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1 DERIVATIONS

1.1 DECOMPOSITION OF THE PREDICTIVE UNCERTAINTY

We show how we decompose the Mean Squared Error (MSE) based predictive uncertainty into the epistemic uncertainty and
the aleatoric uncertainty mentioned in §3.2.
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Here, E[y] denotes the expectation of the ground truth label distribution. Since the first term, E[(yi − E[y])2], contains the
observed yi, it can be defined as the aleatoric uncertainty. The second term represents the epistemic uncertainty since it
contains the predicted ŷi.

1.2 INTERPRETING ENTROPY CHANGE WITH RECONSTRUCTION DIFFERENCE

In this subsection, we provide detailed derivation corresponding to the predictive entropy upper-bound mentioned in §4.1.

In our learning objective, we aim to estimate the uncertainty by adding the noise to increase the predictive entropy while
keeping the classification results unchanged. For a Softmax-based classifier, the predictive uncertainty reaches the maximum
when probabilities are uniformly distributed (i.e. when the predictive class probability of any of the K classes is 1

K ). Then,
we have

0 ≤ Hei
(ŷi) ≤ He′

i
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Assuming that the difference between text representation ei and the reconstructed representation e′i is u, u = e′i − ei, and
the prediction is obtained from the Softmax function. Let U be the maximum distance of e′i − ei that causes the new e′i
confuse the classifier (i.e. when the predictive class probability equals to 1

K ). Then, according to the Jensen inequality, the
prediction is bounded by:

ŷ′i ≤ t · softmax(ei) + (1− t)softmax(ei +U)

= t · softmax(ei) + (1− t)
1

K

So we can get ei ≤ e′i ≤ (ei + U), let 0 ≤ t ≤ 1 and H(ei+U)(ŷ
′
i) = logK. Considering the convexity of entropy, we
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have:
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The above derivation demonstrates the generated perturbation can guarantee an upper bound of predictive entropy difference
∆H, and the variation of the entropy ∆H is proportional to the reconstruction error ||e′i − ei||2, which thus can be used to
interpret the predictive uncertainty.

2 UNCERTAIN FEATURE IDENTIFICATION ALGORITHM

In this section, we provide the detailed implementation of the Uncertain Feature Identification algorithm built in the CUE
framework corresponding to §4.2. Intuitively, we use greedy search to find a locally optimal solution by identifying the most
influential latent dimensions of zi first and then estimating the influential score for each token (see in Algorithm 1). That
is, we can identify input tokens that are most similar to the influential representation vector rzid as the ones which cause
predictive uncertainty by the inner product in the metric space. More concretely, assuming the PLM-encoded representation
for token j is eij , we can compute each token’s importance score by tokenjscore = ⟨rzid, eij⟩. By sorting tokenjscore in
descending order, we can identify input tokens that cause predictive uncertainty.

The identification of the source of the uncertainty highly relies on the influence of latent dimensions. In practice, we use
a threshold α to select the most similar dimensions of ∆ei to construct a combination of the most influential uncertain
representation rziD. The threshold α can be defined with the help of the average entropy curve and ECE histograms from
the dimension importance analysis described in §5.2.

Algorithm 1 Uncertain Feature Identification
Input: original text representation ei, reconstruct text representation e′

i, CUE decoder µθ , token representations {ei1, ei2, · · · , ein},
tokens {token1, token2, · · · , tokenn}, threshold α.

∆ei = e′i − ei
for the dth dimension zid in zi do
rzid = µθ(zid)

dimd
score = ⟨∆ei, rzid⟩

end for
for sort(rzid, key = ϕ(dimd

score, rzid))[: α] do
rziD+ = rzid

end for
for eij in {ei1, ei2, · · · , ein} do
tokenjscore = ⟨rziD, eij⟩

end for
return sort(tokenj, key = ϕ(tokenjscore, tokenj))

3 EXPERIMENTAL SETUP

In this section, we provide detailed dataset statistics, baseline setup, evaluation metrics and hyperparameter settings as
mentioned in §5.

Datasets We evaluate our proposed framework on four datasets for linguistic acceptability classification, natural language
inference, and emotion classification. The dataset statistics are shown in Table 1.



Datasets CoLA MultiNLI Emotion GoEmotions

Classes 2 3 6 27

Train 8,551 392,702 16,000 43,410
Dev 1,043 20,000 2,000 5,427
Test 1,043 20,000 2,000 5,426

Total 10,637 432,702 20,000 58,009

Table 1: Statistic of the datasets.

Linguistic Acceptability Classification. The CoLA (Corpus of Linguistic Acceptability) [Warstadt et al., 2018] contains
sentences annotated as grammatically acceptable or not.

Natural Language Inference. The MultiNLI [Williams et al., 2018] dataset contains annotations for relations of entailment,
contradiction, and neutrality between sentence pairs.

Emotion Classification. The GoEmotions [Demszky et al., 2020] dataset annotates Reddit comments with twenty-seven
emotion labels (e.g., fear and admiration). The Emotion [Saravia et al., 2018] dataset classifies English tweets into six
emotion classes (e.g., sadness and joy). Note that the GoEmotions dataset allows multi-label settings that a sentence can be
annotated with more than one emotion label. In our experimental setup, we only focus on multi-class classification, and we
thus filtered out those instances annotated with multiple labels in the GoEmotions.

Baselines We compare our method with the following baselines:

Label Smoothing [Gupta et al., 2021] is commonly used to deal with overfitting when using cross-entropy loss on classi-
fication tasks. It aims to uniform the distribution of labels to encourage small logit gaps and has been shown effective in
calibrating PLM-based classifiers.

MC Dropout [Gal and Ghahramani, 2016] is an uncertainty estimation technique that performing multiple stochastic forward
passes by randomly switching neurons off to generate ensemble of predictions. We follow the implementation of Vazhentsev
et al. [2022] in our experiments.

Bayesian Neural Network (BNN) [Kabir et al., 2018] assumes weights of neural networks are random variables with a prior
distribution, is thus able to obtain more robust predictions by sampling the network weights during inference, and is often
used for uncertainty estimation. Motivated by Antoran et al. [2021], we also implemented a BNN plug-in framework as a
comparison with our CUE framework. Specifically, we use a Bayesian linear layer1 as the encoder and a linear layer as the
decoder, and then insert them between the PLM-encoding layer and the classification layer, similar to the way we ensemble
the CUE.

Evaluation Metrics We use accuracy (Acc) and macro-averaged F1 (F1) to evaluate the classification results, and Expected
Calibration Error (ECE) [Desai and Durrett, 2020] calculated on predictive probabilities during inference to measure model
calibration. For ECE implementation, we use the formula provided by Guo et al. [2017] as follows:
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1
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∑
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p̂i,
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m=1

Bm

n
|acc(Bm)− conf(Bm)|

Predictions of n samples are grouped into M interval bins and the accuracy is calculated for each bin. Bm is the set of
indices of samples that prediction confidence falls into the current interval bin. The ECE formula calculates the weighted
average of the difference between the accuracy of each bin - acc(Bm) - and the average confidence - conf(Bm) - within bin
Bm. In our experiments, we set Bm = 9.

Hyperparameters Settings We adopted the Pytorch-Transformers package2 for the implementation of all our Transformer-
based language models. For each model, we chose its corresponding base model with the following parameter size: ALBERT-

1https://github.com/piEsposito/blitz-bayesian-deep-learning
2https://github.com/huggingface/pytorch-transformers

https://github.com/piEsposito/blitz-bayesian-deep-learning
https://github.com/huggingface/pytorch-transformers


base-v2 (11M), distilBERT-base-uncased (66M), BERT-base-uncased (110M), and RoBERTa-base (125M). We fine-tuned
all these base models for 20 epochs with a batch size of 16 on each target dataset as compared to base models. For the Label
Smoothing and the MC Dropout baseline, the frameworks directly modified the PLM-based models and were finetuned
together with the PLM for 20 epochs with a batch size of 16. For the BNN and our CUE plug-in methods, we first fine-tuned
the base models for 20 epochs and then froze the PLM encoding and classifier parameters and fine-tuned the BNN and
CUE module for a further 50 epochs (with batch sizes as 16 for both modules). A learning rate of 2e− 5 and the early stop
strategy have been applied to all the training. Each model has been trained 5 times with different random seeds. For each
model, we report the mean and standard deviation of the evaluation results obtained by the five trained models on test sets.

4 FURTHER EXPERIMENTAL RESULTS

4.1 RESULTS WITH LATENT DIMENSION REMOVAL

As mentioned in §5.2, we study the impact of removing ranked latent variable dimensions on the other three base models:
ALBERT, DistilBERT and RoBERTa. As shown in Figure 1, we can observe the same trend of ECE score and average
entropy increasing when removing latent dimensions ranked by their influential scores on almost all the models while
keeping accuracy and macro F1 scores almost unchanged. This proves our CUE framework can be generalized to interpret
the uncertainty via latent dimensions on various models and different datasets. On the CoLA dataset, both ALBERT and
RoBERTa exhibit a similar pattern compared with the BERT model; we can also observe a peak for the average entropy.
The graphs show our CUE can effectively distinguish the importance between latent dimensions, and thus we can use those
dimensions to interpret token level uncertainty as discussed in §4.2.

4.2 ABLATION STUDY

As mentioned at the end of the §5, we present an ablation study to investigate the contribution of various components in our
framework.

Stability of training loss As discussed in §4.1, our learning objective is implemented with four loss terms. We investigate
the training stability benefits from orthogonal regularisation by replacing the orthogonality loss with either a KL-divergence
loss or a Wasserstein loss, where the KL-divergence loss encourages the distribution of latent variables to follow the
prior standard Gaussian distribution and is widely used in general Variational Auto-encoders [Kingma and Welling, 2014,
Card et al., 2018], while the Wasserstein loss enforces the latent variables to follow a Dirichlet distribution and is used in
Wasserstein Auto Encoder (WAE) [Nan et al., 2019, Tolstikhin et al., 2018]. The total loss (including the reconstruction
loss and the cross-entropy loss) curves during training are shown in Figure 2. We observe that the total loss replaced by
either the KL-divergence loss or the Wasserstein loss exhibits fluctuation during the training process across all datasets. On
the contrary, the loss with orthogonal regularisation is very stable. We further show the evaluation results with various loss
terms in Table 2 3. It can be observed that our proposed framework with the orthogonality loss achieves better ECE results
compared to using KL or Wasserstein loss.

BERT CUE w/ Orthogonality BERT CUE w/ KL BERT CUE w/ Wasserstein

Datasets Acc F1 H ECE↓ Acc F1 H ECE↓ Acc F1 H ECE↓
CoLA 0.8130 0.7459 0.4986 0.0640 0.8072 0.7300 0.3407 0.1090 0.8044 0.7240 0.3499 0.1111
GoEmotions 0.6298 0.4661 0.4333 0.0321 0.6298 0.4752 0.3345 0.0695 0.6263 0.4608 0.3437 0.0600
Emotion 0.9255 0.8827 0.0984 0.0322 0.9270 0.8847 0.0518 0.0431 0.9275 0.8853 0.0510 0.0441
MultiNLI 0.8284 0.8278 0.3650 0.0272 0.8294 0.8290 0.3194 0.0418 0.8291 0.8286 0.3343 0.0344

Table 2: Comparison of the performance of the BERT model fine-tuned with different loss terms on four datasets.

Training Loss Stability with Additional Loss Terms We further examine the training loss stability when adding the KL
or Wasserstein distance loss terms to our framework. We fine-tuned two BERT-base uncased CUE models on the Emotions
dataset. It can be observed in Figure 3 that the pairwise distance (i.e., the reconstruction loss) seems to be very unstable and
keeps fluctuating during training while the orthogonality loss shows a stable decreasing trend and converges quickly. If we

3Results reported are single run results, which we used to generate loss stability graphs.



only compare the KL loss with the Wasserstein loss, we can see that the Wasserstein loss is more stable compared to KL.
Our visualisation results show that the prior distributions assumed by the KL or the Wasserstein loss may not be suitable
for reconstructing PLM-encoded representations, thus leading to higher ECE results compared to using the orthogonality
constraint.

BERT CUE w/ Orthogonality BERT CUE w/o Orthogonality

Datasets Acc F1 H ECE↓ Acc F1 H ECE↓
CoLA 0.8123±0.0012 0.8762±0.0007 0.4991±0.0032 0.0677±0.0056 0.8042±0.0011 0.7230±0.0024 0.3458±0.0047 0.1121±0.0020
GoEmotions 0.6282±0.0029 0.4712±0.0087 0.4433±0.0159 0.0326±0.0013 0.6291±0.0019 0.4652±0.0037 0.3432±0.0014 0.0615±0.0023
Emotion 0.9259±0.0009 0.8850±0.0015 0.1031±0.0082 0.0289±0.0043 0.9268±0.0003 0.8848±0.0006 0.0519±0.0009 0.0430±0.0016
MultiNLI 0.8283±0.0005 0.8277±0.0005 0.3665±0.0030 0.0262±0.0021 0.8281±0.0009 0.8277±0.0009 0.3317±0.0009 0.0370±0.0010

Table 3: Comparison of results on BERT models trained with/without latent space orthogonality.

Latent Space Orthogonality As explained in §4.1, the orthogonality regulariser facilitates a better interpretation of the
latent space. Shown in Table 3, we compare the overall performance between BERT models trained with and without latent
space orthogonality. The PLMs fine-tuned with Eq. (8) outperform the counterparts without the orthogonality regularisation
in ECE and average entropy on all four datasets. It is also interesting to find the f1 scores slightly decrease on the models
trained without the orthogonality on almost all the datasets. Therefore, the orthogonality constraints ensure the decoder
network to facilitate the same distribution on the latent space to generate reconstructed representations that lead to uncertain
predictions.

We performed a further ablation study to examine the interpretability of the latent space without being regularised by
orthogonality. As shown in Figure 4, without the orthogonality loss term, there is no clear relationship between the tendency
of ECE scores and the average entropy during the removal of latent dimensions ranked by their influential scores. Without
orthogonality we are not able to maintain the distributional consistency from the latent representation space, hence we can
see an obvious fluctuation in Accuracy and F1. Without a consistent tendency, it is thus difficult to investigate each latent
dimension’s importance and interpret the impact of each latent dimension on model predictive uncertainty.
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(a) ALBERT CUE on CoLA. (b) ALBERT CUE on GoEmotions.

(c) ALBERT CUE on Emotion. (d) ALBERT CUE on MultiNLI.

(e) DistilBERT CUE on CoLA. (f) DistilBERT CUE on GoEmotions.

(g) DistilBERT CUE on Emotion. (h) DistilBERT CUE on MultiNLI.

(i) RoBERTa CUE on CoLA. (j) RoBERTa CUE on GoEmotions.

(k) RoBERTa CUE on Emotion. (l) RoBERTa CUE on MultiNLI.

Figure 1: Evaluation results by removing latent dimensions. The x-axis represents the index of removed dimensions ranked
by their relevance to ∆ei, smaller index number indicates the latent dimension is more similar. Histograms show the ECE
scores after removing the corresponding latent dimensions. The blue curve shows the predictive entropy. The green and red
curves show classification accuracy and F1, respectively.



 
Figure 2: Comparison of the stability of the total loss for three loss terms trained with BERT model on four datasets. Red:
total loss with KL divergence loss; Green: total loss with Wasserstein loss; Blue: total loss with Orthogonality loss.

(a) Additional KL divergence loss term. (b) Additional Wasserstein loss term.

Figure 3: Comparison of BERT models trained on Emotions with additional loss term. Blue: Reconstruction loss; Red: KL
loss in (a) and Wasserstein loss in (b); Green: Orthogonality loss.

Figure 4: ECE and average entropy with latent dimension removal from the model trained without the orthogonality
regulariser. The x-axis represents the index of removed dimensions ranked by their relevance to ∆ei, smaller index number
indicates the latent dimension is more similar. Histograms show the ECE scores after removing the corresponding latent
dimensions. The blue curve shows the predictive entropy. The green and red curves show the classification accuracy and F1,
respectively.
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