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Abstract

Unsupervised anomaly detection is a binary classi-
fication that detects anomalies in unseen samples
given only unlabeled normal data. Reconstruction-
based approaches are widely used, which perform
reconstruction error minimization on training data
to learn normal patterns and quantify the degree
of anomalies by reconstruction errors on testing
data. However, this approach tends to miss anoma-
lies when the normal data has multi-pattern. Be-
cause the model generalizes unrestrictedly beyond
normal patterns even to include anomaly patterns.
In this paper, we proposed a memory mechanism
that memorizes typical normal patterns through a
capacity-controlled external differentiable matrix
so that the generalization of the model to anoma-
lies is limited by the retrieval of the matrix. We
achieved state-of-the-art performance on several
public benchmarks.

1 INTRODUCTION

Overconfident models can lead to silent failures. Once a
trained model is deployed into an open-world scenario, it
will inevitably produce silent failures[González et al., 2022],
meaning that the model is overconfident in subsuming un-
known classes into known classes without making any dec-
larations. The cost of silent failure is unacceptable in areas
such as medical diagnosis, military decision-making, and
financial risk control. Therefore, it is necessary to equip the
model with the ability to truthfully report unknowns.

The unsupervised anomaly detection (UAD) task is kind
of known-or-unknown judgment on unseen data given un-
labeled known (normal) data, which requires the model
to detect unknowns (anomalies) based on the generaliza-
tion of the known (normal) data[Yang et al., 2021]. The
reconstruction-based approach as shown in fig. 2 is the clas-

sical paradigm of UAD, which minimizes the reconstruction
error on the normal data with the help of autoencoder (AE)
framework for training, and then detects anomalies by recon-
struction error[Bengio et al., 2006, Baldi, 2012, Ruff et al.,
2021]. AD framework expect small reconstruction errors
on normal samples and relatively large ones on anomaly
samples. However, some studies have found and pointed
out the failure case[Zong et al., 2018, Gong et al., 2019],
i.e., the anomalies are also well generalized thus failing to
produce significant reconstruction errors. To visualize the
failure case of the overgeneralized anomalies, we show the
illustration in fig. 3. The overgeneralized anomalies will
lead to reconstruction errors that are difficult to distinguish
from normal ones. The overgeneralization problem (OGP)
has the following challenges.

One challenge comes from the unlabeled training set, where
the data may be non-single patterns. The lack of pattern
labels leads to two dilemmas, as shown in fig. 1b. First,
it is impossible to know what pattern an instance belongs
to when given one. Second, it is impossible to know how
many patterns the training data has when given one. In other
words, neither the boundaries nor the number of patterns is
available. Label-free guided AE networks need to generalize
patterns in isolation. This is why unsupervised networks are
unable to sensitively extract patterns in the data leading to
overconfident models.

Another challenge comes from the test set, where the data
may be semantic anomalies[Ahmed and Courville, 2019].
A semantic anomaly is an anomaly that differs from the
normal pattern only at the semantic level. For example, in
2D graphical anomaly detection with known normal data,
the anomalies in the test set can be roughly divided into
two categories, as shown in fig. 1a. The two categories of
anomalies on either side of the dotted line are 3D graphics
and 2D graphics, respectively. For the anomaly detection
model, detecting 3D anomalies is very simple because there
is a big difference between 3D and 2D. However, detecting
2D anomalies requires further analysis of the number of
edges, corners, and angles of the graph, which places a
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(a) Test set challenge.

(b) Training set challenge.

Figure 1: Two major challenges of OGP. Test Set Challenge:
Anomalies are represented in red and normal in purple. The
anomalies shown on the left side of the dashed line are
clearly different from the training set and can be detected
easily. The right side of the dashed line shows the semantic
anomalies. Hexagons and trapezoids represent semantic-
level anomalies that are homologous to the original dataset,
which is more insidious and difficult to detect. A large per-
centage of non-semantic anomalies can yield seemingly
good performance. But when all the anomalies in the test
set are semantic anomalies, the performance of the model
is exposed realistically. Training Set Challenge: The un-
supervised learning dilemma in the unlabeled multi-pattern
training set is shown on the left. The training sets for the
unlabeled and labeled scenarios are shown on the left and
right, respectively.

higher demand on pattern analysis at a finer granularity.
In other words, semantic anomalies are more difficult to
distinguish from normal ones.

Many methods have been proposed one after another to try
to solve the OGP. MemAE[Gong et al., 2019] proposed a
memory module that makes progress on a class of classifica-
tion scenarios with a combination of prototype learning and
sparse attention mechanisms. MNAD[Park et al., 2020] pro-
posed a memory module that learns in a clustering-like man-
ner without the aid of gradient updating. SSPCAB[Ristea
et al., 2022] proposed a convolutional attention block to
improve anomaly detection. It needs to be affirmed that the
academic community has recognized that the reconstruction
false-negative problem is caused by the model falling into
the OGP, which means that the model simply generalizes a
reconstruction constant mapping in a one-sided manner like
memoryless learning.

However, no study has yet combined the two previously
mentioned challenges(figs. 1a and 1b), i.e., detecting seman-

Figure 2: The reconstruction-based AD approaches.

Figure 3: The visual illustration of overgeneralized anoma-
lies. We selected the numbers 1 to 9 as the normal and 0 as
the anomalies from MNIST. We use a fully connected AE
as a reconstruction model to train on normal classes. The
purple box in the figure shows the result of the model recon-
structing the known classes. The lower right corner of the
red box shows the reconstruction results of the anomalies.
We expect the model to produce the reconstruction shown
in the picture marked in the green box for normal classes,
resulting in a sufficiently large reconstruction error. But in
fact, the model outputs the picture marked by the orange
box, which means that the model also generalizes well to
the anomalies.

tic anomalies under unlabeled multi-pattern normal data.
Beyond that, all the existing methods inevitably introduce
multiple hyperparameters both in the module and penalty
term, which makes the models need to be well-tuned for
deployment in real industrial applications in advance. And
once the task is changed, the previous optimal combination
of hyperparameters may need to be tuned again in order to
achieve usable performance. These methods are not user-
friendly in terms of comprehensibility and implementation
in practical deployments. We propose a memory mechanism
that can be performed simultaneously with model training
and does not introduce any additional penalty term in the
reconstruction loss. The memory mechanism can be well
encapsulated by platforms such as PyTorch[Paszke et al.,
2019] with only one line of code to equip existing mod-
els. The memory mechanism can effectively cope with the
coexistence of training and test set challenges because the
memory space learns to extract data patterns instead of just
unilaterally generalizing the reconstruction mapping.
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Overall, the core contributions of this paper are as follows:

• We proposed a capacity-controlled memory mecha-
nism with a mapping-sharing strategy (section 3.2),
which could be a viable solution to the OGP to cope
with the coexistence of training and test set challenges.

• We proposed a memory-based autoencoder, called a
Memorizer (section 3.4), which uses a multi-round
memory mechanism for learning (section 3.3).

• We proposed a challenging experimental setup under
the unlabeled non-single class normal data condition
(section 3.1) conforming to real-world scenarios (fig. 1)
different from the previous work with a non-single
class of normal data, following the latest recommenda-
tions from academia.

• We reached state-of-the-art on several public bench-
marks, proving the effectiveness of the memory mech-
anism.

2 RELATED WORK

Anomaly Detection. Anomaly detection is a complex
problem because anomalies are unknown and rare[Pang
et al., 2021]. Anomaly detection has been intensively
studied under statistical techniques, such as Gaussian
method[Barnett, 1976, Barnett and Lewis, 1984, Beckman
and Cook, 1983, Ye and Chen, 2001], mixed parameter dis-
tributions method[Lauer, 2001, Eskin, 2000, Abraham and
Chuang, 1989, Box and Tiao, 1968, Agarwal, 2005], his-
tograms method[Eskin, 2000, Denning, 1987, Helman and
Bhangoo, 1997], kernel functions method[Yeung and Chow,
2002, Bishop, 1994], and so on. However, these methods
cannot effectively deal with high-dimensional data. With
the development of deep learning techniques, deep anomaly
detection models emerged[Chalapathy and Chawla, 2019].
Supervised methods are built on the basis that each normal
class instance has a class label[Shilton et al., 2013, Jumutc
and Suykens, 2014, Kim et al., 2015, Erfani et al., 2017].
However, such precisely labeled data for a mount of nor-
mal instances is often not available[Chalapathy and Chawla,
2019]. In contrast, unsupervised methods do not require data
labeling but also face the following challenges[Chalapathy
and Chawla, 2019, Gong et al., 2019, Zong et al., 2018].
First, learning the commonality of normal data in high-
dimensional space. Second, how to choose the hyperpa-
rameters of the autoencoder to obtain optimal performance.
Third, the autoencoder suffers from the OGP and fails to
produce large reconstruction errors for anomalies.

Representation Learning. Several studies in recent years
have been devoted to addressing the shortcomings of the un-
supervised approach. Memory-based approaches are seen as
promising solutions. MemAE[Gong et al., 2019] proposed
memory modules that use the encoder output of the latent

Figure 4: Memory versus Attention. On the left is our pro-
posed memory mechanism and on the right is the self-
attention mechanism.

Figure 5: Overview of Memorizer.

space to apply attention mechanisms to the memory proto-
types in the module to obtain weights. The sparse weights
are then used to weigh and sum the memory prototypes as
decoder inputs. The weight sparsification loss is introduced
as a penalty term in the loss function. MNAD[Park et al.,
2020] draws on KMeans clustering[Lloyd, 1982] to update
the memory prototype with a non-gradient style. The com-
pact loss and separation loss are introduced into the loss
function as penalty terms. SSPCAB[Ristea et al., 2022] pro-
posed a masked convolution and attention block to improve
anomaly detection. TrustMAE[Tan et al., 2021] proposed
the concept of trusted regions based on MemAE to further
prevent the autoencoder suffering from the OGP. Six addi-
tional penalty terms are introduced into the loss function.
In summary, the improvement of memory shows a trend of
more and more penalty terms and more complex structures.
Excellent performance is constantly broken but the number
of hyperparameters and module complexity is increasing. Is
there a simple and elegant structure that can achieve good
performance without introducing penalty terms and numer-
ous hyperparameters? More relevant studies are waiting to
be conducted.

Attention Mechanisms. The early success of the attention
mechanism in the field of machine translation is unprece-
dented[Bahdanau et al., 2014], which is a technique that
uses the query to compare keys to obtain weights to weigh
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Figure 6: Multi-Round Memory.

the sum of values. After this, various variants of the attention
mechanism emerged. General attention proposed trainable
mapping matrices[Luong et al., 2015]. Hard attention pro-
posed the concept of stochastic key[Xu et al., 2015]. The
self-attention mechanism proposed to rely only on itself for
attention operations[Yang et al., 2016]. Transformer pro-
posed a multi-headed attention mechanism and obtained a
breakthrough in the field of computer vision[Vaswani et al.,
2017]. SENet proposed an attention mechanism for feature
map channels[Hu et al., 2018]. More and more research is
going deeper with the application of attention mechanisms
and improvements in Transformers. The attentional mecha-
nism and its variants show outstanding generalizability in
experimental results. Can we do the opposite by using atten-
tion mechanisms to suppress overgeneralization to alleviate
the OGP in UAD? More variants are to be studied.

3 METHODOLOGY

The main goal of the memory mechanism is to solve the
problem of overgeneralization of unlabeled non-single-class
data in UAD. fig. 4 illustrates the memory mechanism and
how it compares to the self-attention mechanism. The atten-
tion mechanism mainly consists of mapping shared strate-
gies and independent capacity-controlled memory, which
are described in detail in section 3.2. fig. 6 demonstrates
the multi-round memory structure based on the memory
mechanism, details of which are expanded in section 3.3.
The memory-based autoencoder called Memorizer is shown
in fig. 5 and described in detail in section 3.4.

3.1 DEFINITION OF THE
OVERGENERALIZATION PROBLEM (OGP)

Given a training set D, it is known that D =
{(x1, y1), (x2, y2), · · · , (xn, yn)} contains only normal
data, where (x, y) is the sample-label pair, n is the num-
ber of samples, and d is the dimension of sample ∀xi ∈
D,xi ∈ Rd. Consider the label set Y = {yi}ni=1 of

dataset D, which is divided into ξ classes, i.e., Y =⋃ξ
k=1 {yj | yj = yck ,∀j ∈ [1, n]}. Given a test set T =
{(x̃1, ỹ1), (x̃2, ỹ2), · · · , (x̃n′ , ỹn′)} containing both normal
and anomalous, where (x̃, ỹ) is the sample-label pair,
and n′ is the number of samples ∀x̃i ∈ T, x̃i ∈ Rd.
The label set Ỹ = {ỹi}n

′

i=1 of T is divided into two
classes as positive and negative respectively, i.e., Ỹ =⋃
ck∈{pos,neg} { ỹj | ỹj = yck ,∀j ∈ [1, n′]}, where negative

means normal and positive means anomaly. The OGP is
defined as follows. Under the unlabeled non-single class
normal data(UNSCND) condition {ξ > 1, Y = ∅}, the
performance Q of the reconstruction-based model Ω on
T decreases as the number of classes ξ or model capacity
O (Ω) increases, i.e., QΩ (T ) ∝ (ξO (Ω))

−1.

To truthfully and exclusively study the OGP without gener-
ating embellished scores in the experimental results that ob-
scure the OGP, two key points needed to be stated. First, fol-
lowing the recommendation of paper[Ahmed and Courville,
2019] for the academic community, the anomaly should be
semantic level, i.e., D and T come from the SAME dataset
as shown on the right side of the dashed line in fig. 1. Second.
it is important to note the distinction between traditional
unlabeled single class normal data (USCND) condition
{ξ = 1, Y = ∅} and UNSCND condition {ξ > 1, Y = ∅},
as the smaller ξ tends to obscure the OGP in QΩ (T ).

3.2 MEMORY MECHANISM

The input of the memory mechanism is denoted as H ∈
RB×(W∗H∗C), where B,W,H,C are the batch size, width,
height, and the number of channels, respectively. The main
component of the memory mechanism consists of a trainable
matrixM∈ RN×F , where N is the memory capacity and
F = W ∗H ∗C.WS ∈ RF×F is a trainable linear mapping
shared by H and M. Denote the SoftMax[Bridle, 1989]
function as σ in the direction of dimensionN . The output H̃
of the memory mechanism is defined by eq. (1) as follows.
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H̃ = Memory (H,M) = σ
(
HWS (MWS)

T
)
M (1)

Notice that H̃ ∈ RB×F in eq. (1) is in the same space asH,
and RB×(W∗H∗C) is the flattened form of RB×H×W×C .

3.3 MULTI-ROUND MEMORY

In addition to the mapping sharing strategy WS mentioned
by section 3.2 to pull H and M into the same space for
comparison, we found that multiple rounds of memory for
the memory matrix H are also beneficial for overgeneral-
ization suppression. Multi-round memory of learning helps
memory to extract and consolidate the intrinsic patterns of
the data in the form described by eq. (2).

H̃r = Memory
(
H̃r−1 +H,Mr

)
, (H̃0 = H) (2)

H̃r andMr(∀r ∈ [1, R]) represents the r-th round ofH and
M in the serial R-round memory learning. The outputHR
of the final R-round memory is differentiable with respect
to the first-round inputH as described in eq. (3).

∂H̃R
∂H

=
∂H̃R
∂H̃0

=

R∏
i=1

∂H̃i
∂H̃i−1

=
∂H̃R
∂H̃R−1

∂H̃R−1

∂H̃R−2

· · · ∂H̃1

∂H̃0

(3)

It can be noted that the final output after the R-th round
of memory can be back-propagated to the encoder by the
chain derivative law for the gradient, which ensures that the
multi-round memorization process is differentiable.

3.4 MEMORIZER: MEMORY-BASED
AUTO-ENCODER

Memorizers are composed on an autoencoder framework.
Encoder fθE : Rd → RF and decoder gθD : RF → Rd are
nonlinear learning functions, respectively. The structure of
the Memorizer is described in eqs. (4) to (6).

H = fθE (X) (4)

H̃ =
(
Memory

(
H̃r−1 +H,Mr

))
r=1:R

(5)

X̃ = gθD

(
H̃
)

(6)

The eqs. (4) and (6) in which X =
{
xij
}B
j=1
∈ RB×d

denotes the input data of one batch and X̃ denotes the re-
constructed data. The loss function of the Memorizer is as
follows.

L =
1

B

B∑
j=1

∥∥xij − x̃ij∥∥2

2
(7)

xij represents the data in D that is shuffled into the batch.
Notice that the decoder input H̃ of the memorizer comes
from a linear weighted sum of M̃ . Therefore, the model
generalizability is suppressed by and only by the memory
capacity N and no longer depends on the model capacity
O (Ω). So the essence of the Memorizer is a controlled
transformation of the OGP using the memory mechanism
as described in eq. (8).

QΩ (T ) ∝ (ξO (Ω))
−1 ⇒ QM (T ) ∝ γ

ξO (M)
(8)

Notice that O (M) is a correlation function on N . Without
loss of generality, ∃δ, γ ∈ Z+, lim

R→γ
QM (T ) = δ holds for

fixed ξ and N .

4 EXPERIMENT

In this section, we conduct parallel comparison experiments
for the OGP on multiple public benchmarks to verify the
effectiveness of the Memorizer for overgeneralization inhi-
bition with the principle of absolute fair comparison. Finally,
we performed an ablation study and sensitivity analysis to
ensure that the mechanisms and structures proposed in this
paper are positive for solving the OGP.

4.1 EXPERIMENTAL SETUP

Datasets. The following three public benchmarks
were used for the experiments in this paper, namely
MNIST[Deng, 2012], Fashion[Xiao et al., 2017], and
Kuzushiji[Clanuwat et al., 2018]. In order to make the
dataset conform to the UAD setting and highlight OGP,
they were all preprocessed under UNSCND settings (sec-
tion 3.1), i.e., remove-one-class-out (ROCO) protocol as
described below. For all classes in the dataset, we select
one class to be removed from the training set and label that
class as positive in the test set. For the remaining classes,
we removed their label information from the training set and
labeled them uniformly as negative in the test set. Note that
the ROCO preprocessing is different from the USCND set-
tings (section 3.1) of previous research [Gong et al., 2019,
Park et al., 2020, Ristea et al., 2022], but rather the UN-
SCND condition mentioned in section 3.1, which is in line
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Figure 7: The memory mechanism alleviates the OGP in the face of the combined challenge of the training and test sets.

with the latest experimental setup recommendation from
paper[Ahmed and Courville, 2019]. Also, this is consistent
with the purpose of highlighting the OGP in UAD, i.e., the
UNSCND condition of {ξ = 9, Y = ∅}.

Evaluation. AUROC is commonly used as an assessment
criterion for anomaly detection, however, this is overly opti-
mistic on unbalanced data[Movahedi et al., 2020]. We add
results on the AUPRC and F1-Score evaluation criteria to ex-
amine the full range of model performance. F1-Score results
use the best one after traversal threshold. Vanilla Autoen-
coder(AE)[Kramer, 1991], Sparse Autoencoder(SAE)[Ng
et al., 2011], Denoising Autoencoder(DAE)[Vincent et al.,
2008], Variational Autoencoder(VAE)[Kingma and Welling,
2013], MemAE[Gong et al., 2019], MNAD[Park et al.,
2020], and SSPCAB[Ristea et al., 2022] were used as com-
parative baselines.

Implementation. To facilitate the description, we
make the following notation convention. FC(a,b) de-
notes the Linear-BN-LeakyReLU block, where a and
b are the number of input and output channels. We
use the same autoencoder backbone in all experi-
ments, i.e., FC1(784,512), FC2(512,256), FC3(256,128),
FC4(128,256), FC5(256,512), FC6(512,784). Note that
since MNAD requires a residual structure at the bottleneck,
the first layer of the MNAD decoder is twice as large as the
other models, namely: FC4(128+128,256). The memory ca-
pacity of the three datasets MNIST, Fashion, and Kuzushiji
is 8, 10, and 10 in order, considering that the latter two
have more complex data patterns. The experiments used a
batch size of 256, an optimizer Adam with a learning rate
of 1e-3, multi-round memory with rounds of 8, and an early
stop mechanism with the patience of 10. The validation set
split ratio was 0.1 and the split random seeds were fixed

with 2022. The experimental results were averaged over
three runs. All comparison experiments follow the princi-
ple of absolute fair comparison(PAFC), i.e., all experiments
strictly use the same training set, test set, validation set, and
backbone.

4.2 RESULTS

We designed a total of 30 experiments using 3 public bench-
marks and conducted 8 parallel comparisons at 3 differ-
ent evaluation metrics based on PAFC. Our average results
achieve the leading performance as shown in tables 1 to 3.
The best performance is marked in bold.

4.3 ANALYSIS

The Distinguishability of Memory We normalized the
reconstruction errors of the model on normal and anomaly
data separately for better comparison and depicted their
KDE distribution as shown in figs. 7 and 8. It can be seen
that the vanilla autoencoder (AE) suffers from OGP when
faced with the dual challenge of the test set and training
set, while the AE equipped with memory can better distin-
guish between normal and anomaly. The ultimate goal of
anomaly detection is to score the abnormalities of a sample,
which comes directly from reconstruction errors. Therefore
a distinguishable model has a sharper ability to score abnor-
malities.

The User-friendliness of Memory Notice that VAE also
has good performance, but two more points need to be
highlighted. First, the results of VAE come from a fine
grid search and careful tuning of the parameters, while the
memorizer just uses the default parameters without any
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Table 1: The AUROC results under ROCO protocol.

MNIST AE SAE DAE VAE MemAE MNAD SSPCAB Ours
0 79.16±0.30 82.57±0.44 82.86±1.06 94.68±1.73 86.16±1.2 79.88±0.33 80.95±0.12 97.79±0.64
1 12.45±0.94 19.21±3.36 14.05±0.99 38.99±0.40 17.16±2.93 16.90±1.43 11.39±0.58 41.61±0.03
2 86.20±0.22 89.26±0.15 89.23±1.76 97.14±0.08 93.80±1.35 86.63±0.64 86.80±0.02 97.95±0.27
3 64.68±0.10 67.91±3.88 68.62±2.51 95.11±0.07 82.05±3.12 66.62±0.41 66.64±0.24 94.97±0.61
4 59.13±0.45 66.88±0.51 62.34±3.68 92.80±0.12 77.04±3.14 65.29±4.48 59.78±0.48 89.84±0.81
5 71.34±0.15 75.78±0.73 73.77±3.06 96.45±0.09 81.16±2.69 72.13±0.62 71.56±0.76 96.21±0.18
6 84.92±0.30 82.87±0.36 86.82±1.96 93.46±0.13 89.64±0.52 85.61±1.49 84.80±0.36 94.97±0.44
7 61.91±0.85 58.75±1.91 62.93±1.97 74.92±1.18 61.20±3.09 67.45±2.13 59.79±0.43 84.14±1.05
8 67.84±0.16 76.32±0.81 73.22±4.39 96.02±0.38 91.06±0.54 75.90±1.58 69.22±0.09 96.16±0.73
9 44.38±1.70 47.90±6.11 43.79±1.02 71.61±0.04 53.54±3.41 51.29±2.24 44.69±1.04 78.99±0.70

AVG 63.20±0.52 66.75±1.83 65.76±2.24 85.12±0.42 73.33±2.20 66.77±1.53 63.56±0.41 87.26±0.55
Fashion AE SAE DAE VAE MemAE MNAD SSPCAB Ours
T-shirt 57.03±0.24 44.28±2.63 58.08±1.00 58.34±0.22 55.66±0.92 57.15±1.99 57.63±0.12 60.33±0.08
Trouser 71.03±1.25 88.37±1.25 73.80±2.22 84.94±0.18 88.78±0.48 70.06±2.11 63.66±1.35 84.28±0.37
Pullover 43.64±0.25 33.31±0.21 47.41±1.24 58.58±0.19 52.75±0.41 45.19±1.13 43.76±0.16 58.71±0.10

Dress 61.30±0.97 65.09±1.48 63.79±2.24 70.84±0.42 67.52±1.16 63.47±1.87 64.48±0.58 70.61±0.27
Coat 48.93±0.16 45.47±4.27 51.31±0.25 54.98±0.28 52.32±1.50 48.74±0.21 49.95±0.32 56.35±0.11

Sandal 92.28±0.46 92.63±0.30 90.87±1.14 87.38±0.29 89.25±0.34 91.85±0.92 91.70±0.23 86.17±0.19
Shirt 51.15±0.52 34.04±1.53 50.23±0.54 54.47±0.03 52.63±0.96 51.20±0.53 51.59±0.20 54.23±0.35

Sneaker 64.85±0.40 70.58±3.16 61.49±2.84 65.22±0.52 60.66±1.26 61.75±2.77 61.62±0.49 64.01±0.52
Bag 95.56±0.17 88.74±0.29 96.18±0.51 94.07±0.26 94.84±0.36 96.13±0.18 96.39±0.17 95.15±0.29

Ankle boot 83.41±0.64 83.36±0.47 84.71±0.78 77.28±0.01 82.22±0.65 83.78±0.61 86.73±0.58 81.32±0.57
AVG 66.92±0.51 64.59±1.56 67.79±1.28 70.61±0.24 69.66±0.8 66.93±1.23 66.75±0.42 71.12±0.29

Kuzushiji AE SAE DAE VAE MemAE MNAD SSPCAB Ours
U+304A 71.50±0.03 71.11±2.57 71.36±0.86 81.42±0.33 76.92±0.18 71.96±0.05 71.56±0.35 85.14±0.43
U+304D 50.33±0.28 51.36±0.49 49.25±0.40 68.00±0.15 60.88±0.76 50.66±0.24 50.00±0.07 71.04±0.03
U+3059 43.32±0.07 46.93±0.31 42.95±0.42 59.05±0.50 52.05±0.54 44.41±0.16 43.18±0.09 63.14±0.2
U+3064 68.78±0.17 72.65±0.54 69.96±0.41 78.83±0.01 73.77±1.46 69.62±0.24 69.36±0.04 82.37±0.55
U+306A 57.31±0.08 61.51±0.76 60.10±1.07 83.86±0.38 77.46±1.05 56.61±1.29 58.08±0.07 87.38±0.28
U+306F 19.35±0.17 22.19±1.15 20.51±0.93 52.66±0.45 37.40±0.05 19.90±0.27 20.08±0.26 61.14±0.74
U+307E 39.85±0.07 45.03±1.61 40.75±0.36 65.23±0.40 55.94±0.17 39.16±0.05 40.07±0.25 68.24±0.49
U+3084 80.46±0.10 80.79±0.58 81.46±0.57 90.33±0.42 88.66±0.27 80.80±0.86 80.79±0.05 92.11±0.07
U+308C 62.19±0.27 59.89±0.92 60.38±0.46 68.26±0.03 64.37±0.34 63.99±0.26 61.11±0.60 73.01±0.91
U+3092 65.95±0.05 63.24±1.00 66.65±0.70 78.07±0.24 73.44±0.42 66.45±0.11 66.43±0.11 81.41±0.55

AVG 55.90±0.13 57.47±0.99 56.34±0.62 72.57±0.29 66.09±0.52 56.36±0.35 56.07±0.19 76.50±0.42

deliberate tuning. Second, as described in the paragraph
above the contributions section(section 1), VAE models face
posterior collapse problems if it is not well-tuned, as shown
in fig. 9, whereas Memory has no such concerns.

The Tightness of Memory As described in section 1, the
model can both generalize well to the normal instance and
fail to generalize anomalies under ideal assumptions, which
require the model to learn tight bounds on the data patterns.
As shown in fig. 7, the model was never exposed to the num-
ber 2 during training in the MNIST ROCO-2 experiment,
but AE still reconstructed it well. This phenomenon indi-
cates that AE does not learn the tight boundaries of patterns,
but only one-sidedly learns the generalized constant map-
ping. In contrast, the AE that used the memory mechanism
memorized the pattern in the training phase and followed
the known patterns for the reconstruction of the unknown
category in the testing phase.

The Diversity of Memory In order to generalize data with
limited memory capacity and learn patterns with tight bound-
aries, AE equipped with memory extract invariant features
under the same class of data, i.e., Personalization-ignored
Common Pattern Extraction (PCPE) process as shown in
fig. 7. PCPE helps to learn the common features of the same
pattern and ignore the semantic redundant features such as:
starting position, stopping position, etc., so as to better es-
tablish the tight boundaries of the pattern. However, PCPE
does not mean that memory let the model lose the intra-
and inter-pattern diversity of the reconstruction as shown in
fig. 10. We generated the new representation by generating
random numbers in the range [0, 1] to simulate the mem-
ory combination coefficients, and after going through the
decoder we can see that the diversity between patterns is
guaranteed.
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Table 2: The AUPRC results under ROCO protocol.

MNIST AE SAE DAE VAE MemAE MNAD SSPCAB Ours
0 25.83±0.69 35.59±0.66 31.61±1.87 62.26±0.53 39.98±3.23 26.50±0.61 28.75±0.34 80.24±1.52
1 6.27±0.04 6.67±0.24 6.37±0.06 8.47±0.05 6.57±0.16 6.51±0.08 6.23±0.04 8.81±0.01
2 44.93±0.52 56.38±1.92 53.31±5.13 83.11±0.36 67.98±6.65 46.16±1.21 46.10±1.12 86.06±0.68
3 16.84±0.22 17.96±3.65 19.02±1.82 64.20±0.85 31.06±4.58 17.31±0.27 17.62±0.18 61.25±4.30
4 13.24±0.25 16.54±0.86 14.20±1.41 60.84±0.04 25.84±3.25 16.44±2.61 14.13±0.42 48.88±0.46
5 16.26±0.13 19.92±0.74 18.16±2.11 73.92±0.33 25.80±3.49 17.08±0.40 16.60±0.62 69.30±0.49
6 41.85±0.83 35.49±0.74 48.60±4.87 66.06±0.70 54.59±1.00 42.96±2.49 43.48±0.74 70.68±0.54
7 19.13±0.69 13.91±0.75 21.06±1.76 25.22±1.84 15.15±1.25 23.09±1.66 19.64±0.31 36.51±0.27
8 14.98±0.06 23.62±0.93 18.84±2.88 72.64±1.38 49.03±2.02 20.97±1.42 16.06±0.17 66.82±3.82
9 8.82±0.31 9.86±1.61 8.71±0.18 17.81±0.06 10.31±0.76 9.98±0.49 8.69±0.10 26.78±0.35

AVG 20.81±0.37 23.59±1.11 23.99±2.21 53.45±1.61 32.63±2.64 22.70±1.12 21.73±0.40 55.53±1.24
Fashion AE SAE DAE VAE MemAE MNAD SSPCAB Ours
T-shirt 11.57±0.03 9.68±0.50 11.99±0.19 12.99±0.05 11.62±0.19 11.67±0.72 11.74±0.12 13.7±0.12
Trouser 15.37±0.50 39.17±3.44 16.87±1.24 31.17±0.08 37.73±1.33 14.76±1.15 12.25±0.43 29.00±0.80
Pullover 8.91±0.03 7.41±0.08 9.39±0.17 11.91±0.11 10.25±0.09 9.03±0.20 8.76±0.03 11.92±0.08

Dress 12.32±0.28 14.15±0.56 12.87±0.59 16.65±0.33 14.27±0.44 12.90±0.73 13.18±0.17 15.91±0.17
Coat 8.94±0.03 8.64±0.74 9.34±0.05 10.37±0.04 9.64±0.26 8.87±0.05 9.09±0.07 10.60±0.03

Sandal 49.03±1.46 52.72±1.07 48.16±1.47 43.19±0.81 44.75±0.55 49.71±2.24 51.87±0.79 39.48±0.12
Shirt 11.34±0.15 7.64±0.34 10.93±0.22 10.90±0.05 11.08±0.22 11.12±0.13 11.37±0.08 10.94±0.06

Sneaker 12.33±0.14 14.72±1.36 11.38±0.82 12.88±0.23 11.20±0.32 11.45±0.73 11.33±0.14 12.27±0.12
Bag 66.06±1.29 43.59±0.50 69.71±2.62 56.53±1.37 58.42±2.10 69.47±1.26 75.12±0.76 64.72±2.23

Ankle boot 27.69±0.54 31.08±0.92 31.25±1.93 22.42±0.13 27.30±0.81 28.93±1.36 33.29±0.91 30.52±1.37
AVG 22.36±0.45 22.88±0.95 23.19±0.93 22.90±0.32 23.63±0.63 22.79±0.86 23.80±0.35 23.91±0.51

Kuzushiji AE SAE DAE VAE MemAE MNAD SSPCAB Ours
U+304A 15.92±0.10 16.73±1.44 15.86±0.52 31.21±0.75 22.07±0.44 16.08±0.39 16.27±0.95 37.93±1.23
U+304D 9.45±0.04 9.82±0.08 9.33±0.08 17.65±0.26 13.65±0.54 9.57±0.09 9.40±0.03 20.17±0.01
U+3059 9.09±0.03 10.40±0.55 9.13±0.19 13.01±0.04 11.27±0.11 9.66±0.03 9.11±0.16 15.04±0.15
U+3064 20.23±0.17 24.64±0.48 20.40±0.53 29.75±0.25 25.52±1.58 21.36±0.64 20.39±0.39 32.09±0.45
U+306A 10.92±0.04 12.25±0.30 11.73±0.36 33.67±1.25 22.52±1.30 10.79±0.30 11.13±0.04 42.99±0.55
U+306F 5.81±0.01 6.03±0.08 5.89±0.07 9.66±0.06 7.30±0.02 5.83±0.01 5.85±0.02 12.36±0.14
U+307E 9.00±0.11 10.75±0.60 9.46±0.13 22.52±0.12 16.27±0.36 8.96±0.07 9.20±0.08 26.15±0.62
U+3084 25.26±0.27 24.35±0.40 26.39±0.64 53.26±2.44 46.60±0.25 25.56±1.31 25.55±0.08 58.98±1.12
U+308C 13.90±0.08 11.92±0.48 12.56±0.08 15.27±0.03 13.39±0.06 13.56±0.26 13.05±0.39 18.16±0.70
U+3092 15.01±0.12 13.97±0.48 15.45±0.46 27.36±0.49 19.81±0.39 15.51±0.40 15.48±0.08 31.10±1.28

AVG 13.46±0.10 14.09±0.49 13.62±0.31 25.34±0.57 19.84±0.50 13.69±0.35 13.54±0.22 29.50±0.62

Table 3: The best F1-Score under ROCO protocol.

MNIST AE SAE DAE VAE MemAE MNAD SSPCAB Ours
0 36.52±0.52 41.35±0.62 41.15±1.76 63.97±6.58 44.85±1.38 36.63±0.59 38.73±0.42 80.16±0.39
1 20.39±0.00 20.41±0.03 20.41±0.02 20.92±0.04 20.42±0.05 20.39±0.00 20.39±0 22.78±0.06
2 48.47±0.78 56.51±1.07 54.72±3.89 75.93±0.45 65.39±4.26 49.24±1.17 49.85±0.48 78.40±0.94
3 22.98±0.04 25.70±2.78 24.99±1.15 65.36±0.28 38.26±3.51 23.91±0.14 23.95±0.18 65.52±0.84
4 20.40±0.11 24.18±0.15 21.77±1.25 59.84±0.03 33.11±2.57 23.85±3.06 20.33±0.14 52.42±0.70
5 25.83±0.26 30.16±1.11 28.12±2.68 70.32±0.29 35.61±3.29 26.72±0.46 25.79±0.57 67.24±0.75
6 47.46±0.77 39.98±0.80 51.55±3.40 62.80±0.27 56.01±1.21 47.64±2.18 48.38±0.9 66.39±0.48
7 22.78±0.75 21.00±0.86 24.01±1.23 31.85±1.18 21.73±1.32 27.69±1.39 22.3±0.51 42.97±0.32
8 24.98±0.15 30.74±0.44 28.37±2.63 68.02±0.52 51.88±1.52 29.96±1.36 25.42±0.04 70.27±0.94
9 19.77±0.05 19.60±0.94 20.07±0.13 27.65±0.08 21.38±1.02 20.68±0.3 19.51±0.08 36.26±0.31

AVG 28.96±0.34 30.96±0.88 31.52±1.81 54.67±0.97 38.86±2.01 30.67±1.07 29.46±0.33 58.24±0.57
Fashion AE SAE DAE VAE MemAE MNAD SSPCAB Ours
T-shirt 20.80±0.12 18.63±0.33 21.21±0.47 20.77±0.04 20.21±0.37 20.95±0.7 20.91±0.06 21.58±0.01
Trouser 28.67±0.96 49.32±2.22 30.74±1.75 42.95±0.27 50.60±0.92 28.45±0.95 25.29±0.67 42.33±0.94
Pullover 18.81±0.14 18.18±0.00 19.30±0.19 21.36±0.04 20.24±0.09 18.95±0.12 18.87±0.09 21.41±0.02

Dress 23.18±0.39 24.71±1.20 24.31±1.04 27.72±0.34 25.79±0.63 24.10±0.72 24.65±0.41 27.40±0.34
Coat 20.33±0.01 18.57±0.08 20.79±0.09 20.91±0.04 20.81±0.47 20.29±0.07 20.76±0.05 21.54±0.09

Sandal 55.15±1.43 56.79±0.65 51.09±3.00 45.45±0.81 47.93±0.44 53.68±2.73 53.59±0.81 42.98±0.51
Shirt 19.05±0.08 18.21±0.00 18.87±0.08 19.72±0.03 19.45±0.18 19.18±0.06 19.20±0.06 19.65±0.02

Sneaker 26.77±0.19 29.03±1.76 25.52±1.11 25.16±0.02 24.31±0.65 25.46±1.18 25.85±0.12 25.04±0.26
Bag 70.06±0.78 52.57±0.45 71.56±1.23 63.09±0.68 65.35±1.10 71.45±0.17 74.18±0.42 66.85±1.46

Ankle boot 38.82±0.83 39.53±0.32 40.62±0.96 32.62±0.27 36.98±0.75 39.36±0.65 43.88±0.83 37.85±0.92
AVG 32.16±0.49 32.55±0.70 32.4±0.99 31.97±0.25 33.17±0.56 32.19±0.73 32.72±0.35 32.66±0.46

Kuzushiji AE SAE DAE VAE MemAE MNAD SSPCAB Ours
U+304A 28.78±0.06 28.17±1.92 28.39±0.55 37.54±0.39 37.54±0.39 29.01±0.23 28.91±0.07 43.97±0.87
U+304D 19.26±0.07 19.41±0.08 19.03±0.13 25.24±0.17 25.24±0.17 19.25±0.06 19.18±0.02 27.17±0.17
U+3059 18.40±0.03 18.88±0.06 18.44±0.06 21.09±0.24 21.09±0.24 18.35±0.03 18.37±0.03 21.99±0.02
U+3064 26.73±0.12 29.35±0.70 27.07±0.09 36.21±0.11 36.21±0.11 27.63±0.07 27.27±0.05 39.50±0.86
U+306A 21.44±0.07 22.72±0.28 22.47±0.43 42.02±0.96 42.02±0.96 21.08±0.76 21.65±0.03 49.20±0.12
U+306F 18.18±0.00 18.19±0.00 18.19±0.00 20.10±0.11 20.10±0.11 18.18±0.00 18.18±0.00 22.45±0.40
U+307E 18.18±0.00 18.19±0.00 18.22±0.02 24.78±0.23 24.78±0.23 18.20±0.01 18.21±0.02 27.61±0.15
U+3084 36.14±0.01 36.89±1.14 36.68±0.67 54.85±1.17 54.85±1.17 36.73±0.69 36.46±0.02 57.92±0.19
U+308C 22.60±0.01 21.85±0.27 21.84±0.23 26.44±0.10 26.44±0.10 23.60±0.23 22.10±0.34 30.29±1.05
U+3092 24.22±0.24 22.87±0.50 24.26±0.30 35.46±0.07 35.46±0.07 24.26±0.01 24.04±0.13 39.02±0.63

AVG 23.39±0.06 23.65±0.5 23.46±0.25 32.37±0.35 32.37±0.35 23.63±0.21 23.44±0.07 35.91±0.45

4.4 ABLATION STUDY

To investigate the role of each component of the memory
mechanism, we conducted qualitative ablation experiments
to explore the effects of the add operation, the softmax op-
eration, the multi-round memory, and the sharing mapping
on the model performance, respectively. Ablation experi-
ments were carried out in a randomly selected Fashion under
ROCO-6. The ablation results in table 4 illustrate that all
four components mentioned above play an effective role in
the memory mechanism to varying degrees.

4.5 SENSITIVITY ANALYSIS

The memory mechanism involves two hyperparameters, the
number of memory rounds R and the memory capacity N .

Figure 8: The distinguishability of memory.

Figure 9: Posterior collapse of VAE.

We simply fixed R = 8 in all experiments and N = 10 in
all experiments except for the MNIST capacity N = 8. The
original intention of this setting was to expand the memory
capacity because we thought that Fashion and Kuzushiji
have more complex data patterns compared to MNIST. To
understand in detail the effect of different parameters on
model performance, we randomly selected MNIST ROCO-4
experiments for sensitivity analysis as shown in section 4.5.
We did eight sets of experiments in the range of [2, 16] at
intervals of 2 for memory capacity N and memory round
number R. Their AUROC scores (fig. 11) are represented
by AUC(N) [Blue] and AUC(R) [Orange], respectively. It is
easy to find that the memory capacity decreases the model
performance when it is too small (N = 2), and the model
performance changes relatedly as the capacity increases and
reaches the optimum at a particular capacity (N = 14).
In contrast, changes in the number of rounds R have less
impact on AUROC, and the model performance remains
stable.

5 CONCLUSIONS

We proposed a memory mechanism for UAD to address
the dual challenges of label-free multi-pattern and semantic-
level anomalies, which can be plug-and-play as a module
for existing models without adding penalty terms. The Mem-
orizer model equipped with multi-round memory can effec-
tively alleviate the OGP in UAD and allow the models to
report the unknowns truthfully.
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Table 4: The ablation results.

Add Softmax Round Sharing AUC AP F1

X X X 52.61 9.80 21.07
X X X 89.67 46.87 49.25
X X X 88.98 46.07 48.29
X X X 88.82 45.55 47.43

X X X X 89.88 48.04 49.58

Figure 10: The diversity of memory.

6 FUTURE WORKS

The OGP proposed in this paper has significant implications
for the study of real industrial production environment de-
ployment in the future. Existing UAD methods need to train
multiple models separately for multiple patterns in practical
applications, e.g., cup anomaly detection model for cups,
nail anomaly detection model for nails, and box anomaly de-
tection model for boxes, which is a model flooding dilemma.
The formulation of the OGP clarifies the model flooding
dilemma and opens up a new research direction by propos-
ing the UNSCND condition. In future work, the theorization
and application of memory mechanisms are worthy of con-
tinued in-depth research. Further proof and derivation of the
existence and approximation principles of tight bounds for
unlabeled multi-pattern data are needed on the theoretical
side. In terms of applications, the combination of memory
mechanisms with continuous learning, domain generaliza-
tion, and generative networks can be explored, which are all
anticipated works.
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