V}, \mathbf{E})\), disjoint variable sets \(\mathbf{X}, \mathbf{Y}, \mathbf{Z} \subset \mathbf{V}\)
Output: Unconditional query \(P(\mathbf{Y} \mid d o(\mathbf{X}), \mathbf{Z})\)
\(\mathbf{X}^{\prime}=\mathbf{X}\)
\(\mathbf{Y}^{\prime}=\mathbf{Y}\)
\(\mathbf{Z}^{\prime}=\mathbf{Z}\)
while \(\exists Z \in \mathbf{Z}\) s.t. \((\mathbf{Y} \Perp Z \mid \mathbf{X}, \mathbf{Z} \backslash\{Z\})_{G_{\overline{\mathbf{x}}, \underline{Z}}}\) do
    \(\mathbf{X}^{\prime}=\mathbf{X}^{\prime} \cup Z\)
    \(\mathbf{Z}^{\prime}=\mathbf{Z}^{\prime} \backslash\{Z\}\)
\(\mathbf{Y}^{\prime}=\mathbf{Y} \cup \mathbf{Z}\)
Return \(\mathbf{X}^{\prime}, \mathbf{Y}^{\prime}\) of unconditional query \(P\left(\mathbf{Y}^{\prime} \mid d o\left(\mathbf{X}^{\prime}\right)\right)\)
```

Algorithm 4: Unconditional Query: $\mathrm{UQ}(\mathbf{X}, \mathbf{Y}, \mathbf{Z} ; G)[6]$

```
Input: ADMG \(G\), mutable variables \(\mathbf{M}\), target \(T\)
```

Ouput: Expression for the surgery estimator or FAIL if there is no stable estimator.
$S_{I D}=\emptyset$
Loss $=\emptyset$
for $\mathbf{Z} \in \mathcal{P}(\mathbf{V} \backslash(\mathbf{M} \cup\{T\})) \mathbf{d o}$
if $T \notin \mathbf{M}$ then
$\mathbf{X}, \mathbf{Y}=U Q(\mathbf{M},\{T\}, \mathbf{Z}, \mathcal{G})$
try
$P=\mathbf{I D}(\mathbf{X}, \mathbf{Y}, G)$
$P_{s}=P / \sum_{Y} P$
Compute the validation loss $l\left(P_{s}\right)$
$S_{I D}$.append $\left(P_{s}\right) ;$ Loss.append $\left(l\left(P_{s}\right)\right)$
catch
continue
$\mathbf{X}, \mathbf{Y}=\mathbf{U Q}\left(\mathbf{M},\{T\}, \mathbf{Z} ; \mathbf{G}_{\bar{T}}\right)$
$\mathbf{X}=\mathbf{X} \cup\{T\}$
$\mathbf{Y}=\mathbf{Y} \backslash\{T\}$
if $\mathbf{Y} \cap(T \cup C h(T))=\emptyset$ then
continue
try
$P=\mathbf{I D}(\mathbf{X}, \mathbf{Y}, G)$
$P_{s}=P / \sum_{Y} P$
Compute the validation loss $l\left(P_{s}\right)$
$S_{I D} . \operatorname{append}\left(P_{s}\right) ;$ Loss.append $\left(l\left(P_{s}\right)\right)$
catch
continue
if $S_{I D}=\emptyset$ then
Return FAIL
Return $P_{s} \in S_{I D}$ with lowest corresponding Loss
Algorithm 5: Graph Surgery Estimator $(G, \mathbf{M}, Y)[6]$

C SEMI-SYNTHETIC CAUSAL GRAPHS

C. 1 SACHS CAUSAL GRAPH

(a) Original Sachs causal graph with the target variable (b) Modified Sachs causal graph with the selection vari(yellow) able (green)

Figure 1: Semi-synthetic experimental results

C. 2 ALARM CAUSAL GRAPH

(a) Original Alarm causal graph with the target variable (yellow)

(b) Modified Alarm causal graph with the selection variable (green)

Figure 2: Semi-synthetic causal graph: Alarm

REFERENCES

[1] Thomas Richardson and Peter Spirtes. Ancestral graph markov models. The Annals of Statistics, 30(4):962-1030, 2002.
[2] Ross D Shachter. Bayes-ball: The rational pastime (for determining irrelevance and requisite information in belief networks and influence diagrams). arXiv preprint arXiv:1301.7412, 2013.
[3] Ilya Shpitser and Judea Pearl. Identification of joint interventional distributions in recursive semi-Markovian causal models. eScholarship, University of California, 2006.
[4] Ilya Shpitser and Judea Pearl. Complete identification methods for the causal hierarchy. Journal of Machine Learning Research, 9:1941-1979, 2008.
[5] Ilya Shpitser and Judea Pearl. Dormant independence. AAAI Press, 2008.
[6] Adarsh Subbaswamy, Peter Schulam, and Suchi Saria. Preventing failures due to dataset shift: Learning predictive models that transport. In The 22nd International Conference on Artificial Intelligence and Statistics, pages 3118-3127. PMLR, 2019.
[7] Jin Tian and Judea Pearl. A general identification condition for causal effects. eScholarship, University of California, 2002.

