
Nonconvex Stochastic Scaled Gradient Descent
and Generalized Eigenvector Problems

Chris Junchi Li1 Michael I. Jordan1,2

1Department of Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, California, USA
2Department of Statistics, UC Berkeley, Berkeley, California, USA

Abstract

Motivated by the problem of online canonical cor-
relation analysis, we propose the Stochastic Scaled-
Gradient Descent (SSGD) algorithm for minimiz-
ing the expectation of a stochastic function over a
generic Riemannian manifold. SSGD generalizes
the idea of projected stochastic gradient descent
and allows the use of scaled stochastic gradients in-
stead of stochastic gradients. In the special case of
a spherical constraint, which arises in generalized
eigenvector problems, we establish a nonasymp-
totic finite-sample bound of

√
1/T , and show that

this rate is minimax optimal, up to a polylogarith-
mic factor of relevant parameters. On the asymp-
totic side, a novel trajectory-averaging argument
allows us to achieve local asymptotic normality
with a rate that matches that of Ruppert-Polyak-
Juditsky averaging. We bring these ideas together
in an application to online canonical correlation
analysis, deriving, for the first time in the litera-
ture, an optimal one-time-scale algorithm with an
explicit rate of local asymptotic convergence to
normality. Numerical studies of canonical correla-
tion analysis are also provided for synthetic data.

1 INTRODUCTION

Nonconvex optimization has become the algorithmic en-
gine powering many recent developments in statistics and
machine learning. Advances in both theoretical understand-
ing and algorithmic implementation have motivated the use
of nonconvex optimization formulations with very large
datasets, and the striking empirical discovery is that non-
convex models can be successful in this setting, despite the
pessimism of classical worst-case analysis. In this paper,
we consider the following general constrained nonconvex

optimization problem:

min
v

F (v), subject to v ∈ C, (1)

where F (v) is a smooth and possibly nonconvex objec-
tive function and C is a feasible set. The workhorse algo-
rithm in this setting is stochastic gradient descent (SGD)
and its variants [Robbins and Monro, 1951, Qian, 1999,
Duchi et al., 2011, Kingma and Ba, 2015, Zhang and Sra,
2016]. Given an unbiased estimate ∇̃F (v; ζ) of the gradient
∇F (v), SGD performs the following update at the t-th step
(t ≥ 1):

vt = ΠC

[
vt−1 − η∇̃F (vt−1; ζt)

]
, (2)

where η > 0 is a step-size and ΠC is a projection operator
onto the feasible set C. SGD updates use only a single data
point, or a small number of data points, and thus significantly
reduce computational and storage complexities compared
with offline algorithms, which require storing the full data
set and evaluating the full gradient at each iteration.

In many applications, however, we do not have access to
an unbiased estimate of ∇F (v) when we restrict access to
a small number of data points. Instead, for each v ∈ C we
have access only to a stochastic vector Γ(v; ζ) which is an
unbiased estimate of some scaled-gradient:

Eζ
[
Γ(v; ζ)

]
= D(v)∇F (v), (3)

where D(v) is a deterministic positive scalar that depends
on the current state v, dubbed as scaled factor. Examples
of this setup arise most notably in generalized eigenvector
(GEV) computation, which finds its applications in prin-
cipal component analysis, partial least squares regression,
Fisher’s linear discriminant analysis, canonical correlation
analysis (CCA), etc. Despite this wide range of applications,
and their particular relevance to large-scale machine learn-
ing problems, there exist few rigorous general frameworks
for SGD-based online learning using such models.

Our approach is a conceptually straightforward extension
of SGD. We propose to continue to use (2) but with
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∇̃F (vt−1; ζt) replaced by Γ(vt−1; ζt). We refer this algo-
rithm as the Stochastic Scaled-Gradient Descent (SSGD)
algorithm. Specifically, at each step, SSGD performs the
update:

vt = ΠC [vt−1 − ηΓ(vt−1; ζt)] . (4)

We provide a theoretical analysis of this algorithm. While
some of our analysis applies to the algorithm in full gen-
erality, our most useful results arise when we specialize to
the online GEV problem. In this case we aim to minimize
the generalized Rayleigh quotient given a unit spherical
constraint:

min
v
−v
>Av

v>Bv
, subject to v ∈ Rd, ‖v‖ = 1. (5)

The first-order derivative of the generalized Rayleigh quo-
tient with respect to v is

∇v
[
−v
>Av

v>Bv

]
= − (v>Bv)Av − (v>Av)Bv

(1/2)(v>Bv)2
. (6)

As pointed out by recent works e.g. Arora et al. [2012], the
major stumbling block in applying SGD to this problem
lies in obtaining an unbiased stochastic sample of the gra-
dient (6), due to the fact that the objective function takes
a fractional form of two expectations. In our approach we
circumvent this issue by simply replacing the denominator
on the right-hand side of (6) by the constant 1. At each step
we take Ã and B̃′ as mutually independent and unbiased
stochastic samples of A and B respectively and proceed
with the following update:

vt = ΠSd−1

[
vt−1 + η

(
(v>t−1B̃

′vt−1)Ãvt−1

−(v>t−1Ãvt−1)B̃′vt−1

)]
.

(7)

We refer to the rule (7) as an online GEV iteration. In the
special case where the stochastic sample B̃′ is taken as I,
(7) essentially reproduces Oja’s online PCA algorithm [Oja,
1982] with an incurred O(η2) higher-order error term.

To identify the iterative algorithm in (7) as a manifestation of
SSGD, we rewrite the term in parentheses in the algorithm
as follows (we set v = vt−1 for brevity):

(v>B̃′v)Ãv − (v>Ãv)B̃′v

=
(v>Bv)2

2
· (v>B̃′v)Ãv − (v>Ãv)B̃′v

(1/2)(v>Bv)2
.

(8)

It can be easily seen that the expectation of (8) is a scaled
gradient of the generalized Rayleigh quotient, where the
scaled factor D(v) ≡ (v>Bv)2/2. This approach, which
has been referred to as double stochastic sampling in the
setting of kernel methods [Dai et al., 2014, 2017], makes
it possible to develop an efficient stochastic approximation
algorithm. Indeed, often Ã, B̃′ are of rank one, so the com-
putation of matrix-vector products Ãv, B̃′v only invokes

inner products of vectors and is hence computationally ef-
ficient in the face of high dimensionality (i.e. when d is
high).

Our contributions relative to previous work on nonconvex
stochastic optimization as are follows. First, we propose
a novel algorithm—the stochastic scaled-gradient descent
(SSGD) algorithm—which generalizes the classical SGD
algorithm and has a wider range of applications. Second, we
provide a local convergence analysis for spherical-constraint
objective functions that are locally convex. Starting with a
warm initialization, our local convergence rate matches a
known information-theoretic lower bound [Mei et al., 2018].
Third, by applying SSGD to the GEV problem, we give a
positive answer to the question raised by Arora et al. [2012]
regarding to the existence of an efficient online GEV algo-
rithm. Specifically, in the case of CCA, our SSGD algorithm
uses as few as two samples at each update, does not incur
intermediate and expensive computational cost while achiev-
ing a polynomial convergence rate guarantee.

Related Literature The generalized eigenvector problem
is at the core of many statistical problems such as princi-
pal component analysis [Pearson, 1901, Hotelling, 1933],
canonical correlation analysis [Hotelling, 1936], Fisher’s
linear discriminant analysis [Fisher, 1936, Welling, 2005],
partial least squares regression [Stone and Brooks, 1990],
sufficient dimension reduction [Li, 1991], mixture mod-
els [Balakrishnan et al., 2017], along with their sparse coun-
terparts. Iterative algorithms for sparse principal component
analysis has been proposed by Ma [2013] and Yuan and
Zhang [2013] as a special case of the eigenvalue problem:
by adding a soft-thresholding step to each power method
step their algorithms achieve linear convergence. In follow-
up work, Tan et al. [2018] proposed a truncated Rayleigh
flow algorithm to estimate the leading sparse generalized
eigenvector that also achieves a linear convergence rate.
Additional work on generalized eigenvector computation
includes Ge et al. [2016], Allen-Zhu and Li [2017a], Yuan
et al. [2019], Ma et al. [2015], Chaudhuri et al. [2009].

Some recent work has focused on developing efficient online
procedures for particular instances of generalized eigenvec-
tor problems, among which online principal and canonical
eigenvectors estimation has been of particular interest. Oja’s
online PCA iteration [Oja, 1982], which can be reproduced
from (7) when B̃ is taken as I as a special case, up to an in-
curred O(η2) error term, has been shown to provably match
the minimax information lower bound [Jain et al., 2016,
Li et al., 2018, Allen-Zhu and Li, 2017b]. There is also a
rich literature on stochastic gradient methods for convex
and nonconvex minimization that takes place on Rieman-
nian manifolds [Ge et al., 2015, Zhang and Sra, 2016]; we
refer the readers to Hosseini and Sra [2020] for a recent
survey study. More related to our work, procedures for ef-
ficient online canonical eigenvectors estimation have been
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explored [Arora et al., 2017, Gao et al., 2019, Chen et al.,
2019]. Among these works, Gao et al. [2019] developed a
streaming canonical correlation analysis (CCA) algorithm
which involves solving a large linear system at each iteration,
and independently Arora et al. [2017] proposed a different
stochastic CCA algorithm which has temporal and spatial
complexities that are quadratic in d. Chen et al. [2019]
present a landscape analysis of GEV/CCA and provide a
continuous-time insight for a class of primal-dual algorithms
when the two matrices in GEV commute; the convergence
analysis of Chen et al. [2019], however, does not directly
translate to discrete-time convergence rate bounds and no
explicit analysis has been provided when two matrices do
not commute.

In a recent paper, Bhatia et al. [2018] studied the CCA
problem and proposed a two-time-scale online iteration that
they refer to as “Gen-Oja.” The notion of two-time-scale
analysis has been used widely in stochastic control and rein-
forcement learning [Borkar, 2008, Kushner and Yin, 2003],
and the slow process in Gen-Oja is essentially Oja’s itera-
tion [Oja, 1982] for online principal component estimation
with Markovian noise [Shamir, 2016, Jain et al., 2016, Li
et al., 2018, Allen-Zhu and Li, 2017b]. Bhatia et al. [2018]
obtained a convergence rate under a bounded sample as-
sumption that achieves the minimax rate 1/

√
N in terms

of the sample size N . In comparison, our proposed SSGD
algorithm is a single time-scale algorithm with a single step-
size and an extra requirement of two (independent) samples
per iterate. The algorithm is minimax optimal with respect
to local convergence and hence theoretically comparable
with Gen-Oja.

Organization The rest of this paper is organized as fol-
lows. §2 states our settings and assumptions throughout
the theoretical analysis of our paper. §3 presents our local
convergence results under the warm initialization condition.
§4 presents our two-phase convergence results for arbitrary
initialization. §5 investigates the asymptotic property of our
algorithm. §6 uses the example of Canonical Correlation
Analysis to demonstrate the practical computation and ex-
perimental performance of our algorithm. §7 summarizes
the entire paper. Limited by space we relegate to Appendix
all our theoretical analysis and secondary lemmas.

Notation Unless indicated otherwise,C denotes some pos-
itive, absolute constant which may change from line to line.
For two sequences {an} and {bn} of positive scalars, we
denote an & bn (resp. an . bn) if an ≥ Cbn (resp. an ≤
Cbn) for all n, and an � bn if an & bn and an . bn
hold simultaneously. We also write an = O(bn), an =
Θ(bn), an = Ω(bn) as an . bn, an � bn, an & bn, respec-
tively. We use ‖v‖ to denote the `2-norm of v. Let λmax(A),
λmin(A) and ‖A‖ denote the maximal, minimal eigenval-
ues and the operator norm of a real symmetric matrix A.
We will explain other notation at its first appearance.

2 SETTINGS AND ASSUMPTIONS

In this section, we present the settings and assumptions
required by our theoretical analysis of the SSGD algorithm
for nonconvex optimization. To illustrate the core idea we
focus on the case of a spherical constraint, v ∈ Sd−1, in
which case our proposed SSGD iteration (4) reduces to the
following update:

vt = ΠSd−1 [vt−1 − ηΓ(vt−1; ζt)] . (9)

Let Ft = σ
(
ζs : s ≤ t

)
be the filtration generated

by the stochastic process ζt. Then, from (3), we have
E[Γ(vt−1; ζt) | Ft−1] = D(vt−1)∇F (vt−1). That is, the
conditional expectation is a scaled gradient. The ensuing
analysis is analogous to that of locally convex SGD given
we have appropriate Lipschitz-smoothness of the scalar
function D(v), but it requires delicate treatment given that
SSGD effectively has a varying step-size embodied in the
scaling factor.

Following the classical theory of constrained optimization
[Nocedal and Wright, 2006] we introduce a definition of
manifold gradient and manifold Hessian in the presence of a
unit spherical constraint, C : c(v) = (1/2)(v>v− 1) = 0.1

For this equality-constrained optimization problem, we
utilize the method of Lagrange multipliers and introduce
the following Lagrangian function: L(v;µ) = F (v) −
µ
2

(
‖v‖2 − 1

)
. We define the manifold gradient:

g(v) = ∇L(v;µ)
∣∣
µ=µ∗(v)

= ∇F (v)− v
>∇F (v)

‖v‖2 v, (10)

and the manifold Hessian:

H(v) = ∇2L(v;µ)
∣∣
µ=µ∗(v)

= ∇2F (v)− v
>∇F (v)

‖v‖2 I, (11)

where µ∗(v) = ‖v‖−2v>∇F (v) is the optimal La-
grangian multiplier defined by

v>∇F (v)

‖v‖2 = argmin
µ
‖∇L(v;µ)‖ = argmin

µ
‖∇F (v)− µv‖ .

For v ∈ Sd−1, we let T (v) = {u : u>v = 0} denote the
tangent space of Sd−1 at v.

To prove our main theoretical result, we need the following
definitions and assumptions. We first define the Lipschitz
continuity for a generic mapping:

Definition 1 (Lipschitz Continuity) Let M be a finite-
dimensional normed vector space. The map M : Rd 7→M
is called LM -Lipschitz, if for any two points v1,v2 ∈ Rd
‖M(v)−M(v′)‖M ≤ LM‖v − v′‖, where ‖ · ‖M is any
norm properly defined in space M.

1Here for notational simplicity we incorporate a factor of 1/2.
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In addition, we need the following assumption on the state-
dependent scalar D(v) and covariance matrix Σ(v). For a
fixed v, define the state-dependent covariance Σ(v) to be

Σ(v) = var (Γ(v; ζ))

= E
[(

Γ(v; ζ)−D(v)∇F (v)
)(

Γ(v; ζ)−D(v)∇F (v)
)>]

.

(12)
For the purposes of our analysis, we assume that the state-
dependent parameter D(v) and the Hessian ∇2F (v) are
Lipschitz continuous within {v : ‖v‖ ≤ 1, ‖v − v∗‖ ≤ δ},
where v∗ is a local minimizer of the constrained optimiza-
tion problem (5) and where δ ∈ (0, 1] is a fixed constant.
Within this convex bounded compact space, we can also
show that F (v) and ∇F (v) are Lipschitz continuous. We
explicitly specify these constants in the following assump-
tion.

Assumption 1 (Smoothness Assumption) For any v ∈
{v : ‖v‖ ≤ 1, ‖v−v∗‖ ≤ δ}, we assume that D(v) is LD-
Lipschitz, F (v) is LF -Lipschitz, ∇F (v) is LK-Lipschitz
and ∇2F (v) is LQ-Lipschitz, where LD, LF , LK , LQ are
fixed positive constants.

Now we pose some tail behavior of the stochastic vectors
Γ(vt−1; ζt), t ≥ 1 as vector α-sub-Weibull, as in the follow-
ing definition:

Assumption 2 (Sub-Weibull Tail) For some fixed α ∈
(0, 2] and for all v ∈ C, we assume that the stochastic
vectors Γ(v; ζ) satisfy E exp (‖Γ(v; ζ)‖α/Vα) ≤ 2, where
V is called the sub-Weibull parameter of stochastic vector
Γ(v; ζ).

Note here the sub-Weibull parameter is in the vector-
norm sense instead of the maximal projected scalar sense.
The class of sub-Weibull distributions contains the sub-
Gaussian (α = 2) and sub-Exponential (α = 1) distribution
classes as special cases [Wainwright, 2019, Kuchibhotla and
Chakrabortty, 2018]. Background on vector α-sub-Weibull
distributions (and the associated notion of Orlicz ψα-norm)
are provided in Appendix §??.

3 LOCAL CONVERGENCE ANALYSIS

In this section we provide the main local convergence re-
sult for our SSGD algorithm. Our local analysis is inspired
from both generic [Ge et al., 2015] and dynamics-based [Li
et al., 2018, Li and Jordan, 2021] analyses for nonconvex
stochastic gradient descent, which we further adapt to our
scaled-gradient setup.

For notational simplicity, we denote

D = D(v∗),

ρ = D

(
2LQ +

5

2
LF +

9

2
LK

)
+ LD(LK + 2LF ).

(13)

For our local convergence analysis, we assume that the
initialization v0 falls into the neighborhood of a local mini-
mizer v∗ of the constrained optimization problem; that is,

‖v0 − v∗‖ ≤ min

{
Dµ

25ρ
, δ

}
, (14)

where µ denotes the minimum positive eigenvalue of the
manifold HessianH(v∗):

v>1 H(v∗)v1 ≥ µ, ∀v1 ∈ T (v∗) and ‖v1‖ = 1.

We note that the initialization condition (14) has a constant
neighborhood radius that does not depend on dimension d.
In the ensuing Theorem 2 on local convergence, we take
ε ∈ (0, 1) and define the following quantities:

Kη,ε ≡

⌈
log2

{ √
D3µ3

25ρV log
α+2
2α ε−1 · η1/2

}⌉
+ 1, (15)

and for η < 1/(Dµ), define

T ∗η ≡
⌈

2 log 2

− log(1−Dµη)

⌉
. (16)

We state our local convergence theorem.

Theorem 2 (Local Convergence) Given Assumptions 1
and 2 as well as the initialization condition (14), for any
positive constants η, ε that satisfy the scaling condition

η ≤ min

{
D3µ3

224G2
αV2ρ2

log−
α+2
α ε−1,

1

Dµ

}
, (17)

and for any T ≥ Kη,εT
∗
η , there exists an eventH2 with

P(H2) ≥ 1−

(
14 + 8

(
3

α

) 2
α

log−
α+2
α ε−1

)
Tε, (18)

such that on event H2 the iterates generated by the SSGD
algorithm satisfy for all t ∈ [Kη,εT

∗
η , T ]:

‖vt − v∗‖ ≤
2

17
2 GαV√
Dµ

log
α+2
2α ε−1 · η1/2,

where Gα ≡ log
1/α
2 (1 + e1/α)

(
1 + log

1/α
2 (1 + e1/α)

)
is

a positive factor depending on α.

To prove Theorem 2, we define ∆t as the projection of
vt − v∗ onto the tangent space T (v∗), namely ∆t = (I−
v∗v∗>)(vt − v∗). We view every T ∗η = Θ

(
(Dµ)−1η−1

)
iterations as one round and interpret Kη,ε = Θ

(
log η−1

)
as

the number of rounds. Note that Kη,εT
∗
η can be interpreted

as the burn-in time for vt to arrive in a O(η1/2) neighbor-
hood of local minimizer v∗. We present a proposition that
provides an upper bound on ‖∆t‖ over T iterations and
characterizes the descent in ‖∆t‖ at the end of each round:
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Proposition 3 Assume Assumptions 1, 2 and initialization
condition (14) hold. For any positive constants η, ε satisfy-
ing the scaling condition (17) and T ≥ 1, with probability

at least 1−
(

14 + 8
(
3
α

) 2
α log−

α+2
α ε−1

)
Tε, the algorithm

iterates satisfy, for all t ∈ [0, T ],

‖∆t‖ ≤ ‖vt − v∗‖ ≤
√

2‖∆t‖, (19)

and

‖∆t‖ ≤ 4 max

{
‖∆0‖

2
,

26GαV√
Dµ

log
α+2
2α ε−1 · η1/2

}
.

(20)
Moreover, if T ∗η ∈ [0, T ], we have:

‖∆T∗
η
‖ ≤ max

{
‖∆0‖

2
,

26GαV√
Dµ

log
α+2
2α ε−1 · η1/2

}
.

(21)

The proof of Proposition 3 is provided in §??.

By choosing an asymptotic regime such that Tε log(1/ε)→
0, Proposition 3 states that (19), (20) and (21) hold with
probability tending to one. On that high-probability event,
(19) indicates that ‖vt − v∗‖ and its projection in the
tangent space ‖∆t‖ are bounded by each other up to
constant factors, (20) guarantees that ‖∆t‖ does not ex-
ceed max

{
2‖∆0‖,Θ(η1/2)

}
—that is, vt stays in a neigh-

borhood of local minimizer v∗—and (21) states that, for
‖∆0‖ = Ω(η1/2), ‖∆t‖ decreases by half after T ∗η itera-
tions: ‖∆T∗

η
‖ ≤ max

{
‖∆0‖/2,Θ(η1/2)

}
.

Proposition 3 studies ∆t in a single round, i.e., for T ∗η
iterations. We are ready to provide the proof of Theorem
2 by applying Proposition 3 repeatedly for Kη,ε rounds,
detailed as follows:

Proof of Theorem 2 Since the algorithm iteration (4) can
be viewed as a (strong) discrete-time Markov process, We
recall the definition of Kη,ε in (15) and repeatedly apply
Proposition 3 to the sequence of {∆t} for Kη,ε rounds,
initializing each round with the output ∆T∗

η
from the previ-

ous round. We adopt an adaptive argument of shrinkage in
multiple rounds.

More specifically, for any t ∈ [Kη,εT
∗
η , T ], we first apply

(21) in Proposition 3 for Kη,ε rounds, then apply (20) for
t−Kη,εT

∗
η iterations, and use (19) to conclude that

‖vt − v∗‖ ≤
√

2‖∆t‖

≤
√

2 · 4 max

{
‖∆Kη,εT∗

η
‖

2
,

26GαV√
Dµ

log
α+2
2α ε−1 · η1/2

}

≤ 4
√

2 ·max

{
‖∆0‖
2Kη,ε

,
26GαV√
Dµ

log
α+2
2α ε−1 · η1/2

}
≤ 2

17
2 GαV√
Dµ

log
α+2
2α ε−1 · η1/2,

where the last inequality is due to initialization condition
(14). Here Gα is a fixed positive factor depending on α, as
defined in Theorem 2. By taking a union bound over Kη,ε

rounds and T −Kη,εT
∗
η iterations, we obtain

P(H2) ≥ 1−

(
14 + 8

(
3

α

) 2
α

log−
α+2
α ε−1

)
Tε,

completing the proof of Theorem 2. �

Theorem 2 establishes the local convergence of vt in a
neighborhood of v∗ for a fixed step-size η and a number of
iterations T ≥ Kη,εT

∗
η . The following corollary provides a

finite-sample bound:

Corollary 4 (Finite-Sample) Assume Assumptions 1 and
2 and the initialization condition (14). For fixed positive
constants ε and sample size T , set the step-size as η(T ) =

Θ
(

log T
DµT

)
satisfying scaling condition

η(T ) ≤ min

{
D3µ3

224GαV2ρ2
log−

α+2
α ε−1,

1

Dµ

}
,

there exists an event H4 with P(H4) ≥ 1 −(
14 + 8

(
3
α

) 2
α log−

α+2
α ε−1

)
Tε, such that on the eventH4

the iterates generated by the SSGD algorithm satisfy

‖vT − v∗‖ .
GαV
Dµ

log
α+2
2α ε−1

√
log T

T
.

We notice that our Theorem 2 and Corollary 4 provide a
dimension-free local convergence rate when V is O(1). As
we will see later in the example of CCA, the (α = 1/2)
sub-Weibull parameter V in that case scales with

√
d and

thus the local rate is the minimax-optimal rate O(
√
d/T )

up to a polylogarithmic factor.

4 GLOBAL CONVERGENCE ANALYSIS

In many situations, solving the warm initialization problem
itself can be a difficult problem. We borrow the techniques
from Ge et al. [2015] and establish a global convergence
result for escaping saddle points via SSGD. In this section
we consider a variant of SSGD with a unit spherical con-
straint and equipped with an artificial noise injection step:
let nt be an independent spherical noise at each step that is
independent of Ft−1 and ζt, and let

vt = ΠSd−1

[
vt−1 − η∇̃F (vt−1; ζt) + ηnt

]
. (22)

Motivated by recent work on escaping saddle points [Ge
et al., 2015, Lee et al., 2016, Jin et al., 2019], one can show
that SSGD algorithm equipped with the aforementioned
artificial noise injection escapes from all saddle points, and
hence the initialization condition (14) can be dropped.

5



First, we generalize Assumption 1 for local convergence to
the following for global convergence:

Assumption 3 (Global Smoothness and Boundedness)
For any v ∈ {v : ‖v‖ ≤ 1}, we assume that D(v) is LD-
Lipschitz, F (v) is LF -Lipschitz, ∇F (v) is LK-Lipschitz
and ∇2F (v) is LQ-Lipschitz. Also, assume there exists
D−, D+ > 0 such that D− ≤ D(v) ≤ D+ for all v.

Definition 5 (Strict-Saddle Function) A twice differen-
tiable function F (v) with constraint c(v) = 0 is called
an (µ, β, γ, δ)-strict-saddle function, if an arbitrary point v
with c(v) = 0 satisfies at least one of the following:

(i) ‖g(v)‖ ≥ β;

(ii) There is a local minimizer v∗ such that ‖v − v∗‖ ≤ δ.
Additionally, for all v′ ∈ B2δ(v

∗), we have

v>1 H(v′)v1 ≥ µ, ∀v1 ∈ T (v′) and ‖v1‖ = 1.

(iii) There exists a unit vector v0 ∈ T (v) such that
v>0 H(v)v0 ≤ −γ.

In what follows, we show that our algorithms can escape
from all saddle points and thus the local initialization is no
longer required. We are ready to present the saddle-point
escaping result:

Theorem 6 (Escaping from Saddle Points) Let Assump-
tions 2 and 3 hold. Let F (v) be a (µ, β, γ, δ)-strict-saddle
function with finite sup-norm ‖F‖∞. Let

T1 = 4‖F‖∞·
[
min

(
0.5dLG, γ log−1

(
6dV
σ

))
· σ2D2

−η
2

]−1
.

(23)
Then for any κ > 0 and any step-size η > 0 satisfying√

2dV2LGD+η ≤ β, (24)

within T1·dlog2(κ−1)e iterates, (22) outputs vt that satisfies
(ii) in Definition 5 with probability no less than 1− κ.

The proof of Theorem 6 is collected in §??. Motivated by
this saddle-point escaping result, one can run SSGD first
with a burn-in phase and once it enters the warm initializa-
tion region, one can re-run SSGD with step-sizes chosen
so that the local convergence theorem applies immediately.
Using the strong Markov property and combining Theorems
2 and 6 we immediately obtain the following main theorem.
Recall that T1 is defined as in (23).

Theorem 7 (Two-Phase Global Convergence) Let
Assumptions 2 and 3 hold. Let η satisfy

η ≤ min

{
D3µ3

224G2
αV2ρ2

log−
α+2
α ε−1,

1

Dµ
,

β2

2dV2LGD+

}
,

(25)

and for any T ≥ Kη,εT
∗
η + T1 · dlog2(κ−1)e, there exists

an event AT with

P(AT ) ≥ 1− κ−

(
14 + 8

(
3

α

) 2
α

log−
α+2
α ε−1

)
Tε,

such that on eventAT the iterates generated by the SSGD al-
gorithm satisfy for all t ∈

[
Kη,εT

∗
η + T1 · dlog2(κ−1)e, T

]
‖vt − v∗‖ ≤

2
17
2 GαV√
Dµ

log
α+2
2α ε−1 · η1/2,

where Gα ≡ log
1/α
2 (1 + e1/α)

(
1 + log

1/α
2 (1 + e1/α)

)
is

a positive factor depending on α.

Note the function class of strict-saddle functions is strictly
more general than the local convergence Theorem 2. We
find the final complexity by interpreting Theorem 7. In the
asymptotic relations below we write out the dependency on
d, η, and let L be a generic quantity that only involves a
polylogarithmic factor of d, η and T , which is allowed to
vary at each appearance. From (15), (16) and (23) we have

Kη,εT
∗
η � L · η−1, T1 · dlog2(κ−1)e � L · d−1η−2,

and if V is set as the model scaling
√
d, the iteration achieves

a high-probability bound of L ·
√
dη after Kη,εT

∗
η + T1 ·

dlog2(κ−1)e steps. We conclude that under the scaling con-
dition L · d/T → 0, if the total number of samples T is
given, we can optimize the choice of step-size η = η(d, T )
to conclude the following convergence rate results:

(i) Local Convergence: Given a warm initialization, and
choosing η(T ) � L · (1/T ), SSGD (4) has the follow-
ing local convergence rate

‖vt − v∗‖ . L ·
√
d

T
.

(ii) Global Convergence: Given any initialization, and
choosing η(T ) � L · (1/

√
dT ), SSGD with noise

injection (22) has the following global convergence
rate

‖vt − v∗‖ . L ·
4

√
d

T
.

We defer the arguments for the proof to §??, and turn to the
application to GEV problem.

5 ASYMPTOTIC NORMALITY VIA
TRAJECTORY AVERAGING

In this section, we return to the warm initialization as in
§3. Ruppert [1988] and Polyak and Juditsky [1992] in-
troduced the idea of trajectory averaging for stochastic
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gradient descent in order to provide fine-grained conver-
gence rates along with an asymptotic normality result. Our
goal is to generalize the Polyak-Juditsky analysis of SGD
with trajectory averaging to SSGD for nonconvex objec-
tive that is initialized in a local convex region. We denote
H∗ ≡ H(v∗),Σ∗ ≡ Σ(v∗) and D ≡ D(v∗). Define

M∗ = (I− v∗v∗>)H∗(I− v∗v∗>).

From the initialization condition (14), we have u>M∗u ≥
µ‖u‖2 for all u ∈ T (v∗). We consider the eigendecomposi-
tion M∗ = P diag(λ1, . . . , λd−1, 0)P> for an orthogonal
matrix P ∈ Rd×d and eigenvalues λ1 ≥ . . . ≥ λd−1 > 0
with minimum positive eigenvalue λd−1 ≥ µ. We take the
inverse of all positive eigenvalues and define the following
matrix

M−
∗ ≡ P diag(λ−11 , . . . , λ−1d−1, 0)P>. (26)

Here, M−
∗ can be interpreted as the inverse of M∗ in the

(d−1)-dimensional tangent space T (v∗), and we can easily
find M−

∗ v
∗ = 0. As shown in Theorem 2, we need Kη,εT

∗
η

iterations for vt to fall in a Θ(η1/2) neighborhood of the lo-
cal minimizer v∗. For T ≥ Kη,εT

∗
η , we define the trajectory

average over time Kη,εT
∗
η + 1, . . . , T as follows:

v
(η)
T ≡ 1

T −Kη,εT ∗η

T∑
t=Kη,εTη+1

vt, (27)

where we add the superscript (η) to emphasize the depen-
dency on η. Notice that {v(η)T }T,η is a triangular array over
a continuum η. To obtain asymptotic normality of the tra-
jectory average v(η)T , we additionally make the following
local Lipschitz-continuity assumption on stochastic scaled-
gradient Γ(v; ζ) in the neighborhood of v∗:

Assumption 4 (Mean-Squared Smoothness) There
exists a positive constant LS such that for all
v,v′ ∈ {v : ‖v‖ ≤ 1, ‖v − v∗‖ ≤ δ} and t ≥ 1,
we have for ζ

E ‖Γ(v; ζ)− Γ(v′; ζ)‖2 ≤ L2
S‖v − v′‖2. (28)

The following theorem states that the trajectory average v(η)T

converges in distribution to a (d− 1)-dimensional normal
distribution in the tangent space T (v∗):

Theorem 8 (Asymptotic Normality) Given Assumptions
1, 2, 4 and initialization condition (14), if we choose the
step-size η such that η → 0 as the total sample size T →∞,
where

Tη2 log
2α+4
α T → 0, Tη log−

α+2
α T →∞ a.s., (29)

we obtain Gaussian convergence in distribution:
√
T
(
v
(η)
T − v

∗
)

d→ N
(
0, D−2 ·M−

∗ Σ∗M
−
∗
)
. (30)

We relegate the proof details of Theorem 8 to §??.2 The
analysis has the same rationale as the classical asymp-
totic normality result that is obtained when minimizing a
strongly convex objective function in an Euclidean space
using stochastic gradient descent [Ruppert, 1988, Polyak
and Juditsky, 1992]. Indeed, in the case of a diminishing
step-size, η(t) ∝ t−α, α ∈ (1/2, 1), SGD with trajectory
averaging converges in distribution to a normal distribution.
In contrast, due to our choice of a constant step-size that is
asymptotically small with η ∝ T−α up to a polylogarithmic
factor, we base our analysis on the idea that trajectory av-
eraging begins only after “the burn-in phase”; that is, after
Kη,εT

∗
η iterates.

6 CASE STUDIES OF CANONICAL
CORRELATION ANALYSIS

The GEV problem arises in many statistical machine learn-
ing tasks. We focus on the example of (rank-one) Canonical
Correlation Analysis (CCA) as a core application; we refer
to Tan et al. [2018] for other (sparse, high-dimensional) ap-
plications including linear discriminant analysis and sliced
inverse regression. Recall that CCA aims at maximizing the
correlation between two transformed vectors. Given X and
Y as two column vectors, let ΣXY be the cross-covariance
matrix betweenX and Y , and let ΣXX and ΣY Y be the
covariance matrices of X and Y , respectively. CCA is a
special case of the GEV problem (5) with

A =

(
0 ΣXY

ΣY X 0

)
, B =

(
ΣXX 0

0 ΣY Y

)
.

To obtain Ã, B̃′ as mutually independent and unbiased
stochastic samples of A and B, we draw two independent
pairs of samples (X,Y ), (X ′,Y ′) at each iteration and
compute

Ã =

(
0 XY >

Y X> 0

)
, B̃′ =

(
X ′X ′> 0

0 Y ′Y ′>

)
,

where all samples of X,Y are centered such that they have
expectation zero.

In order to apply the convergence results for the SSGD algo-
rithm to the CCA problem, it remains to verify Assumption
2. We assume that the samplesX ∈ Rdx ,Y ∈ Rdy follow
sub-Gaussian distributions [Gao et al., 2019, Li et al., 2018]
with parameters Vx,Vy; that is, E exp

(
‖X‖2/V2

x

)
≤ 2 and

E exp
(
‖Y ‖2/V2

y

)
≤ 2. With these standard assumptions

for the samplesX,Y , the following lemma shows that the
scaled-gradient noise in the CCA problem satisfies Assump-
tion 2 with appropriate V and α. The proof is provided in
§??.

2The limiting distribution is supported on a submanifold of
the Euclidean space Rd. The convergence in distribution is hence
rigorously characterized by the pointwise convergence of the char-
acteristic functions.

7



Algorithm 1 Online Canonical Correlation Analysis via
Noise-Injected Stochastic Scaled-Gradient Descent

input total sample size T , proper stepsize η, initialize v0
for t = 1, . . . , T/2 do

Draw mutually independent sample pairs (X,Y ) and
(X ′,Y ′) from the stochastic oracle
Compute unbiased estimates

Ã =

(
0 XY >

Y X> 0

)
B̃′ =

(
X ′X ′> 0

0 Y ′Y ′>

)

Sample a uniformly spherical noise nt of covariance
σ2Id and update gt,vt using the following rule

gt ← (v>t−1B̃
′vt−1)Ãvt−1 − (v>t−1Ãvt−1)B̃′vt−1

vt ← ΠSd−1 [vt−1 + η(gt + nt)]

end for
return vT

Proposition 9 Assumption 2 holds for CCA with parame-
ters V = 400(V2

x + V2
y )VxVy and α = 1/2.

Lemmas ?? and 9 certify that Assumptions 1 and 2 hold
in CCA settings and hence local convergence Corollary 4
applies, which establishes a

√
d/T -rate up to a polylog-

arithmic since the vector sub-Weibull parameter V in our
Assumption 2 implicitly contains a factor

√
d.

Now we demonstrate that our bounds in Corollary 4 match
the lower bound. Gao et al. [2019] derived a lower bound
for Gaussian variables, 1 − align(v,v∗) & d/T , in terms
of a new measure of error:

align(v,v∗) ≡ 1

2

(
v>x ΣXXv

∗
x√

vx>ΣXXvx
√
v∗x
>ΣXXv∗x

+
v>y ΣY Y v

∗
y√

vy>ΣY Y vy

√
v∗y
>ΣY Y v∗y

 ,

where v = (v>x ,v
>
y )> and v∗ = (v∗x

>,v∗y
>)> are par-

titioned in dimensions dx, dy. It is easy to verify that
1 − align(v,v∗) � 1 − v>v2 = ‖v − v∗‖2/2 when both
v,v∗ lie on the unit sphere, in which case our lower bound
translates into ‖vT − v∗‖ &

√
d/T for any estimator vT

that consumes T samples, which matches the upper bound
of Corollary 4 in terms of both d and T .

We note that our Corollary 4 and the results of Gao et al.
[2019] have different dimension dependency, which is due
to a distinct but connected set of assumptions. We have
assumed that each sample X,Y follows a vector sub-
Gaussian distribution and verifies Assumption 2 required
by Proposition 9, whereas Gao et al. [2019] assume that
each coordinate of X,Y is sub-Gaussian with a constant

(a) (b)

(c) (d)

Figure 1: Comparison between saddle point initialization
and random initialization

parameter. Hence, the vector sub-Gaussian parameter V in
our case suffers a dimension-dependent prefactor.

6.1 NUMERICAL STUDIES USING SYNTHETIC
DATA

In this subsection, we present simulation results for SSGD
for the case of rank-one CCA [Algorithm 1]. The dimen-
sions of the synthetic data samples are picked as d1 = 65
ofX and d2 = 70 of Y . We generate the covariance matrix
forX,Y as

ΣXX = 3Id1 + A1, ΣY Y = 3Id2 + A2, (31)

where A1,A2 are diagonal matrices with each entry along
the diagonal obtained as an independent uniform draw from
[0, 1]. To ensure the eigengap of Σ

− 1
2

XXΣXY Σ
− 1

2

Y Y is signif-
icantly large, in particular, no less than 0.5, we set

ΣXY = A3 + Σ
1/2
XXU diag(0.5,O)V>Σ

1/2
Y Y . (32)

Here A3 is a d1 × d2 matrix where each entry is generated
from an independent N(0, 1/(d1 + d2)) variable with SVD
decomposition Σ

1/2
XXA3Σ

1/2
Y Y = UDV>, and O is a (d1−

1)× (d2 − 1) zero matrix. Note that each step of Algorithm
1 can be computed in timeO(d1 +d2). Given this setup, we
report our numerical findings of Algorithm 1 as follows:

Saddle-point escaping We first discuss the behavior of
our algorithm in the presence of saddle points. When v0
is exactly chosen as a saddle point, we show that SSGD
escapes from a plateau of saddle points in the landscape
and converges to the local (and global) minimizer. For il-
lustrative purposes, the initialization v0 is chosen from four

8



(a) (b)

Figure 2: Log-log plot regarding the convergence with re-
spect to a range of step-sizes η. Figure 2(a) illustrates the
squared errors in terms of squared distance to optimality
‖v − v∗‖2, and Figure 2(b) does so in terms of sin2(v,v∗)

saddle points, each of which corresponds to a component
of CCA. We choose the total sample size T = 1e6 and set
the (constant) step-size η = log(T )/(5T ). In Figure 1 we
plot the error of the current solution to the optimal solu-
tion, where the error is measured both in squared Euclidean
distance and in sine-squared. The first two plots shows the
behavior initialized from four different saddle points, and
the last two plots shows the behavior initialized from four
uniform seeds. The horizontal axis is the number of iterates
and the vertical axis is error ‖vt − v∗‖2.

Relationship between the step-size and squared error
We study the role of step-size η in our SSGD algorithm.
Set sample size T = 1e6 and choose 20 η’s from 1e–5 to
5e–4 from {log(T )/(5T ), 2 log(T )/(5T ), 4 log(T )/(5T ),
8 log(T )/(5T ), 16 log(T )/(5T )} and plot the squared error
‖v − v∗‖2 on a log-log scale. It is clearly observed from
Figure 2 that smaller step-sizes lead to slower convergence
to a stationary point of smaller variance.

We now numerically demonstrate that at stationarity SSGD
presents a squared error ‖v−v∗‖2 or sin2(v,v∗) that has a
linear relationship with η. We compute the averaged squared
error of the last 10% iterates for each run and plot the result
in Figure 3 in a log-log scale. The horizontal axes of both
Figures 3(a) and 3(b) represent the step-size η, and the verti-
cal axes of both figures are the squared error ‖v− v∗‖2 and
sin2(v,v∗), respectively. We compute an averaged squared
error of the last 10% iterates for each η. Due to ergodic-
ity in the algorithmic final phase, this provides a feasible
estimate of its variance around the local (and global) min-
imizer. Also, the fitting slope of Figure 3 provided by the
least-square method is 0.9921 (fairly close to 1), which cor-
roborates our theoretical convergence results in Theorems
2 and 7. These numerical findings are consistent with our
theory that the squared error ‖v − v∗‖2 at stationarity has a
linear relationship with η.

(a) (b)

Figure 3: Relationship between step-size η and the squared
error of our algorithmic estimator to the optimal solution

7 SUMMARY

We have presented the Stochastic Scaled-Gradient Descent
(SSGD) algorithm for minimizing a constrained noncon-
vex objective function. Comparing with classical stochastic
gradient descent, our method only requires access to an
unbiased estimate of a scaled gradient, allowing access to
a broader range of applications. The proposed algorithm
requires only a single pass through the data and is memory-
efficient, with storage complexity linearly dependent on the
ambient dimensionality of the problem. For a class of non-
convex stochastic optimization problems, we establish local
convergence rates of the proposed algorithm to local mini-
mizers and we prove asymptotic normality of the trajectory
average. An application to the generalized eigenvector prob-
lem is investigated. In the near future we will investigate the
rate of escape of saddle points for SSGD, and study global
convergence for generic Riemannian manifolds.
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