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A PROBLEM-DEPENDENT PARAMETERS FOR GEV

We need to verify that the objective function for the GEV problems is indeed in the class of strict-saddle functions. For the
GEV problem, the objective function of interest is

F (v) = −v⊤Av

v⊤Bv
, such that c(v) = ∥v∥2 − 1, (1)

where A and B are two symmetric matrices. We make one additional mild assumption on the eigenstructure of matrices A
and B.

Assumption 1 The matrix B−1/2AB−1/2 is diagonalizable with eigenvalues λ1 > λ2 > · · · > λd. Moreover, λmin(B) >
0.

As our argument proceeds, one can safely assume B−1/2AB−1/2 being diagonal without loss of generality, so we will
proceed with such. Under Assumption 1 we denote the minimal gap of λi’s as

λgap = min
1≤i≤d−1

(λi − λi+1) > 0. (2)

We prove that under the mild Assumption 1, the objective function for generalized eigenvector problem is strict-saddle as in
Definition 5 if the parameters are chosen properly:
For the generalized eigenvector problem, the objective function of interest is

F (v) = −v⊤Av

v⊤Bv
, such that c(v) = ∥v∥2 − 1 = 0, (3)

where A and B are two real symmetric matrices with B being strictly positive-definite. In the following lemma, we
verify that the objective function F (v) in (3) satisfies Assumption 1; that is, D(v), F (v),∇F (v),∇2F (v) are Lipschitz
continuous within {v : ∥v∥ ≤ 1, ∥v − v∗∥ ≤ δ}.

Proposition 1 Assumption 1 holds for F (v) in GEV problem (3) with constants

LD = 2∥B∥2, LF =
4∥A∥∥B∥

(1− δ)2λ2min(B)
, LK =

28∥A∥∥B∥2

(1− δ)3λ3min(B)
, LQ =

232∥A∥∥B∥3

(1− δ)4λ4min(B)
.

The proof of Proposition 1 is deferred to §B.3. With the Lipschitz parameters given above, we consider the initialization
condition (14). The neighborhood radius on the right-hand side of (14) can be viewed as a function of δ that is maximized at
some δ∗ ∈ (0, 1), when all other constants are fixed. The region covered in the local convergence analysis is maximized
with such a choice of δ∗.
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Proposition 2 Under Assumption 1, the only local minimizers of (3) are ±e1, and the function satisfies the (µ, β, γ, δ)-strict
saddle condition for

µ = (λ1 − λ2)
λmin(B)

∥B∥
, β = (λ1 − λ2)

λmin(B)

∥B∥
,

γ = λ3gap
λ8min(B)

(8)842∥A∥2∥B∥6
, δ = (λ1 − λ2)

λ4min(B)

168∥A∥∥B∥3
.

(4)

To verify the strict-saddle parameters and conclude Proposition 2, we first conclude the parameters for the objective function
of the eigenvector problem:

Lemma 3 Under Assumption 1, and with the choices of parameters as in (4), we have the following:

(i) Suppose ∥g(x)∥ ≤ γ and |e⊤1 B1/2x| ≤ (1/2)∥B1/2x∥. Let the vector

v ≡
PT (x)B

−1/2e1

∥PT (x)B−1/2e1∥
,

then v ∈ T (x), ∥v∥ = 1, and we have
v⊤H(x)v ≤ −β. (5)

(ii) Suppose ∥g(x)∥ ≤ γ and |e⊤1 B1/2x| > (1/2)∥B1/2x∥. Then there is a local minimizer x∗ such that ∥x− x∗∥ ≤ δ,
and for all x′ ∈ B2δ(x

∗) we have for all v̂ ∈ T (x′) and ∥v̂∥ = 1

v̂⊤H(x′)v̂ ≥ µ. (6)

It is straightforward from Definition 5 of strict-saddle property that Lemma 3 leads to Proposition 2 immediately. We
postpone the details to §D. Intuitively, the parameters are only dependent on the differences of the consecutive eigenvalues
λ1 − λ2, . . . , λd−1 − λd, since we can always add each eigenvalue λi by an arbitrary constant and keep the constrained
optimization problem (3) unchanged. We also remark that restricted to our analysis, the parameters in (4) might not be
the sharpest possible choices. However, we do provide, to the best of our knowledge, a first identification of strict-saddle
parameters for the GEV problem, and hence Theorems 6 and 7 apply.

B PROOFS
In this section, we provide detailed proofs of our main results.

B.1 PROOF OF PROPOSITION 3

This subsection provides a proof for Proposition 3 on the convergence to a local minimizer. Under the initialization condition
(14), there exists a local minimizer v∗ ∈ Bδ(v0) of F (v) such that u⊤H(v∗)u ≥ µ∥u∥2 for all u ∈ T (v∗).
For a positive quantity M to be determined later, let

TM = inf {t ≥ 1 : ∥Γ(vt−1; ζt)∥ > M} . (7)

In words, TM is the first t such that the norm of the stochastic scaled-gradient Γ(vt−1; ζt) exceeds M . We first provide the
following lemma.

Lemma 4 Assume all conditions in Theorem 2. For any positive ϵ, let

M = V log1/α ϵ−1. (8)

Then, we have
P(TM ≤ T ∗

η ) ≤ 2T ∗
η ϵ.

The proof of Lemma 4 is a straightforward corollary of a union bound and Assumption 2, and is provided in §E.1.
Recall the definitions of the manifold gradient g(v) and the Hessian H(v) in (10) and (11). Under a unit spherical constraint
c(v) = ∥v∥2 − 1 = 0, their definitions simplify to

g(v) = (I− vv⊤)∇F (v) and H(v) = ∇2F (v)− (v⊤∇F (v))I. (9)



Taking derivatives, we decompose
∇g(v) = H(v) +N (v), (10)

where the additional term N (v) is defined as

N (v) = −v(∇F (v) +∇2F (v)v)⊤. (11)

The following lemma shows that g(v),H(v),N (v) are Lipschitz continuous.

Lemma 5 Given Assumption 1, we have that g(v),H(v),N (v) are LG, LH , LN -Lipschitz and ∥H(v)∥ ≤ BH within
{v : ∥v∥ ≤ 1, ∥v − v∗∥ ≤ δ}, where the constants are defined as LG ≡ LK + 2LF , LH ≡ LQ + LF + LK ,
LN ≡ LF + 3LK + LQ, BH ≡ LF + LK .

A proof of Lemma 5 is deferred to §E.2.
For notational simplicity, we denote H∗ = H(v∗) and N∗ = N (v∗), and recall that Ft is the filtration generated by ζt.
Then we have the following lemma.

Lemma 6 Under Assumptions 1 and 2, when η ≤ 1/(5M), on the event (∥Γ(vt−1; ζt)∥ ≤M), the update rule (9) of vt
can be written as

vt − v∗ = (I− ηDH∗ − ηDN∗) (vt−1 − v∗) + ηξt + ηRt + η2Qt, (12)

where {ξt} forms a vector-valued martingale difference sequence with respect to Ft, ξt is α-sub-Weibull with parameter
GαV , Rt satisfies ∥Rt∥ ≤ (DLH +DLN + LDLG)∥vt−1 − v∗∥2 and Qt satisfies ∥Qt∥ ≤ 7M2.

The proof of Lemma 6 is deferred to §E.3. We define the projection of vt − v∗ on T (v∗) as

∆t = (I− v∗v∗⊤)(vt − v∗), (13)

and the projection of H∗ on T (v∗) as

M∗ = (I− v∗v∗⊤)H∗(I− v∗v∗⊤). (14)

Lemma 7 Under initialization condition (14), the following properties hold:

(i) For all t ≥ 0, ∆t defined as in (13) satisfies

∥(v∗v∗⊤)(vt − v∗)∥ =
1

2
∥vt − v∗∥2, ∥∆t∥2 = ∥vt − v∗∥2 − 1

4
∥vt − v∗∥4.

If v⊤
t v

∗ ≥ 0,
∥∆t∥2 ≤ ∥vt − v∗∥2 ≤ 2∥∆t∥2. (15)

(ii) When η ≤ 1/(DBH), for all u ∈ T (v∗),

∥(I− ηDM∗)
tu∥ ≤ (1− ηDµ)t∥u∥, (16)

where M∗ was defined in (14).

The proof of Lemma 7 is deferred to §E.4. To interpret Lemma 7(i), we denote θ ≡ ∠(vt,v∗) ∈ [0, π/2], such that
∥vt − v∗∥ = 2 sin(θ/2), ∆t = (I− v∗v∗)⊤(vt − v∗) = sin θ, and (15) is equivalent to the trigonometric inequality

sin2 θ = 4 sin2(θ/2) cos2(θ/2) ≤ 4 sin2(θ/2) = 2(1− cos θ) ≤ 2(1− cos θ)(1 + cos θ) = 2 sin2 θ.

By combining Lemmas 6 and 7, we have the following lemma for the update rule in terms of ∆t:

Lemma 8 Under Assumptions 1, 2 and initialization condition (14), when η ≤ 1/(5M), on the event (∥Γ(vt−1; ζt)∥ ≤M),
the update (9) can be written in terms of ∆t as

∆t = (I− ηDM∗)∆t−1 + ηχt + ηSt + η2Pt; (17)

where χt,St,Pt ∈ T (v∗), {χt} forms a vector-valued martingale difference sequence with respect to Ft, χt is α-sub-
Weibull with parameter GαV , St satisfies ∥St∥ ≤ ρ∥vt−1 − v∗∥2 and Pt satisfies ∥Pt∥ ≤ 7M2.



Proof of Lemma 8 is deferred to §E.5. Here we have ρ = D(LH + LN + BH/2) + LDLG, which is consistent with its
definition in (13).
Now, to analyze the iteration ∆t we need to control its tail behavior. We define the truncated version

S̃t = St1(TM>t), P̃t = Pt1(TM>t), (18)

let ∆0 = ∆0, and define the coupled process iteratively

∆t = (I− ηDM∗)∆t−1 + ηχt + ηS̃t + η2P̃t. (19)

The ∆t iteration avoids the potential issues of summation over Pt. We conclude the following lemma that characterizes the
coupling relation ∆t = ∆t, which allows us to analyze the coupled iteration ∆t.

Lemma 9 For each t ≥ 0 we have ∆t = ∆t on the event (TM > t). Furthermore, we have for all t ≥ 1

∆t = (I− ηDM∗)
t
∆0 + η

t∑
s=1

(I− ηDM∗)
t−s

χs + η

t∑
s=1

(I− ηDM∗)
t−s

S̃s + η2
t∑

s=1

(I− ηDM∗)
t−s

P̃s. (20)

We defer the proof of Lemma 9 in §E.6.
Next we provide a lemma that tightly characterizes the approximations in (20) that ∆t ≈ (I− ηDM∗)

t∆0.

Lemma 10 Let η ≤ min {1/(DBH), 1/(5M)} and T ≥ 1. Then with probability at least

1−

(
12 + 8

(
3

α

) 2
α

log−
α+2
α ϵ−1

)
Tϵ,

the algorithm satisfies for each t ∈ [0, T ], conditioning on ∥vs − v∗∥ ≤ r for all s = 0, . . . , t− 1 for some r > 0

∥∥∆t − (I− ηDM∗)
t∆0

∥∥ ≤ 8GαV√
Dµ

log
α+2
2α ϵ−1 · η1/2 + ρr2

Dµ
+

7V2

Dµ
log

2
α ϵ−1 · η. (21)

The proof of Lemma 10 is provided in §E.7.
In the following lemma we prove that when the initial iterate v0 is sufficiently close to the minimizer v∗ and r is appropriately
chosen to be dependent on ∆0 and Θ̃(η1/2), the conditioning event occurs almost surely on a high-probability event.

Lemma 11 When initialization

∥∆0∥ ≤
{

Dµ

25Gαρ
, δ

}
,

for any positives η, ϵ satisfying scaling condition (17), with probability at least

1−

(
14 + 8

(
3

α

) 2
α

log−
α+2
α ϵ−1

)
Tϵ,

for all t ∈ [0, T ] we have

∥∆t∥ ≤ 2max

{
∥∆0∥,

27GαV√
Dµ

log
α+2
2α ϵ−1 · η1/2

}
,

and if T ∗
η ∈ [0, T ], at time T ∗

η we have

∥∆T∗
η
∥ ≤ 1

2
max

{
∥∆0∥,

27GαV√
Dµ

log
α+2
2α ϵ−1 · η1/2

}
.

Lemma 11, whose proof is given in §E.8, implies that the iteration keeps ∥∆t∥ ≤ 2∥∆0∥ unless v is within a noisy
neighborhood of the local minimizer v∗, where we recall the definition of ∆t in (13).
Finally, Proposition 3 is proved by combining Lemmas 7 and 11.



B.2 PROOF OF THEOREMS 6 AND 7

In this subsection, we aim to prove Theorem 6. To deal with points with strong gradient corresponding to (i) in Definition 5,
we use the following lemma that is adapted from Ge et al. [2015, Lemma 38].

Proposition 12 Assume all conditions in Theorem 6 as well as
√

2dV2LGD+η < β, we have on the event(
∥∇F (vt)∥ ≥

√
2dV2LGD+η

)
that

E [F (vt+1)− F (vt) | Ft] ≤ −0.5dσ2LGD
2
−η

2. (22)

A core problem involves escaping from saddle points that corresponds to (iii) in Definition 5, we conclude the following
modification from Ge et al. [2015, Lemma 40].

Proposition 13 Assume all conditions in Theorem 6 as well as
√
2ησ2LGdD+ < β. Then on the event{

∥∇F (v0)∥ <
√
2dV2LGD+η, λmin(H(v0)) ≤ −γ

}
,

there is a stopping time T (v0) ≤ Tmax almost surely such that

EF (vT (v0))− F (v0) ≤ −0.5σ2D−η, (23)

where Tmax is fixed and independent of v0 defined as

Tmax = 0.5γ−1D−1
− η−1 log

(
6dV
σ

)
.

Proofs of Propositions 12 and 13 are straightforward generalization of relevant proofs of [Ge et al., 2015], and hence we
omit the details.
Proof [Proof of Theorem 6] While this proof can be done in a similar fashion as Theorem 36 in Ge et al. [2015], here we
provide a different proof using stopping-time techniques.

(i) Given (24), we split the state space Sd−1 into three distinct regions: let

Q1 =
{
v ∈ Sd−1 : ∥∇F (v)∥ ≥

√
2dV2LGD+η

}
,

and let
Q2 =

{
v ∈ Sd−1 : ∥∇F (v)∥ <

√
2dV2LGD+η, λmin(H(v)) ≤ −γ

}
.

Define a stochastic process {Ti} s.t. T0 = 0, and

Ti+1 = Ti + 1Q1(vTi) + T (vTi)1Q2(vTi), (24)

where T (vTi) ≤ Tmax is defined in Proposition 13. By (22) in Lemma 12 and (23) in Proposition 13, we know that on
(vTi

∈ Q1)
E[F (vTi+1

)− F (vTi
) | FTi

] ≤ −0.5dσ2LGD
2
−η

2,

and on (vTi
∈ Q2)

E[F (vTi+1
)− F (vTi

) | FTi
] ≤ −0.5σ2D−η.

Combining the above two displays and (24), we have

E[F (vTi+1)− F (vTi) | FTi ]

≤ −min

(
0.5dσ2LGD

2
−η

2,
0.5σ2D−η

0.5γ−1D−1
− η−1 log

(
6dV
σ

)) · E [Ti+1 − Ti | FTi
]

≤ −min

(
0.5dLG, γ log

−1

(
6dV
σ

))
σ2D2

−η
2 · E [Ti+1 − Ti | FTi

] ,

(25)

on {vTi
∈ Q1 ∪Q2}.



(ii) Let I ∈ [0,∞] be the (random) first index i such that vTi ∈ (Q1∪Q2)
c. We conclude immediately that (I > i) ∈ FTi ,

and (I > i) ⊆ (vTi ∈ Q1 ∪Q2). Applying (25) gives

E [F (vTI )− F (v0)] = E

[ ∞∑
i=0

(
F (vTi+1

)− F (vTi
)
)
1I>i

]

≤ −min

(
0.5dLG, γ log

−1

(
6dV
σ

))
σ2D2

−η
2 · ETI

≤ −min

(
0.5dLG, γ log

−1

(
6dV
σ

))
σ2D2

−η
2 · T · P (TI ≥ T ) ,

where T ≥ 0 is any constant. Plugging in T = T1 as in (23) gives

P (TI ≥ T1) ≤
E [F (v0)− F (vTI )]

min
(
0.5dLG, γ log

−1
(
6dV
σ

))
σ2D2

−η
2 · T1

≤ 2∥F∥∞
4∥F∥∞

=
1

2
.

In words, event (TI < T1) has at least 1/2 probability, on which the iteration vt must enter (Q1 ∪Q2)
c by time T1 at

least once.

(iii) Noting that the argument above holds for all initial points v0 ∈ Q1 ∪Q2, so one can use Markov property and conclude
that within T1 · ⌈log2(κ−1)⌉ steps where T1 was defined in (23), iteration {vt} must enter (Q1 ∪Q2)

c at least once
with probability at least 1− κ. The rest of our proof follows from the definition of strict-saddle function.

Proof [Proof of Theorem 7] The conclusion is reached by directly combining Theorems 2 and 6, setting AT = H2, along
with an application of strong Markov property.

B.3 PROOF OF PROPOSITION 1

Proof [Proof of Proposition 1] For the GEV problem setting, the gradient and the Hessian of the objective function F (v) are

∇F (v) = −2
(v⊤Bv)Av − (v⊤Av)Bv

(v⊤Bv)2
,

∇2F (v) = −2
(v⊤Bv)A− (v⊤Av)B+ 2(Avv⊤B−Bvv⊤A)

(v⊤Bv)2
+ 8

[
(v⊤Bv)A− (v⊤Av)B

]
vv⊤B

(v⊤Bv)3
.

We first notice that, for v ∈ {v : ∥v∥ ≤ 1, ∥v − v∗∥ ≤ δ},

∥∇D(v)∥ =
∥∥2(v⊤Bv)Bv

∥∥ ≤ 2∥B∥2,

which indicates that D(v) has Lipschitz constant LD ≡ 2∥B∥2. Secondly, we introduce an arbitrary unit vector w and take
derivative of vector ∇2F (v)w w.r.t. v as

∇v

[
∇2F (v)w

]
= −2

2Awv⊤B− 2Bvv⊤A+ 2(v⊤Bw)A+ 2Avw⊤B− 2(v⊤Aw)B− 2Bvw⊤A

(v⊤Bv)2

+ 8

[
(v⊤Bv)A− (v⊤Av)B+ 2(Avv⊤B−Bvv⊤A)

]
wv⊤B

(v⊤Bv)3

+ 8

[
(v⊤Bv)A− (v⊤Av)B

]
vw⊤B

(v⊤Bv)3

+ 8
(v⊤Bw)

[
(v⊤Bv)A− (v⊤Av)B+ 2(Avv⊤B−Bvv⊤A)

]
(v⊤Bv)3

− 48

[
(v⊤Bw)

[
(v⊤Bv)A− (v⊤Av)B

]
vv⊤B

(v⊤Bv)4

]
.



The five terms on the right-hand side have norm bounded by 24∥A∥∥B∥
(1−δ)2λ2

min(B)
, 48∥A∥∥B∥2

(1−δ)3λ3
min(B)

, 16∥A∥∥B∥2

(1−δ)3λ3
min(B)

, 48∥A∥∥B∥2

(1−δ)3λ3
min(B)

,
96∥A∥∥B∥3

(1−δ)4λ4
min(B)

respectively, which implies that

∥∥∇v

[
∇2F (v)w

]∥∥ ≤ 232∥A∥∥B∥3

λ4min(B)
.

Therefore, for all v1,v2 ∈ {v : ∥v∥ ≤ 1, ∥v − v∗∥ ≤ δ}, we have

∥∥∇2F (v1)−∇2F (v2)
∥∥ = max

∥w∥=1

∥∥∇2F (v1)w −∇2F (v2)w
∥∥ ≤ 232∥A∥∥B∥3

(1− δ)4λ4min(B)
∥v1 − v2∥,

indicating ∇2F (v) has Lipschitz constant LQ ≡ 232∥A∥∥B∥3

(1−δ)4λ4
min(B)

.

Similarly, we also notice for all v ∈ {v : ∥v∥ ≤ 1, ∥v − v∗∥ ≤ δ},

∥∇F (v)∥ ≤ 4∥A∥∥B∥
(1− δ)2λ2min(B)

,
∥∥∇2F (v)

∥∥ ≤ 28∥A∥∥B∥2

(1− δ)3λ3min(B)
,

which indicates that F (v) has Lipschitz constant LF ≡ 4∥A∥∥B∥
(1−δ)2λ2

min(B)
and ∇F (v) has Lipschitz constant LK ≡

28∥A∥∥B∥2

(1−δ)3λ3
min(B)

.

B.4 PROOF OF THEOREM 8

To prove Theorem 8, we first present the following Lemma 14 on a linear representation of M∗(v
(η)
T − v∗).

Lemma 14 (Representation Lemma) Under Assumptions 1, 2 and given initialization condition (14), for any T ≥ Kη,ϵT
∗
η

and positive constants η, ϵ satisfying the scaling condition

5V log1/α ϵ−1 · η ≤ 1,

we have

M∗

(
v
(η)
T − v∗

)
=

1

D(T −Kη,ϵT ∗
η )

T∑
t=Kη,ϵT∗

η +1

χt+1 +
1

D(T −Kη,ϵT ∗
η )

T∑
t=Kη,ϵT∗

η +1

St+1

+
η

D(T −Kη,ϵT ∗
η )

T∑
t=Kη,ϵT∗

η +1

Pt+1 +
1

D(T −Kη,ϵT ∗
η )η

(∆Kη,ϵT∗
η +1 −∆T+1),

(26)

where χt,St,Pt are vectors in the tangent space T (v∗). Here χt is defined as

χt ≡ (I− v∗v∗⊤)(Γ(vt−1; ζt)−D(vt−1)∇F (vt−1)), (27)

which is α-sub-Weibull with parameter GαV . The sequence {χt} forms a vector-valued martingale difference sequence
with respect to Ft. St satisfies ∥St∥ ≤ ρ∥vt−1 − v∗∥2. On the event H2 defined in Theorem 2, using a total sample size
T + 1, each Pt satisfies ∥Pt∥ ≤ 7V2 log2/α ϵ−1.

Proof [Proof of Lemma 14] Telescoping (17) in Lemma 8 for t = Kη,ϵT
∗
η + 2, . . . , T + 1 gives

ηDM∗

T∑
t=Kη,ϵT∗

η +1

∆t = (∆Kη,ϵT∗
η +1 −∆T+1) + η

T∑
t=Kη,ϵT∗

η +1

χt+1

+ η

T∑
t=Kη,ϵT∗

η +1

St+1 + η2
T∑

t=Kη,ϵT∗
η +1

Pt+1.



Plugging in the definitions of ∆t,v
(η)
T in (13), (27) gives (26). For event H2 defined in Theorem 2 using total sample size

T + 1, the proof of Lemma 11 in §E.8 shows that H2 ⊆
{
∥Γ(vt−1; ζt)∥ ≤M : 1 ≤ t ≤ T + 2

}
. The rest of Lemma 14

directly follows Lemma 8.

With Lemma 14 in hand, we are ready to prove Theorem 8.
Proof [Proof of Theorem 8] For a given T , we apply Theorem 2 and Lemma 14 with ϵ = 1/T 2, such that P(H2) → 1
and the scaling condition (17) is satisfied under condition (29). Using a coupling approach we can safely ignore the small
probability event and concentrate on the event H2, where we have∥∥∥∥∥∥ 1

D(T −Kη,ϵT ∗
η )

T∑
t=Kη,ϵT∗

η +1

St+1

∥∥∥∥∥∥ ≤ 2
α+2
α +17ρG2

αV2

D2µ
η log

α+2
α T,

∥∥∥∥∥∥ η

D(T −Kη,ϵT ∗
η )

T∑
t=Kη,ϵT∗

η +1

Pt+1

∥∥∥∥∥∥ ≤ 7 · 2 2
αV2

D
η log

2
α T.

Using the relation ∥∆t∥ ≤ ∥vt − v∗∥ ≤
√
2∥∆t∥, given in Proposition 3, and applying Theorem 2 on event H2 we also

have ∥∥∥∥ 1

D(T −Kη,ϵT ∗
η )η

(∆Kη,ϵT∗
η +1 −∆T+1)

∥∥∥∥ ≤ 2
α+2
2α + 17

2 +1GαV√
D3µ

log
α+2
2α T

(T −Kη,ϵT ∗
η )η

1/2
.

Under condition (29), as T → ∞, η → 0, we have the following almost-sure convergences

√
T

D(T −Kη,ϵT ∗
η )

T∑
t=Kη,ϵT∗

η +1

St+1 → 0 a.s.

η
√
T

D(T −Kη,ϵT ∗
η )

T∑
t=Kη,ϵT∗

η +1

Pt+1 → 0 a.s.

√
T

D(T −Kη,ϵT ∗
η )η

(∆Kη,ϵT∗
η +1 −∆T+1) → 0 a.s.

From (12) and (27), the covariance matrix of ξt—i.e., the projection of scaled-gradient noise onto the tangent space
T (v∗)—can be denoted by

Φ(vt−1) ≡ (I− v∗v∗⊤)Σ(vt−1)(I− v∗v∗⊤).

We denote the covariance matrix at local minimizer v∗ as Φ∗ ≡ Φ(v∗) = (I− v∗v∗⊤)Σ∗(I− v∗v∗⊤). Using the central
limit theorem and the Slutsky theorem, we have the following convergence-in-distribution result under the condition (29) as
T → ∞, η → 0:

1√
T

T∑
t=Kη,ϵT∗

η +1

χt+1
d→ N (0,Φ∗) .

Combining these results with (26) in Lemma 14, under condition (29), as T → ∞, η → 0 we have convergence in
distribution: √

TM∗

(
v
(η)
T − v∗

)
d→ N (0, D−2 ·Φ∗). (28)

Since M−
∗ M∗ = I− v∗v∗⊤ and M−

∗ Φ∗M−
∗ = M−

∗ Σ∗M−
∗ , (28) is equivalent to

√
T (I− v∗v∗⊤)

(
v
(η)
T − v∗

)
d→ N

(
0, D−2 · M−

∗ Σ∗M−
∗
)
, (29)

which omits the asymptotic analysis in the direction parallel to v∗. To study the asymptotic property of v∗v∗⊤(v
(η)
T −v∗), we

first notice that in Lemma 7 in §B.1 we know that for all v ∈ Rd with ∥v∥ = 1, ∥v∗v∗⊤(v−v∗)∥ = 1−v∗⊤v = 1
2∥v−v∗∥2.



Applying Theorem 2, on event H2 we have:

∥∥∥√T · v∗v∗⊤(v
(η)
T − v∗)

∥∥∥ =
1

2
√
T

T∑
t=Kη,ϵT∗

η +1

∥vt − v∗∥2

≤ 2
α+2
α +17G2

αV2

Dµ
·
η(T −Kη,ϵT

∗
η ) log

α+2
α T

√
T

≲

√
η2T log

2α+4
α T → 0,

where in the second line we used the first condition in (29). Under condition (29), as T → ∞, η → 0, we have almost-sure
convergence √

T · v∗v∗⊤
(
v
(η)
T − v∗

)
→ 0 a.s. (30)

Adding up (29) and (30) and applying the Slutsky theorem, we conclude (30) and Theorem 8.

B.5 PROOF OF PROPOSITION 9

Proof [Proof of Proposition 9] For notational simplicity, we denote vector v ∈ Rdx+dy as v⊤ = (v⊤
x ,v

⊤
y ) for vx ∈

Rdx ,vy ∈ Rdy . For any vectors w1,w2 ∈ Rdx with ∥w1∥ ≤ 1, ∥w2∥ ≤ 1, using Lemma 17 we have∥∥w⊤
1 XX⊤w2

∥∥
ψ1

≤
∥∥w⊤

1 X
∥∥
ψ2

∥∥w⊤
2 X

∥∥
ψ2

≤ V2
x,

which indicates that ∥∥v⊤
x XX⊤vx

∥∥
ψ1

≤ V2
x,

∥∥XX⊤vx
∥∥
ψ1

≤ V2
x.

Similarly, we can show ∥∥v⊤
y Y Y ⊤vy

∥∥
ψ1

≤ V2
y ,

∥∥Y Y ⊤vy
∥∥
ψ1

≤ V2
y ,

and ∥∥v⊤
x XY ⊤vy

∥∥
ψ1

≤ VxVy,
∥∥XY ⊤vy

∥∥
ψ1

≤ VxVy,
∥∥Y X⊤vx

∥∥
ψ1

≤ VxVy.

Combining all above inequalities and using Lemma 16 yields∥∥∥v⊤Ãv
∥∥∥
ψ1

≤ 2VxVy,
∥∥∥Ãv

∥∥∥
ψ1

≤ 2VxVy,
∥∥∥v⊤B̃′v

∥∥∥
ψ1

≤ V2
x + V2

y ,
∥∥∥B̃′v

∥∥∥
ψ1

≤ V2
x + V2

y .

By applying Lemmas 17 and 18, in CCA problem we have stochastic scaled-gradient satisfying∥∥∥(v⊤B̃′v)Ãv − (v⊤Ãv)B̃′v
∥∥∥
ψ1/2

≤ G1/2

(∥∥∥v⊤B̃′v
∥∥∥
ψ1

∥∥∥Ãv
∥∥∥
ψ1

+
∥∥∥v⊤Ãv

∥∥∥
ψ1

∥∥∥B̃′v
∥∥∥
ψ1

)
≤ 400(V2

x + V2
y )VxVy.

Hence Assumption 2 holds for V = 400(V2
x + V2

y )VxVy and α = 1/2.

C PRELIMINARIES FOR ORLICZ-ψα NORM
Of similar style as [Li and Jordan, 2021, §E] we collect in this section some facts for Orlicz-ψα norm for our usage. We start
with its definition:

Definition 15 (Orlicz ψα-norm) For a continuous, monotonically increasing and convex function ψ(x) defined for all
x > 0 satisfying ψ(0) = 0 and limx→∞ ψ(x) = ∞, we define the Orlicz ψ-norm for a random variable X as

∥X∥ψ ≡ inf

{
K > 0 : Eψ

(
|X|
K

)
≤ 1

}
.

As a commonly used special case, we consider function ψα(x) ≡ exp(xα)− 1 and define the Orlicz ψα-norm for a random
variable X as

∥X∥ψα ≡ inf

{
K > 0 : E exp

(
|X|α

Kα

)
≤ 2

}
.



Lemma 16 When ψ(x) is monotonically increasing and convex for x > 0, for any random variables X,Y with finite Orlicz
ψ-norm, the triangle inequality holds

∥X + Y ∥ψ ≤ ∥X∥ψ + ∥Y ∥ψ.

For all α ≥ 1, the above inequality holds when ∥ · ∥ψ is taken as the Orlicz ψα-norm.

Proof [Proof of Lemma 16] Let K1,K2 denote the Orlicz ψ-norms of X and Y . Because ψ(x) is monotonically increasing
and convex, we have

ψ

(
|X + Y |
K1 +K2

)
≤ ψ

(
K1

K1 +K2
· |X|
K1

+
K2

K1 +K2
· |Y |
K2

)
≤ K1

K1 +K2
· ψ
(
|X|
K1

)
+

K2

K1 +K2
· ψ
(
|Y |
K2

)
,

which implies

Eψ
(

|X + Y |
K1 +K2

)
≤ 1, i.e. ∥X + Y ∥ψ ≤ ∥X∥ψ + ∥Y ∥ψ,

yielding the lemma.

Lemma 17 Let X and Y be random variables with finite ψα-norm for some α ≥ 1, then

∥XY ∥ψα/2
≤ ∥X∥ψα∥Y ∥ψα .

Proof [Proof of Lemma 17] Denote A ≡ X/∥X∥ψα , B ≡ Y/∥Y ∥ψα , then ∥A∥ψα = ∥B∥ψα = 1. Using the elementary
inequality

|AB| ≤ 1

4
(|A|+ |B|)2,

and the triangle inequality in Lemma 16 we have that

∥AB∥ψα/2
≤ 1

4
∥(|A|+ |B|)2∥ψα/2

=
1

4
∥|A|+ |B|∥2ψα

≤ 1

4
(∥A∥ψα + ∥B∥ψα)

2 = 1.

Multiplying both sides of the inequality by ∥X∥ψα
∥Y ∥ψα

gives the desired result.

Lemma 18 For any random variables X,Y with finite Orlicz ψα-norm, the following inequalities hold

∥X + Y ∥ψα
≤ log

1/α
2 (1 + e1/α)(∥X∥ψα

+ ∥Y ∥ψα
), ∥EX∥ψα

≤ log
1/α
2 (1 + e1/α)∥X∥ψα

,

and
∥X − EX∥ψα

≤ log
1/α
2 (1 + e1/α)

(
1 + log

1/α
2 (1 + e1/α)

)
∥X∥ψα

.

Proof [Proof of Lemma 18] Recall that when α ∈ (0, 1), ψα(x) does not satisfy convexity when x is around 0. Let ψ̃α(x) be

ψ̃α(x) =

{
exp(xα)− 1 x ≥ x∗
x
x∗

(exp(xα∗ )− 1) x ∈ [0, x∗)
.

for some appropriate x∗ > 0, so as to make the function convex. Here x∗ is chosen such that the tangent line of function ψα
at x∗ passes through origin, i.e.

ψ′
α(x∗) = αxα−1

∗ exp(xα∗ ) =
exp(xα∗ )− 1

x∗
= ψ̃′

α(x∗).

Simplifying it gives us a transcendental equation

(1− αxα∗ ) exp(x
α
∗ ) = 1.



We easily find that xα∗ ≤ 1/α. Because ψα(x) is concave on
(
0, ( 1

α − 1)1/α
)

and convex on (( 1
α − 1)1/α,∞), we have

ψα(x) ≥ ψ̃α(x) ≥ 0 for all x ≥ 0, and hence

0 ≤ ψα(x)− ψ̃α(x) ≤ ψα(x∗) ≤ e1/α − 1. (31)

Let K1,K2 denote the Orlicz ψα-norms of X and Y , then

Eψ̃α
(
|X|
K1

)
≤ Eψα

(
|X|
K1

)
≤ 1, Eψ̃α

(
|Y |
K2

)
≤ Eψα

(
|Y |
K2

)
≤ 1.

By applying the triangle inequality in Lemma 16 and using (31), we have

Eψα
(

|X + Y |
K1 +K2

)
≤ Eψ̃α

(
|X + Y |
K1 +K2

)
+ e1/α − 1 ≤ e1/α,

Eψα
(
|EX|
K1

)
≤ Eψ̃α

(
|EX|
K1

)
+ e1/α − 1 ≤ e1/α.

By applying Jensen’s inequality to concave function Jα(z) = z
log

1+e1/α
2, we have

Eψα

(
|X + Y |

log
1/α
2 (1 + e1/α)(K1 +K2)

)
= EJα

(
exp

(
|X + Y |α

(K1 +K2)α

))
− 1

≤ Jα

(
E exp

(
|X + Y |α

(K1 +K2)α

))
− 1 ≤ 1,

and

Eψα

(
|EX|

log
1/α
2 (1 + e1/α)K1

)
= EJα

(
exp

(
|EX|α

Kα
1

))
− 1 ≤ Jα

(
E exp

(
|EX|α

Kα
1

))
− 1 ≤ 1,

which implies

∥X + Y ∥ψα ≤ log
1/α
2 (1 + e1/α)(∥X∥ψα + ∥Y ∥ψα), ∥EX∥ψα ≤ log

1/α
2 (1 + e1/α)∥X∥ψα ,

and

∥X − EX∥ψα
≤ log

1/α
2 (1 + e1/α)(∥X∥ψα

+ ∥EX∥ψα
) ≤ log

1/α
2 (1 + e1/α)

(
1 + log

1/α
2 (1 + e1/α)

)
∥X∥ψα

.

Now we proceed with the definition of Orlicz ψα-norm for random vectors.

Definition 19 For a random vector X ∈ Rd, its Orlicz ψα-norm is defined as

∥X∥ψα ≡ inf

{
K > 0 : E exp

(
∥X∥α

Kα

)
≤ 2

}
.

Seeing the above definition, a random vector X is called sub-Gaussian if ∥X∥ψ2
<∞, and is called sub-Exponential if

∥X∥ψ1
<∞.

Remark 20 We notice that ∥X∥ψα equals to the Orlicz ψα-norm of random variable (scalar) ∥X∥. Using this relation, we
can easily extend all above results of random variables to random vectors with the same positive factors and dependency on
α.



D ESTIMATION OF THE STRICT-SADDLE PARAMETERS

The goal of this section is to detail the proof of Lemma 3 that estimates the strict-saddle parameters. We first compute the
manifold gradient and Hessian in the following Lemma 21:

Lemma 21 The manifold gradient and Hessian can be computed as

g(x) = −2
(x⊤Bx)A− (x⊤Ax)B

(x⊤Bx)2
x, (32)

H(x) = −2
(x⊤Bx)A− (x⊤Ax)B+ 2(Axx⊤B−Bxx⊤A)

(x⊤Bx)2
+ 8

[
(x⊤Bx)A− (x⊤Ax)B

]
xx⊤B

(x⊤Bx)3
. (33)

Proof The constrained optimization problem has c(x) = ∥x∥2 − 1 so the Lagrangian is

L(x;µ) = −x⊤Ax

x⊤Bx
− µ(x⊤x− 1).

According to the constrained optimization theory in Nocedal and Wright [2006], since (i) there is one constraint (ii) the
gradient g(x) = 2x on constraint has constant norm 2, it satisfies some 2-RLICQ condition. The feasible value of Lagrangian
multiplier µ∗(x) has

µ∗(x) = argmin
µ

∥∇xL(x, µ)∥2.

Let

Λ(x) =
(x⊤Bx)A− (x⊤Ax)B

(x⊤Bx)2
.

Then we have
∇L(x;µ) = −2Λ(x)x− 2µx,

and hence

∥∇xL(x;µ)∥2 = 4 ∥Λ(x)x+ µx∥2 = 4∥Λ(x)x+ µx∥2

= 4
(
x⊤Λ(x)Λ(x)x+ 2(x⊤Λ(x)x)µ+ (x⊤x)µ2

)
.

Solving this problem gives µ∗(x) for x ∈ Sd−1:

µ∗(x) = −x⊤Λ(x)x = − (x⊤Bx)x⊤Ax− (x⊤Ax)x⊤Bx

(x⊤Bx)2
= 0.

The manifold gradient can hence be computed as

g(x) = ∇L(x;µ)
∣∣
µ=µ∗(x)

= −2Λ(x)x− 2µ∗(x)x = −2
(x⊤Bx)A− (x⊤Ax)B

(x⊤Bx)2
x,

concluding (32). For manifold Hessian, we can compute it as

H(x) = ∇2L(x;µ)
∣∣
µ=µ∗(x)

= −2∇
[
(x⊤Bx)A− (x⊤Ax)B

(x⊤Bx)2
x

]
= −2

(x⊤Bx)A− (x⊤Ax)B+ 2(Axx⊤B−Bxx⊤A)

(x⊤Bx)2
+ 4

[
(x⊤Bx)A− (x⊤Ax)B

]
xx⊤(2B)

(x⊤Bx)3
.

This proves (33) and concludes the lemma.

We prove the Hessian smoothness and give the Lipschitz constant for both manifold gradient and Hessian, as in the following
lemmas.



Lemma 22 There are Lipschitz constants

LG ≡ 28∥A∥∥B∥2

λ3min(B)
, LH ≡ 56∥A∥∥B∥3

λ4min(B)
,

such that for all z, z1, z2 ∈ Sd−1 we have
∥H(z)∥ ≤ LG, (34)

and
∥H(z1)−H(z2)∥ ≤ LH∥z1 − z2∥. (35)

In addition, we have from above two∥∥∥P⊤
T (z)H(z)PT (z) − P⊤

T (z′)H(z′)PT (z′)

∥∥∥ ≤ (2LG + LH)∥z− z′∥. (36)

In fact, in this lemma one can replace ∥A∥ by the norm ∥A− cB∥ for any constant scalar c.

Proof [Proof of Lemma 22] Note

∥g(x)∥ ≤ ∥B∥
λ2min(B)

∥A∥,

and

∥H(x)∥ ≤ 2
2∥B∥∥A∥+ 4∥A∥∥B∥

λ2min(B)
+ 8

2∥B∥∥A∥∥B∥
λ3min(B)

≤ 28∥B∥2

λ3min(B)
∥A∥,

so we conclude (34) from mean-value theorem.
Moreover, for an arbitrary unit vector v,

∥H(x)v −H(y)v∥

≤ 2

∥∥∥∥ (x⊤Bx)A− (x⊤Ax)B+ 2(Axx⊤B−Bxx⊤A)

(x⊤Bx)2
v − (y⊤By)A− (y⊤Ay)B+ 2(Ayy⊤B−Byy⊤A)

(y⊤By)2
v

∥∥∥∥
+ 8

∥∥∥∥∥
[
(x⊤Bx)A− (x⊤Ax)B

]
xx⊤B

(x⊤Bx)3
v −

[
(y⊤By)A− (y⊤Ay)B

]
yy⊤B

(y⊤By)3
v

∥∥∥∥∥ ≡ I + II.

Note

∇
[
(x⊤Bx)A− (x⊤Ax)B+ 2(Axx⊤B−Bxx⊤A)

(x⊤Bx)2
v

]
=

2(x⊤B)Av − 2(x⊤A)Bv + 2((x⊤Bxv)A− (x⊤Av)B) + 2(Axv⊤B−Bxv⊤A)

(x⊤Bx)2

− 2

[
(x⊤Bx)A− (x⊤Ax)B+ 2(Axx⊤B−Bxx⊤A)

]
xv⊤(2B)

(x⊤Bx)3
,

whose norm is bounded by 36∥A∥∥B∥2/λ3min(B), and

∇

[[
(x⊤Bx)A− (x⊤Ax)B

]
xx⊤B

(x⊤Bx)3
v

]
= ∇

[
(x⊤Bv)

[
(x⊤Bx)Ax− (x⊤Ax)Bx

]
(x⊤Bx)3

]

=

[
(x⊤Bx)A− (x⊤Ax)B

]
xv⊤B

(x⊤Bx)3
+

(x⊤Bv)
[
(x⊤Bx)A− (x⊤Ax)B+ 2(Axx⊤B−Bxx⊤A)

]
(x⊤Bx)3

− 3

[
(x⊤Bv)

[
(x⊤Bx)A− (x⊤Ax)B

]
xx⊤(2B)

(x⊤Bx)4

]
,

whose norm is thus bounded by 20∥A∥∥B∥3/λ4min(B). Again by mean value theorem we have

∥I∥ ≤ 36∥A∥∥B∥2

λ3min(B)
∥x− y∥,



and

∥II∥ ≤ 20∥A∥∥B∥3

λ4min(B)
∥x− y∥,

so

∥H(x)v −H(y)v∥ ≤ 56∥A∥∥B∥3

λ4min(B)
∥x− y∥,

which concludes (35) via the definition of operator norm.
Lastly to conclude (36), we utilize the properties of projection matrices, ∥PT (z)∥ ≤ 1, ∥PT (z1) −PT (z2)∥ ≤ ∥z1 − z2∥ and
hence from matrix operator theory∥∥∥P⊤

T (z)H(z)PT (z) − P⊤
T (z′)H(z′)PT (z′)

∥∥∥
≤
∥∥∥P⊤

T (z)H(z)PT (z) − P⊤
T (z)H(z)PT (z′)

∥∥∥
+
∥∥∥P⊤

T (z)H(z)PT (z′) − P⊤
T (z)H(z′)PT (z′)

∥∥∥+ ∥∥∥P⊤
T (z)H(z′)PT (z′) − P⊤

T (z′)H(z′)PT (z′)

∥∥∥
≤ ∥P⊤

T (z)∥∥H(z)∥∥PT (z) − PT (z′)∥

+ ∥P⊤
T (z)∥ ∥H(z)−H(z′)∥ ∥PT (z′)∥+

∥∥(PT (z) − PT (z′))
⊤∥∥ ∥H(z′)∥∥PT (z′)∥

≤ LG∥z− z′∥+ LH∥z− z′∥+ LG∥z− z′∥
= (2LG + LH)∥z− z′∥.

We complete our proof.

We now come to explore what the small gradient condition ∥g(x)∥ ≤ γ, where g(·) is defined in (32), means for a point x
in the GEV Problem. We first analyze the case where B is the identity matrix, which reduces to the classical Eigenvector
Problem. Define for convenience

γ1 ≡
(

∥B∥
λmin(B)

)1/2
γ

2λgap
. (37)

Lemma 23 When B = I, we have under ∥w∥ = 1, an arbitrary constant γ1 ∈ (0, 1/2) and∥∥∥∥Λw − w⊤Λw

w⊤w
w

∥∥∥∥ ≤ λgapγ1,

and for some j = 1, . . . , d (for consistency we define λ0 = λ1 and λd+1 = λd)

w⊤Λw

w⊤w
∈
[
λj−1 + λj

2
,
λj + λj+1

2

]
,

together imply
(e⊤j w)2 ≥ 1− 4γ21 .

Proof Denote till the rest of this proof wi = e⊤i w. Note we have by

λ2gapγ
2
1 ≥

∥∥∥∥Λw − w⊤Λw

w⊤w
w

∥∥∥∥2 =

d∑
i=1

(
λi −

w⊤Λw

w⊤w

)2

w2
i

≥
j−1∑
i=1

(
λi −

w⊤Λw

w⊤w

)2

w2
i +

d∑
i=j+1

(
λi −

w⊤Λw

w⊤w

)2

w2
i

≥
j−1∑
i=1

(
λi −

λj−1 + λj
2

)2

w2
i +

d∑
i=j+1

(
λi −

λj + λj+1

2

)2

w2
i

≥
(
λj − λj−1

2

)2 j−1∑
i=1

w2
i +

(
λj+1 − λj

2

)2 d∑
i=j+1

w2
i ≥

λ2gap

4

(
1− w2

j

)
.



This implies the lemma immediately.

To study the case of general B, we first introduce an auxiliary lemma.

Lemma 24 Given two norms ∥ · ∥1, ∥ · ∥2 that are equivalent: there are constants CL, CU > 0 such that for every nonzero
vector v, CL∥v∥2 ≤ ∥v∥1 ≤ CU∥v∥2. Then for two given nonzero vectors w1,w2, we have∥∥∥∥ w1

∥w1∥1
− w2

∥w2∥1

∥∥∥∥
1

≤ 2C−1
L CU

∥∥∥∥ w1

∥w1∥2
− w2

∥w2∥2

∥∥∥∥
2

Proof Without loss of generality we set ∥w1∥2 = 1 = ∥w2∥2. Then using triangle inequality we have

LHS =

∥∥∥∥ w1

∥w1∥1
− w2

∥w2∥1

∥∥∥∥
1

=
∥∥w2∥1w1 − ∥w1∥1w2∥1

∥w1∥1∥w2∥1

=
∥∥w2∥1w1 − ∥w1∥1w1 + ∥w1∥1w1 − ∥w1∥1w2∥1

∥w1∥1∥w2∥1

≤
|∥w2∥1 − ∥w1∥1| ∥w1∥1 + ∥w1∥1 ∥w1 −w2∥1

∥w1∥1∥w2∥1

≤ 2∥w1 −w2∥1∥w1∥1
∥w1∥1∥w2∥1

= 2∥w2∥−1
1 · ∥w1 −w2∥1 ≤ 2C−1

L ∥w2∥−1
2 · CU∥w1 −w2∥2 = RHS.

We conclude the following lemma.

Lemma 25 We have for x ∈ Sd−1,

γ ∈

(
0,

(
∥B∥

λmin(B)

)−1/2

λgap

)
, (38)

and ∥g(x)∥ ≤ γ implies that there exists at least one j = 1, . . . , d such that

(e⊤j B
1/2x)2 ≥ (1− 4γ21)∥B1/2x∥2. (39)

Furthermore, we have that there exists at least one j = 1, . . . , d such that

min (∥x− vj∥, ∥x+ vj∥) ≤ 4
√
2

(
∥B∥

λmin(B)

)1/2

· γ1. (40)

Proof Since B is positive definite, letting in (23) w = B1/2x/∥B1/2x∥, we have ∥w∥ = 1 and recall that A = B1/2ΛB1/2∥∥∥∥Λw − w⊤Λw

w⊤w
w

∥∥∥∥ = ∥B1/2x∥
∥∥∥∥B−1/2

(
B1/2ΛB1/2

x⊤Bx
x− x⊤B1/2ΛB1/2x

(x⊤Bx)2
Bx

)∥∥∥∥
≤
(

∥B∥
λmin(B)

)1/2 ∥∥∥∥ (x⊤Bx)A− (x⊤Ax)B

(x⊤Bx)2
x

∥∥∥∥ ≤
(

∥B∥
λmin(B)

)1/2
γ

2
= λgapγ1.

Note (41) gives γ1 ∈ (0, 1/2), and hence applying Lemma 23 gives the following: there is at least one j = 1, . . . , d such
that (e⊤j w)2 ≥ 1− 4γ21 . Translating this back in terms of x concludes (39).

To conclude (42) we note (39) gives if ⟨z1, z2⟩B ≡ z⊤1 Bz2 and ∥z∥B ≡ ⟨z, z⟩1/2B :〈
e⊤j B

−1/2,
x

∥x∥B

〉2

B

≥ 1− 4γ21 ,

so ∥∥∥∥e⊤j B−1/2 ± x

∥x∥B

∥∥∥∥2
B

=
∥∥∥e⊤j B−1/2

∥∥∥2
B
+

∥∥∥∥ x

∥x∥B

∥∥∥∥2
B

± 2

〈
e⊤j B

−1/2,
x

∥x∥B

〉
B

= 2± 2

〈
e⊤j B

−1/2,
x

∥x∥B

〉
B

,



and hence using 1−
√
1− t ≤ t for t ∈ [0, 1]

min

∥∥∥∥e⊤j B−1/2 ± x

∥x∥B

∥∥∥∥2
B

= 2− 2

∣∣∣∣〈e⊤j B−1/2,
x

∥x∥B

〉
B

∣∣∣∣ = 2− 2
√

1− 4γ21 ≤ 8γ21 .

Using this and applying Lemma 24 with ∥ ·∥1 = ∥ ·∥ and ∥ ·∥2 = ∥ ·∥B we have λ−1/2
max (B)∥v∥B ≤ ∥v∥ ≤ λ

−1/2
min (B)∥v∥B

and hence for two given nonzero vectors (in the Euclidean norm) x and ∓vj = ∓∥e⊤j B−1/2∥−1e⊤j B
−1/2

min ∥x± vj∥ ≤ 2

(
∥B∥

λmin(B)

)1/2

·min

∥∥∥∥e⊤j B−1/2 ± x

∥x∥B

∥∥∥∥
B

≤ 4
√
2

(
∥B∥

λmin(B)

)1/2

· γ1.

Now we finish the proof of Lemma 3.
Proof [Proof of Lemma 3]

(i) We have Ax = (x⊤Ax/x⊤Bx)Bx if and only if g(x) = 0. For Λ = B−1/2AB−1/2 being WLOG diagonal, one
can see that for j = 2, . . . , d and vj on the unit sphere with Avj = λjBvj ,

H(vj) = −2 ·
(v⊤
j Bvj)A− (v⊤

j Avj)B

(v⊤
j Bvj)2

= −2 · A− λjB

v⊤
j Bvj

.

Thus

(v1 − cvj)
⊤H(vj)(v1 − cvj)

= −2 · (v1 − cvj)
⊤(A− λjB)(v1 − cvj)

v⊤
j Bvj

= −2 · v
⊤
1 (A− λjB)v1

v⊤
j Bvj

+ 4c ·
v⊤
j (A− λjB)v1

v⊤
j Bvj

− 2c2 ·
v⊤
j (A− λjB)vj

v⊤
j Bvj

= −2 · v
⊤
1 (A− λjB)v1

v⊤
j Bvj

= −2(λ1 − λj) ·
v⊤
1 Bv1

v⊤
j Bvj

≤ −2(λ1 − λ2) ·
λmin(B)

∥B∥
.

In the display above, we use the fact that v⊤
j (A − λjB)v1 = (λ1 − λj)v

⊤
j Bv1 = 0 and v⊤

j (A − λjB)vj =

(λj − λj)v
⊤
j Bvj = 0. By picking c = v⊤

j v1 such that PT (vj)v1 = v1 − (v⊤
j v1)vj = v1 − cvj , we conclude

∥PT (vj)v1∥ =
√
1 + (v⊤

j v1)2 − 2(v⊤
j v1)2 =

√
1− (v⊤

j v1)2 ∈ (0, 1],

(since v1 ̸= ±vj otherwise 0 = v⊤
j Bv1 = ±v⊤

1 Bv1 which leads to v1 = 0 due to the positive definiteness of B.) and
hence from the above two displays

v⊤
1

[
P⊤
T (vj)

H(vj)PT (vj)

]
v1 ≤ −2(λ1 − λ2) ·

λmin(B)

∥B∥
∥PT (vj)(v1)∥2.

(ii) To conclude points that are close to PT (vj)v1, Lemma 25 gives for x ∈ Sd−1,

γ ∈

(
0,

(
∥B∥

λmin(B)

)−1/2

λgap

)
, (41)

and ∥g(x)∥ ≤ γ implies that there exists at least one j = 1, . . . , d such that

min ∥x± vj∥ ≤ 4
√
2

(
∥B∥

λmin(B)

)1/2

· γ1. (42)



Without loss of generality we suppose the minus sign in the above display is taken, so min ∥x − vj∥ ≤

4
√
2
(

∥B∥
λmin(B)

)1/2
· γ1. Then given the definition of γ1 in (37) we have from Lemma 22 that

v⊤
1

[
P⊤
T (x)H(x)PT (x)

]
v1

≤ v⊤
1

[
P⊤
T (vj)

H(vj)PT (vj)

]
v1 +

∥∥∥P⊤
T (vj)

H(vj)PT (vj) − P⊤
T (x)H(x)PT (x)

∥∥∥
≤ −2(λ1 − λ2) ·

λmin(B)

∥B∥
+ (2LG + LH)∥x− vj∥

≤ −(λ1 − λ2) ·
λmin(B)

∥B∥
≤ − (λ1 − λ2) ·

λmin(B)

∥B∥
∥PT (x)v1∥2,

as long as (combined with (42))

4
√
2(2LG + LH)

(
∥B∥

λmin(B)

)1/2

· γ1 ≤ (λ1 − λ2) ·
λmin(B)

∥B∥
,

where we applied ∥PT (x)v1∥ ≤ 1. This completes the proof of Lemma combining with the definition of β in (4).

E DEFERRED PROOFS OF §B.1

We collect the deferred proofs from §B.1.

E.1 PROOF OF LEMMA 4

Proof [Proof of Lemma 4] Since M = V log
1
α ϵ−1, we have from Assumption 2 that for each t ≥ 1,

P (∥Γ(vt−1; ζt)∥ > M) = P
(
exp

(
∥Γ(vt−1; ζt)∥α

Vα

)
> exp

(
Mα

Vα

))
≤ exp

(
−M

α

Vα

)
E exp

(
∥Γ(vt−1; ζt)∥α

Vα

)
≤ 2ϵ.

where we apply the Markov inequality and Assumption 2 (with law of total expectation applied). Taking a union bound,

P(TM ≤ T ∗
η ) ≤

T∗
η∑

t=1

P (∥Γ(vt−1; ζt)∥ > M) ≤ 2T ∗
η ϵ.



E.2 PROOF OF LEMMA 5

Proof [Proof of Lemma 5] For all u,v ∈ Sd−1, we have

∥g(u)− g(v)∥ ≤ ∥I− uu⊤∥∥∇F (u)−∇F (v)∥+ ∥vv⊤ − uu⊤∥∥∇F (v)∥
≤ 1 · LK∥u− v∥+ 2∥u− v∥ · LF
= (LK + 2LF )∥u− v∥,

∥H(u)−H(v)∥ ≤ ∥∇2F (u)−∇2F (v)∥+ (∥u− v∥∥∇F (u)∥+ ∥v∥∥∇F (u)−∇F (v)∥)∥I∥
≤ LQ∥u− v∥+ (∥u− v∥ · LF + 1 · LK∥u− v∥) · 1
= (LQ + LF + LK)∥u− v∥,

∥N (u)−N (v)∥ ≤ ∥u− v∥(∥∇F (u)∥+ ∥∇2F (u)∥∥u∥)
+ ∥v∥(∥∇F (u)−∇F (v)∥+ ∥∇2F (u)−∇2F (v)∥∥u∥+ ∥∇2F (v)∥∥u− v∥)

≤ ∥u− v∥(LF + LK · 1) + 1 · (LK∥u− v∥+ LQ∥u− v∥ · 1 + LK · ∥u− v∥)
= (LF + 3LK + LQ)∥u− v∥,

∥H(v)∥ ≤ ∥∇2F (v)∥+ ∥v∥∥∇F (v)∥∥I∥ ≤ LK + 1 · LF · 1 = LK + LF .

which implies that g(v) is (LG ≡ LK + 2LF )-Lipschitz, H(v) is (LH ≡ LQ + LF + LK)-Lipschitz, N (v) is (LN ≡
LF + 3LK + LQ)-Lipschitz and ∥H(v)∥ ≤ BH ≡ LF + LK within {v : ∥v∥ ≤ 1, ∥v − v∗∥ ≤ δ}.

E.3 PROOF OF LEMMA 6

Proof [Proof of Lemma 6] We have by a Taylor series expansion that for any y ∈ R satisfying |y| ≤ 1/2∣∣∣(1− y)−1/2 − 1− y

2

∣∣∣ ≤ 3y2

8

∞∑
k=0

|y|k ≤ 3y2

4
.

When η ≤ 1/(5M), on the event (∥Γ(vt−1; ζt)∥ ≤M), by letting y = 2ηv⊤
t−1Γ(vt−1; ζt)− η2∥Γ(vt−1; ζt)∥2 we have

|y| ≤ 2η
∣∣v⊤
t−1Γ(vt−1; ζt)

∣∣+ η2∥Γ(vt−1; ζt)∥2 ≤ 2ηM + η2M2 ≤ (11/5)ηM < 1/2,

and hence combining the above two displays gives∣∣∥vt−1 − ηΓ(vt−1; ζt)∥−1 − 1− ηv⊤
t−1Γ(vt−1; ζt)

∣∣
≤
∣∣∣(1− 2ηv⊤

t−1Γ(vt−1; ζt) + η2∥Γ(vt−1; ζt)∥2
)−1/2 − 1− ηv⊤

t−1Γ(vt−1; ζt)
∣∣∣

≤
∣∣∣(1− y)

−1/2 − 1− y

2

∣∣∣+ η2∥Γ(vt−1; ζt)∥2

2

≤ 3y2

4
+

1

2
η2M2 ≤ 3

4
· 121
25

η2M2 +
1

2
η2M2 ≤ 5η2M2.

(43)

By defining
ξt = (I− vt−1v

⊤
t−1)(Γ(vt−1; ζt)−D(vt−1)∇F (vt−1)), (44)

and

Qt = η−2 ·
(
∥vt−1 − ηΓ(vt−1; ζt)∥−1 − 1− ηv⊤

t−1Γ(vt−1; ζt)
)
(vt−1 − ηΓ(vt−1; ζt))

− (v⊤
t−1Γ(vt−1; ζt))Γ(vt−1; ζt),

(45)

the update formula (9) is equivalent to

vt = vt−1 − ηD(vt−1)g(vt−1) + ηξt + η2Qt. (46)

Using (43), we have
∥Qt∥ ≤ η−2 · 5η2M2 · (1 + ηM) +M2 ≤ 7M2.



Recall that we denote D = D(v∗),H∗ = H(v∗),N∗ = N (v∗). By defining

Rt = D(H∗ +N∗)(vt−1 − v∗)−D(vt−1)g(vt−1), (47)

we have
vt = vt−1 − ηD(H∗ +N∗)(vt−1 − v∗) + ηξt + ηRt + η2Qt.

Since (I− vt−1v
⊤
t−1) is Ft−1-measurable, we know that E[ξt | Ft−1] = 0 and hence {ξt} is a vector-valued martingale

difference sequence. Additionally, we have ∥I− vt−1v
⊤
t−1∥ ≤ 1, and hence from Assumption 2 and Lemma 18 we know

E exp

(
∥ξt∥α

(GαV)α

)
≤ E exp

(
∥Γ(vt−1; ζt)−D(vt−1)∇F (vt−1)∥α

(GαV)α

)
≤ 2

which implies that ξ is α-sub-Weibull with parameter GαV .
Finally, we apply the mean-value theorem using (10) and g(v∗) = 0 to obtain

∥Rt∥ = ∥D(H∗ +N∗)(vt−1 − v∗)−D(vt−1)g(vt−1)∥

≤ D

∥∥∥∥(H∗ +N∗)(vt−1 − v∗)−
∫ 1

0

H(v∗ + θ(vt−1 − v∗)) +N (v∗ + θ(vt−1 − v∗))dθ (vt−1 − v∗)

∥∥∥∥
+ ∥D −D(vt−1)∥∥g(vt−1)∥

≤ D(LH + LN )∥vt−1 − v∗∥2 + LDLG∥vt−1 − v∗∥2

where we use the Lipschitz continuity of D(v), g(v),H(v),N (v). This completes the proof of Lemma 6.

E.4 PROOF OF LEMMA 7

Proof [Proof of Lemma 7] Under initialization condition (14), we have the following:

(i) For all unit vector v, since ∥v∥ = ∥v∗∥ = 1 we have

∥(v∗v∗⊤)(v − v∗)∥ = −v∗⊤(v − v∗) =
1

2
∥v∥2 − v∗⊤v +

1

2
∥v∗∥2 =

1

2
∥v − v∗∥2.

Because (
(v∗v∗⊤)(v − v∗)

)⊤ (
(I− v∗v∗⊤)(v − v∗)

)
= 0,

by the Pythagorean theorem we have

∥(v∗v∗⊤)(v − v∗)∥2 + ∥(I− v∗v∗⊤)(v − v∗)∥2 = ∥v − v∗∥2

Combining the above equalities and plugging in v = vt gives

∥∆t∥2 = ∥vt − v∗∥2 − 1

4
∥vt − v∗∥4,

which admits the following solution given v⊤
t v

∗ ≥ 0:

∥vt − v∗∥2 = 2−
√

4− 4∥∆t∥2,

and hence

∥∆t∥2 ≤ ∥vt − v∗∥2 =
4∥∆t∥2

2 +
√

4− 4∥∆t∥2
≤ 2∥∆t∥2.

(ii) Under initialization condition (14), for all u ∈ T (v∗), we have u⊤H∗u ≥ µ∥u∥2. Hence for η ≤ 1/(DBH), we have

∥(I− ηDM∗)
1/2u∥ ≤ (1− ηDµ)1/2∥u∥. (48)

By noticing that (I− ηDM∗)
(t−1)/2u ∈ T (v∗), for all t ≥ 1, we could inductively plug in (I− ηDM∗)

(t−1)/2u to
u in (48) and obtain for each t ≥ 0

∥(I− ηDM∗)
tu∥ ≤ (1− ηDµ)t∥u∥.



E.5 PROOF OF LEMMA 8

Proof [Proof of Lemma 8] By left multiplying (12) in Lemma 6 by (I − v∗v∗⊤) and noticing (I − v∗v∗⊤)N∗ = 0, we
obtain

∆t = ∆t−1 − ηD(I− v∗v∗⊤)H∗(vt−1 − v∗) + η(I− v∗v∗⊤)ξt

+ η(I− v∗v∗⊤)Rt + η2(I− v∗v∗⊤)Qt.

We have the decomposition

(I− v∗v∗⊤)H∗(vt−1 − v∗) = (I− v∗v∗⊤)H∗∆t + (I− v∗v∗⊤)H∗ · (v∗v∗⊤)(vt−1 − v∗),

where (I− v∗v∗⊤)H∗∆t = M∗∆t, and based on Lemma 7 and ∥H∗∥ ≤ BH ,

∥(I− v∗v∗⊤)H∗ · (v∗v∗⊤)(vt−1 − v∗)∥ ≤ BH
2

∥vt−1 − v∗∥2.

We set
χt = (I− v∗v∗⊤)ξt,

St = (I− v∗v∗⊤)Rt −D · (I− v∗v∗⊤)H∗ · (v∗v∗⊤)(vt−1 − v∗),

Pt = (I− v∗v∗⊤)Qt.

Then by combining all of the results above, we have

∆t = (I− ηDM∗)∆t−1 + ηχt + ηSt + η2Pt,

which proves (17). The rest of Lemma 8 can be easily verified in steps similar to the proof of Lemma 6.

E.6 PROOF OF LEMMA 9

Proof [Proof of Lemma 9] For t = 0 the lemma holds by definition. In general if it holds for t− 1 then from the definitions
in (18) we have on (t < TM ) that S̃s = Ss, P̃s = Ps for all s ≤ t, so the conclusion holds for t. Iteratively applying (19)
we obtain (20), which concludes our lemma.

E.7 PROOF OF LEMMA 10

Proof [Proof of Lemma 10] For any fixed t ≥ 0, we have the following:

(i) For the first term on the right hand of (20) which we repeat here

∆t = (I− ηDM∗)
t
∆0 + η

t∑
s=1

(I− ηDM∗)
t−s

χs

+ η

t∑
s=1

(I− ηDM∗)
t−s

S̃s + η2
t∑

s=1

(I− ηDM∗)
t−s

P̃s,

((20))

since χs ∈ T (v∗), (16) in Lemma 7 implies ∥(I − ηDM∗)
t−sχs∥ ≤ (1 − ηDµ)t−s∥χs∥. Hence we have ∥(I −

ηDM∗)
t−sχs∥ψα

≤ (1− ηDµ)t−s∥χs∥ψα
≤ (1− ηDµ)t−sGαV and

t∑
s=1

∥∥η(I− ηDM∗)
t−sχs

∥∥2
ψα

≤ η2
t∑

s=1

(1− ηDµ)2(t−s)G2
αV2 ≤ G2

αV2

Dµ
· η

Modifying the results in Fan et al. [2012] provides a concentration inequality for α-sub-Weibull random vectors, which
gives1

P

(∥∥∥∥∥η
t∑

s=1

(I− ηDM∗)
t−sχs

∥∥∥∥∥ ≥ 8GαV√
Dµ

log
α+2
2α ϵ−1 · η1/2

)
≤

(
12 + 8

(
3

α

) 2
α

log−
α+2
α ϵ−1

)
ϵ.

1A similar concentration inequality method for the scalar case is adopted by Li and Jordan [2021].



(ii) For the second term on the right-hand side of (20), by applying (16) in Lemma 7 and using Lemma 8, given ∥vs−1 −
v∗∥ ≤ r for all s = 1, . . . , t we have,∥∥∥∥∥η

t∑
s=1

(I− ηDM∗)
t−s

S̃s

∥∥∥∥∥ ≤ η

t∑
s=1

(1− ηDµ)t−s · ρr2 ≤ ρr2

Dµ
. (49)

(iii) For the third term on the right-hand side of (20), from Lemma 8 we know ∥P̃t∥ ≤ 7M2 and∥∥∥∥∥η2
t∑

s=1

(I− ηDM∗)
t−s

P̃s

∥∥∥∥∥ ≤ η2
t∑

s=1

(1− ηDµ)t−s · 7M2 =
7V2

Dµ
log

2
α ϵ−1 · η,

where we use the definition of M in (8).

The lemma is concluded by combining the above three items and taking union bound on probability.

E.8 PROOF OF LEMMA 11

Proof [Proof of Lemma 11] From the given assumptions, under scaling condition (17), we have

r = 2max

{
∥∆0∥,

27GαV√
Dµ

log
α+2
2α ϵ−1 · η1/2

}
≤ Dµ

16ρ
.

We let event J be (21) holding for each t ∈ [0, T ], i.e.∥∥∆t − (I− ηDM∗)
t∆0

∥∥ ≤ 8GαV√
Dµ

log
α+2
2α ϵ−1 · η1/2 + ρr2

Dµ
+

7V2

Dµ
log

2
α ϵ−1 · η.

Then on event J , under scaling condition (17), because ∥∆0∥ ≤ r
2 , for each t ∈ [0, T ] we have

∥∆t∥ ≤ ∥∆0∥+
16GαV√
Dµ

log
α+2
2α ϵ−1 · η1/2 + ρr2

Dµ
≤ r

2
+

r

16
+

r

16
≤ r.

Applying Lemma 10 and taking a union bound gives

P(J ) ≥ 1−

(
12 + 8

(
3

α

) 2
α

log−
α+2
α ϵ−1

)
Tϵ.

Furthermore, using (16) in Lemma 7 and definition of T ∗
η in (16), if T ∗

η ∈ [0, T ], on event J we have at time T ∗
η

∥∆T∗
η
∥ ≤ ∥(I− ηDM∗)

T∗
η ∆0∥+

16GαV√
Dµ

log
α+2
2α ϵ−1 · η1/2 + ρr2

Dµ
≤ r

8
+

r

16
+

r

16
≤ r

4
.

In Lemma 9 we have shown that, on the event (T < TM ), we have ∆t = ∆t. In Lemma 4, we have proved P(T < TM ) ≥
1− 2Tϵ. Together with Lemma 10, we take an intersection and obtain

P(J ∩ (T < TM )) ≥ 1− P(J c)− P(T ≥ TM ) ≥ 1−

(
14 + 8

(
3

α

) 2
α

log−
α+2
α ϵ−1

)
Tϵ.

At this point we have proved all elements in Lemma 11.
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