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Abstract

Identifying the causal variables of an environment
and how to intervene on them is of core value in
applications such as robotics and embodied AI.
While an agent can commonly interact with the en-
vironment and may implicitly perturb the behavior
of some of these causal variables, often the targets
it affects remain unknown. In this paper, we show
that causal variables can still be identified for many
common setups, e.g., additive Gaussian noise mod-
els, if the agent’s interactions with a causal variable
can be described by an unknown binary variable.
This happens when each causal variable has two
different mechanisms, e.g., an observational and an
interventional one. Using this identifiability result,
we propose BISCUIT, a method for simultaneously
learning causal variables and their correspond-
ing binary interaction variables. On three robotic-
inspired datasets, BISCUIT accurately identifies
causal variables and can even be scaled to com-
plex, realistic environments for embodied AI.

1 INTRODUCTION

Learning a low-dimensional representation of an environ-
ment is a crucial step in many applications, e.g., robotics
(Lesort et al., 2018), embodied AI (Kolve et al., 2017) and
reinforcement learning (Hafner et al., 2021; Träuble et al.,
2022). A promising direction for learning robust and ac-
tionable representations is causal representation learning
(Schölkopf et al., 2021), which aims to identify the under-
lying causal variables and their relations in a given envi-
ronment from high-dimensional observations, e.g., images.
However, learning causal variables from high-dimensional
observations is a considerable challenge and may not always
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Figure 1: BISCUIT identifies causal variables from images
Xt−1 and Xt, by learning to encode an observable regime
variableRt, e.g., an action, as binary variables. Conditioning
each latent on one of these binary variables identifies causal
variables in environments like iTHOR (Kolve et al., 2017).

be possible, since multiple underlying causal systems could
generate the same data distribution (Hyvärinen et al., 1999).
To overcome this, several works make use of additional in-
formation, e.g., by using counterfactual observations (Ahuja
et al., 2022; Brehmer et al., 2022; Locatello et al., 2020),
observed intervention targets (Lippe et al., 2022a, 2023). Al-
ternatively, one can restrict the distributions of causal vari-
ables, e.g., by considering environments with non-stationary
noise (Khemakhem et al., 2020a; Yao et al., 2022a,b) or
sparse causal relations (Lachapelle et al., 2022a,b).

In this paper, instead, we focus on interactive environments,
where an agent can perform actions which may have an
effect on the underlying causal variables. We will assume
that these interactions between the agent and the causal
variables can be described by binary variables, i.e., that with
the agent’s actions, we can switch between two mechanisms,
or distributions, of a causal variable, similarly to performing
soft interventions. Despite being binary, these interactions
include a wide range of common scenarios, such as a robot
pressing a button, opening/closing a door, or even colliding
with a moving object and alternating its course.
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Figure 2: A representation of our assumptions. Observed variables are shown in gray (Xτ and Rτ ) and latent variables in
white. Optional causal edges are shown as dashed lines. A latent causal variableCti has as parents a subset of the causal factors
at the previous time step Ct−1 = {Ct−1

1 , . . . , Ct−1
K }, and its latent binary interaction variable Iti . The interaction variables

are determined by an observed regime variable Rt and potentially by the variables from the previous time step Ct−1 (e.g., in
a collision). The regime variable can be a dynamical process over time as well, for example, by depending on the previous
time step. The observation Xτ is a high-dimensional entangled representation of all causal variables Cτ at time step τ .

In this setup, we prove that causal variables are identifi-
able if the agent interacts with each causal variable in a
distinct pattern, i.e., does not always interact with any two
causal variables at the same time. We show that for K vari-
ables, we can in many cases fulfill this by having as few as
blog2Kc+ 2 actions with sufficiently diverse effects, allow-
ing identifiability even for a limited number of actions. The
binary nature of the interactions permits the identification
of a wider class of causal models than previous work in a
similar setup, including the common, challenging additive
Gaussian noise model (Hyvärinen et al., 1999).

Based on these theoretical results, we propose BISCUIT
(Binary Interactions for Causal Identifiability). BISCUIT is
a variational autoencoder (Kingma et al., 2014) which learns
the causal variables and the agent’s binary interactions with
them in an unsupervised manner (see Figure 1). In experi-
ments on robotic-inspired datasets, BISCUIT identifies the
causal variables and outperforms previous methods. Fur-
thermore, we apply BISCUIT to the realistic 3D embodied
AI environment iTHOR (Kolve et al., 2017), and show that
BISCUIT is able to generate realistic renderings of unseen
causal states in a controlled manner. This highlights the po-
tential of causal representation learning in the challenging
task of embodied AI. In summary, our contributions are:

• We show that under mild assumptions, binary inter-
actions with unknown targets identify the causal vari-
ables from high-dimensional observations over time.

• We propose BISCUIT, a causal representation learning
framework that learns the causal variables and their
binary interactions simultaneously.

• We empirically show that BISCUIT identifies both the
causal variables and the interaction targets on three
robotic-inspired causal representation learning bench-
marks, and allows for controllable generations.

2 PRELIMINARIES

In this paper, we consider a causal modelM as visualized
in Figure 2. The modelM consists of K latent causal vari-
ables C1, ..., CK which interact with each other over time,
like in a dynamic Bayesian Network (DBN) (Dean et al.,
1989; Murphy, 2002). In other words, at each time step t, we
instantiate the causal variables as Ct = {Ct1, ..., CtK} ∈ C,
where C ⊆ RK is the domain. In terms of the causal graph,
each variable Cti may be caused by a subset of variables in
the previous time step {Ct−1

1 , ..., Ct−1
K }. For simplicity, we

restrict the temporal causal graph to only model dependen-
cies on the previous time step. Yet, as we show in Appendix
B.3, our results in this paper can be trivially extended to
longer dependencies, e.g., (Ct−2, Ct−1)→ Ct, since Ct−1

is only used for ensuring conditional independence. As in
DBNs, we consider the graph structure to be time-invariant.

Besides the intra-variable dynamics, we assume that the
causal system is affected by a regime variable Rt with arbi-
trary domainR, which can be continuous or discrete of ar-
bitrary dimensionality. This regime variable can model any
known external causes on the system, which, for instance,
could be a robotic arm interacting with an environment. For
the causal graph, we assume that the effect of the regime
variable Rt on a causal variable Cti can be described by
a latent binary interaction variable Iti ∈ {0, 1}. This can
be interpreted as each causal variable having two mecha-
nisms/distributions, e.g., an observational and an interven-
tional mechanism, which has similarly been assumed in pre-
vious work (Brehmer et al., 2022; Lippe et al., 2022a, 2023).
Thereby, the role of the interaction variable Iti is to select the
mechanism, i.e., observational or interventional, at time step
t. For example, a collision between an agent and an object is
an interaction that switches the dynamics of the object from
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its natural course to a perturbed one. In this paper, we con-
sider the interaction variable Iti to be an unknown function
of the regime variable and the previous causal variables, i.e.,
Iti = fi(R

t, Ct−1). The dependency on the previous time
step allows us to model interactions that only occur in cer-
tain states of the system, e.g., a collision between an agent
(modeled by Rt) with an object with position Ct−1

i will
only happen for certain positions of the agent and the object.

We consider the causal graph of Figure 2 to be causally
sufficient, i.e., we assume there are no other unobserved
confounders except the ones we have described in the pre-
vious paragraphs and represented in the Figure, and that
the causal variables within the same time step are indepen-
dent of each other, conditioned on the previous time step
and their interaction variables. We summarize the dynamics
as p(Ct|Ct−1, Rt) =

∏K
i=1 p(C

t
i |Ct−1, Iti ). Although Cti

only depends on a subset ofCt−1, w.l.o.g. we model it as de-
pending on all causal variables from the previous time step.

In causal representation learning, the task is to identify
causal variables from an entangled, potentially higher-
dimensional representation, e.g., an image. We consider an
injective observation function g, mapping the causal vari-
ables Ct to an observation Xt = g(Ct). Following Klindt
et al. (2021); Yao et al. (2022b), we assume g to be defined
everywhere for Ct and differentiable almost everywhere. In
our setting, once we identify the causal variables, the causal
graph can be trivially learned by testing for conditional in-
dependence, since the causal graph is limited to edges fol-
lowing the temporal dimension, i.e., from Ct−1 to Ct. We
provide further details on the graph discovery and an exam-
ple on learned causal variables in Appendix B.4.

3 IDENTIFYING CAUSAL VARIABLES

Our goal in this paper is to identify the causal variables
C1, ..., CK of a causal system from sequences of observa-
tions (Xt, Rt). We first define the identifiability class that
we consider. We then provide an intuition on how binary in-
teractions enable identifiability, before presenting our two
identifiability results. The practical algorithm based on these
results, BISCUIT, is presented in Section 4.

3.1 IDENTIFIABILITY CLASS AND DEFINITIONS

Intuitively, we seek to estimate an observation function ĝ,
which maps a latent space Ĉ to observations X , and models
each true causal variable Ci in a different dimension of the
latent space Ĉ. This observation function should be equiv-
alent to the true observation function g, up to permuting
and transforming the variables individually, e.g., through
scaling. Several previous works (Khemakhem et al., 2020a;
Lachapelle et al., 2022b; Yao et al., 2022a,b) have consid-
ered equivalent identifiability classes, which we define as:

Definition 3.1. Consider a modelM = 〈g, f, ω, C〉 with an
injective function g(C) = X with C ∈ C and a latent distri-
bution pω(Ct|Ct−1, Rt), parameterized by ω and defined:

pω(Ct|Ct−1, Rt) =

K∏
i=1

pω,i
(
Cti |Ct−1, fi(R

t, Ct−1)
)
,

where fi : R×C → {0, 1} outputs a binary variable for the
variable Cti . We callM identifiable iff for any other model
M̃ = 〈g̃, f̃ , ω̃, C̃〉 with the same observational distribution
p(Xt|Xt−1, Rt), g and g̃ are equivalent up to a component-
wise invertible transformation T and a permutation π:

pM(Xt|Xt−1, Rt) = pM̃(Xt|Xt−1, Rt)⇒ g = g̃ ◦ T ◦ π

To achieve this identifiability, we rely on the interaction
variables Iti being binary and having distinct interaction
patterns, a weaker form of faithfulness on the interaction
variables. Intuitively, we do not allow that any two causal
variables to have identical interaction variables Iti , I

t
j across

the whole dataset, i.e., being always interacted with at the
same time. Similarly, if all Iti are always zero (∀t, i : Iti = 0),
then we fall back into the well-known unidentifiable setting
of non-linear ICA (Hyvärinen et al., 1999). Since interaction
variables can also be functions of the previous state, we
additionally assume that for all possible previous states, the
interaction variables cannot be deterministic functions of
any other. Thus, we assume that all causal variables have
distinct interaction patterns, which we formally define as:

Definition 3.2. A causal variable Ci inM = 〈g, f, ω, C〉
has a distinct interaction pattern if for all values of Ct−1,
its interaction variable Iti = fi(R

t, Ct−1) is not a deter-
ministic function b :{0, 1}→{0, 1} of any other Itj:

∀Ct−1,∀j 6= i,@b,∀Rt : fi(Rt, Ct−1) = b(fj(R
t, Ct−1)).

This assumption generalizes the intervention setup of Lippe
et al. (2022b), which has a similar condition on its binary
intervention variables, but assumed them to be independent
of the previous time step. This implies that we can create
a distinct interaction pattern for each of the K causal vari-
ables by having as few as blog2Kc+ 2 different values for
Rt, if the interaction variables are independent of Ct−1. In
contrast, other methods in similar setups that also exploit an
external, temporally independent, observed variable (Khe-
makhem et al., 2020a; Yao et al., 2022a,b) require the num-
ber of regimes to scale linearly with the number of causal
variables. If the interaction variables depend on Ct−1, the
lower bound of the number of different values for Rt de-
pends on the causal modelM, more specifically its interac-
tion functions fi. Concretely, the lower bound for a causal
modelM is the smallest set of values of Rt that ensure dif-
ferent interaction patterns for all Ct−1 inM. In the worst
case, each Ct−1 may require different values of Rt to fulfill
the condition of Theorem 3.2, such that Rt would need to
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Figure 3: Binary interactions identify the additive Gaussian
noise model in Equation (1). The plots show the change of
the mean for each variable for a fixed Ct−1 under interac-
tions affecting only one variable (I1 = 1 or I2 = 1), and un-
der joint interactions I12 (I1 = I2 = 1). Ticks on axes show
mean values for each variable, where the mean for (I1 =
0, I2 = 0) lies at the origin. The colors of the ticks match
the interaction color. Left: true causal variables C1 and C2.
Each variable has two possible means after any of the pos-
sible interactions. The effect of the interactions can be de-
scribed by a binary variable per axis. Right: a rotated repre-
sentation. Both Ĉ1 and Ĉ2 have three possible means, which
cannot be described by a binary variable per axis anymore.

be of the same domain as Ct−1 (for instance being contin-
uous). At the same time, for modelsM in which the con-
dition of Theorem 3.2 can be fulfilled by the same values
of Rt for all Ct−1, we again recover the lower bound of
blog2K + 2c different values of Rt.

3.2 INTUITION: ADDITIVE GAUSSIAN NOISE

We first provide some intuition on how binary interactions,
i.e., knowing that each variable has exactly two potential
mechanisms, enable identifiability, even when we do not
know which variables are interacted with at each time step.
We take as an example an additive Gaussian noise model
with two variables C1, C2, each described by the equation:

Cti = µi(C
t−1, Iti ) + εi, εi ∼ N (0, σ2), (1)

where εi is additive noise with variance σ2, and µi a func-
tion for the mean with µi(Ct−1, Iti = 0) 6= µi(C

t−1, Iti =
1). Due to the rotational invariance of Gaussians, the
true causal variables C1, C2 and their rotated counterparts
Ĉ1, Ĉ2 model the same distribution with the same factor-
ization:

∏2
i=1 pi(C

t
i |Ct−1, Rt) =

∏2
i=1 p̂i(Ĉ

t
i |Ĉt−1, Rt).

This property makes the model unidentifiable in many
cases (Hyvärinen et al., 2019; Khemakhem et al., 2020a;
Lachapelle et al., 2022b; Yao et al., 2022a). However, when
the effect of the regime variable on a causal variable Ci can
be described by a binary variable, i.e., Ii ∈ {0, 1}, the two
representations become distinguishable. In Figure 3, we vi-
sualize the two representations by showing the means of the

different variables under interactions, which we detail in Ap-
pendix B.6 and provide intuition here. For the original rep-
resentation C1, C2, each variable’s mean takes on only two
different values for any Rt. For example, for regime vari-
ables where I1 = 0, the variable C1 takes a mean that is in
the center of the coordinate system. Similarly, when I1 = 1,
the variable C1 will take a mean that is represented as a pink
(for I1 = 1, I2 = 0) or yellow tick (for I1 = 1, I2 = 1).
In contrast, for the rotated variables, both Ĉ1 and Ĉ2 have
three different means depending on the interactions, making
it impossible to model them with individual binary variables.
Intuitively, the only alternative representations to C1, C2

which can be described by binary variables are permutations
and/or element-wise transformations, effectively identifying
the causal variables according to our identifiability class.

3.3 IDENTIFIABILITY RESULT

When extending this intuition to more than two variables,
we find that systems may become unidentifiable when the
two distributions of each causal variable, i.e., interacted and
not interacted, always differ in the same manner. Formally,
we denote the log-likelihood difference between the two
distributions of a causal variable Cti as ∆(Cti |Ct−1) :=
log p(Cti |Ct−1, Iti = 1) − log p(Cti |Ct−1, Iti = 0). If this
difference or its derivative w.r.t. Cti is constant for all values
of Cti , the effect of the interactions could be potentially
modeled in fewer than K dimensions, giving rise to models
that do not identify the causal modelM.

To prevent this, we consider two possible setups for ensuring
sufficient variability of ∆(Cti |Ct−1): dynamics variability,
and time variability. We present our identifiability result
below and provide the proofs in Appendix B.

Theorem 3.3. An estimated model M̂ = 〈ĝ, f̂ , ω̂, Ĉ〉 iden-
tifies the true causal modelM = 〈g, f, ω, C〉 if:

1. (Observations) M̂ andM model the same likelihood:

pM̂(Xt|Xt−1, Rt) = pM(Xt|Xt−1, Rt);

2. (Distinct Interaction Patterns) Each variable Ci inM
has a distinct interaction pattern (Definition 3.2);

and one of the following two conditions holds forM:

A. (Dynamics Variability) Each variable’s log-likelihood
difference is twice differentiable and not always zero:

∀Cti ,∃Ct−1 :
∂2∆(Cti |Ct−1)

∂(Cti )
2

6= 0;

B. (Time Variability) For any Ct ∈ C, there exist K + 1
different values of Ct−1 denoted with c1, ..., cK+1 ∈ C,
for which the vectors v1, ..., vK ∈ RK+1 with

vi =
[
∂∆(Cti |C

t−1=c1)
∂Cti

· · · ∂∆(Cti |C
t−1=cK+1)
∂Cti

]T
are linearly independent.
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Intuitively, Theorem 3.3 states that we can identify a
causal modelM by maximum likelihood optimization, if
we have distinct interaction patterns (Definition 3.2) and
∆(Cti |Ct−1) varies sufficiently, either in dynamics or in
time. Dynamics variability can be achieved by the differ-
ence ∆(Cti |Ct−1) being non-linear for all causal variables.
This assumption is common in previous ICA-based works
(Hyvärinen et al., 2019; Yao et al., 2022a,b) and, for in-
stance, allows for Gaussian distributions with variable stan-
dard deviations. While allowing for a variety of distribu-
tions, it excludes additive Gaussian noise models. We can
include this challenging setup by considering the time vari-
ability assumption, which states that the effect of the inter-
action depends on the previous time step, and must do so
differently for each variable. As an example, consider a dy-
namical system with several moving objects, where an inter-
action is a collision with a robotic arm. The time variability
condition is commonly fulfilled by the fact that the trajec-
tory of each object depends on its own velocity and position.

In comparison to previous work, our identifiability results
cover a larger class of causal models by exploiting the binary
nature of the interaction variables. We provide a detailed
comparison in Appendix B.5. In short, closest to our setup,
Khemakhem et al. (2020a) and Yao et al. (2022b) require
a stronger form of both our dynamics and time variability
assumptions, excluding common models like additive Gaus-
sian noise models. Lachapelle et al. (2022b) requires that no
two causal variables share the same parents, limiting the al-
lowed temporal graph structures. Meanwhile, our identifia-
bility results allow for arbitrary temporal causal graphs. Fur-
ther, the two conditions of Theorem 3.3 complement each
other well by covering different underlying distributions for
the same general setup. Thus, in the next section, we can de-
velop one joint learning algorithm for identifying the causal
variables based on both conditions in Theorem 3.3.

4 BISCUIT

Using the results of Section 3, we propose BISCUIT (Binary
Interactions for Causal Identifiability), a neural-network
based approach to identify causal variables and their inter-
action variables. In short, BISCUIT is a variational autoen-
coder (VAE) (Kingma et al., 2014), which aims at modeling
each of the causal variables C1, ..., CK in a separate latent
dimension by enforcing the latent structure of Figure 2. We
first give an overview of BISCUIT and then detail the de-
sign choices for the model prior.

4.1 OVERVIEW

BISCUIT consists of three main elements: the encoder qφ,
the decoder pθ, and the prior pω. The decoder and encoder
implement the observation function g and its inverse g−1

(Definition 3.1), respectively, and act as a map between ob-

zt−1

Rt MLPÎiω Îti

MLPziω µti, σ
t
i

Figure 4: The prior structure of BISCUIT. Based on the
previous latents zt−1 and the observed regime variable Rt,
the MLPÎiω predicts the interaction variable Îti . Then, MLPziω
outputs the distribution for the next time step p(zti |zt−1, Îti ),
which can be parameterized by, e.g., a mean µti and std σti .

servations xt and a lower-dimensional latent space zt ∈
RM , in which we learn the causal variables Ct1, ..., C

t
K . The

goal of the model is to learn each causal variable Cti in a dif-
ferent latent dimension, e.g., ztj , effectively separating and
hence identifying the causal variables according to Theo-
rem 3.1. Thus, we need the latent space to have at leastK di-
mensions. In practice, since the number of causal variables
is not known a priori, we commonly overestimate the latent
dimensionality, i.e., M � K. Still, we expect the model to
only use K dimensions actively, with the redundant dimen-
sions not containing any information after training.

On this latent space, the prior pω learns a distribution that
follows the structure in Definition 3.1, modeling the dynam-
ics in the latent space. As an objective, we maximize the
data likelihood of observation triplets {Xt, Xt−1, Rt} from
the true causal model, as stated in Theorem 3.3. The loss
function for BISCUIT is:

Lt = −Eqφ(zt|xt)
[
log pθ(x

t|zt)
]

+

Eqφ(zt−1|xt−1)

[
KL
(
qφ(zt|xt)||pω(zt|zt−1, Rt)

)] (2)

with learnable parameter sets φ (encoder), θ (decoder), and
ω (prior), and KL being the Kullback-Leibler divergence.

For visually complex datasets, the VAE commonly has to
perform a trade-off between reconstruction quality and prior
modeling, which may cause poorer identification of the
causal variables. To circumvent that, we follow Lippe et al.
(2022a) by separating the reconstruction and prior modeling
stage by training an autoencoder and a normalizing flow
(Rezende et al., 2015) in separate stages. In this setup, an
autoencoder is first trained to map the observations xt into a
lower-dimensional space. Afterward, we learn a normalizing
flow on the autoencoder’s representations to transform them
into the desired causal representation, using the same prior
structure as in the VAE. In experiments, we refer to this
approach as BISCUIT-NF, and the previously described
VAE-based approach as BISCUIT-VAE.

4.2 MODEL PRIOR

Our prior follows the distribution structure of Definition 3.1,
which has two elements per latent variable: a function to
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model the binary interaction variable, and a conditional dis-
tribution. We integrate this into BISCUIT’s prior by learn-
ing both via multi-layer perceptrons (MLPs):

pω(zt|zt−1, Rt)=

M∏
i=1

pω,i
(
zti |zt−1,MLPÎiω (Rt, zt−1)

)
.

(3)
Here, MLPÎiω is an MLP that maps the regime variable Rt

and the latents of the previous time step zt−1 to a binary
output Îti , as shown in Figure 4 . This MLP aims to learn
the interaction variable for the latent variable zi, simply by
optimizing Equation (2). The variable Îti is then used as in-
put for predicting the distribution over zti . For simplicity, we
model pω,i as a Gaussian distribution, which is parameter-
ized by one MLP per variable, MLPziω , predicting the mean
and standard deviation. To allow for more complex distri-
butions, pω,i can alternatively be modeled by a conditional
normalizing flow (Winkler et al., 2019).

In early experiments, we found that enforcing Îti to be a
binary variable and backpropagating through it with the
straight-through estimator (Bengio et al., 2013) leads to sub-
optimal performances. Instead, we model Îti as a continuous
variable during training by using a temperature-scaled tanh

as the output activation function of MLPÎiω . By gradually de-
creasing the temperature, we bring the activation function
closer to a discrete step function towards the end of training.

5 RELATED WORK

Causal Discovery from Unknown Targets Learning
(equivalence classes of) causal graphs from observational
and interventional data, even with unknown intervention tar-
gets, is a common setting in causal discovery (Brouillard
et al., 2020; Jaber et al., 2020; Mooij et al., 2020; Squires
et al., 2020). In recent work, this is even extended to the
case in which we have unknown mixtures of interventional
data (Faria et al., 2022; Kumar et al., 2021; Mian et al.,
2023), which for example can happen if the regime variable
is not observed. In our paper, we assume that we observe the
regime variable and then reconstruct the latent interaction
variables, which resemble the observed context variables by
Mooij et al. (2020). Moreover, our work is on a different
task, causal representation learning, in which we try to learn
the causal variables from high-dimensional data.

Causal Representation Learning A common basis for
causal representation learning is Independent Component
Analysis (ICA) (Comon, 1994; Hyvärinen et al., 2001),
which aims to identify independent latent variables from
observations. Due to the non-identifiability for the general
case of non-linear observation functions (Hyvärinen et al.,
1999), additional auxiliary variables are often considered in
this setting (Hyvärinen et al., 2016; Hyvärinen et al., 2019).
Ideas from ICA have been integrated into neural networks
(Khemakhem et al., 2020a,b; Reizinger et al., 2022) and

applied to causality (Gresele et al., 2021; Monti et al., 2019;
Shimizu et al., 2006) for identifying causal variables.

Recently, several works in causal representation learning
have exploited distribution shifts or interventions to identify
causal variables. Using counterfactual observations, Ahuja
et al. (2022); Brehmer et al. (2022); Locatello et al. (2020)
learn causal variables from pairs of images, between which
only a subset of variables has changed via interventions with
unknown targets. For temporal processes, Lachapelle et al.
(2022a,b) can model interventions of unknown target via
actions, which is equivalent to the regime variable in our
setting, but require that each causal variable has a strictly
unique parent set. On the other hand, Yao et al. (2022a,b)
consider observations from m different regimes u1, ..., um,
where, in our setting, the regime indicator u is a discrete
version of Rt. However, they require at least 2K + 1 differ-
ent regimes compared to blog2Kc+ 2 settings for ours, and
have stronger conditions on the distribution changes over
regimes (e.g., no additive Gaussian noise models). In tempo-
ral settings where the intervention targets are known, CIT-
RIS (Lippe et al., 2022a, 2023) identifies scalar and multidi-
mensional causal variables from high-dimensional images.
Nonetheless, observing the intervention targets requires ad-
ditional supervision, which may not always be available.
To the best of our knowledge, we are the first to use un-
known binary interactions to identify the causal variables
from high-dimensional observations.

6 EXPERIMENTS

To illustrate the effectiveness of BISCUIT, we evaluate it on
a synthetic toy benchmark and two environments generated
by 3D robotic simulators. We publish our code at https:
//github.com/phlippe/BISCUIT, and detail the
data generation and hyperparameters in Appendix C.

6.1 SYNTHETIC TOY BENCHMARK

To evaluate BISCUIT on various graph structures, we ex-
tend the Voronoi benchmark (Lippe et al., 2022a) by replac-
ing observed intervention targets with unobserved binary
interactions. In this dataset, each causal variable follows an
additive Gaussian noise model, where the mean is modeled
by a randomly initialized MLP. To determine the parent set,
we randomly sample the causal graph with an edge likeli-
hood of 0.4. Instead of observing the causal variables di-
rectly, they are first entangled by applying a two-layer ran-
domly initialized normalizing flow before visualizing the
outputs as colors in a Voronoi diagram of size 32× 32 (see
Figure 5a). We extend the original benchmark by including
a robotic arm that moves over the Voronoi diagram and in-
teracts by touching individual color regions/tiles. Each tile
corresponds to one causal variable, allowing for both single-
and multi-target interactions. The models need to deduce
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(a) Voronoi (b) CausalWorld (c) iTHOR

Figure 5: Example figures of our three environments with
increasing complexity: Voronoi (Lippe et al., 2023), Causal-
World (Ahmed et al., 2020), and iTHOR (Kolve et al., 2017).

these interactions from a regime variableRt ∈ [0, 1]2 which
is the 2D location of the robotic arm on the image. When
the robotic arm interacts with a variable, its mean is set to
zero, which resembles a stochastic perfect intervention.

Evaluation We generate five Voronoi systems with six
causal variables, and five systems with nine variables. We
compare BISCUIT to iVAE (Khemakhem et al., 2020a),
LEAP (Yao et al., 2022b), and Disentanglement via Mecha-
nism Sparsity (DMS) (Lachapelle et al., 2022b), since all use
a regime variable. We do not compare with CITRIS (Lippe
et al., 2022a, 2023), because it requires known intervention
targets. We follow Lippe et al. (2023) in evaluating the mod-
els on a held-out test set where all causal variables are in-
dependently sampled. We calculate the coefficient of deter-
mination (Wright, 1921), also called the R2 score, between
each causal variable Ci and each learned latent variable zj ,
denoted by R2

ij . If a model identifies the causal variables ac-
cording to Definition 3.1, then for each causal variable Ci,
there exists one latent variable zj for which R2

ij = 1, while
it is zero for all others. Since the alignment of the learned la-
tent variables to causal variables is not known, we report R2

scores for the permutation π that maximizes the diagonal
of the R2 matrix, i.e., R2-diag = 1/K

∑K
i=1R

2
i,π(i) (where

1 is optimal). To account for spurious modeled correlation,
we also report the maximum correlation besides this align-
ment: R2-sep = 1/K

∑K
i=1 maxj 6=π(i)R

2
ij (optimal 0).

Results The results in Figure 6a show that BISCUIT iden-
tifies the causal variables with high accuracy for both graphs
with six and nine variables. In comparison, all baselines
struggle to identify the causal variables, often falling back
to modeling the colors as latent variables instead. While the
assumptions of iVAE and LEAP do not hold for additive
Gaussian noise models, the assumptions of DMS, including
the graph sparsity, mostly hold. Still, BISCUIT is the only
method to consistently identify the true variables, illustrat-
ing that its stable optimization and robustness.

Minimal Number of Regimes To verify that BISCUIT
only requires blog2Kc+2 different regimes (Theorem 3.3),
we repeat the previous experiments with reducing the inter-
action maps to a minimum. This results in four sets of in-
teractions for six variables, and five for nine variables. Fig-

Models
iVAE LEAP DMS BISCUIT (Ours)

6 vars 9 vars
0.00

0.25

0.50

0.75

1.00

R2  s
co

re

6 vars 9 vars
0.00

0.25

0.50

0.75

1.00

R2  s
co

re

(a) Random Interactions (b) Minimal Interactions

Figure 6: Results on the Voronoi benchmark averaged over
10 seeds. Solid bars show the mean R2-diag score (higher is
better), and striped bars the R2-sep scores (lower is better,
non-visible bars indicate close-to zero values). BISCUIT
accurately identifies the causal variables across settings.

ure 6b shows that BISCUIT still correctly identifies causal
variables in this setting, supporting our theoretical results.

Learned Intervention Targets After training, we can use
the interaction variables Î1, ..., ÎM learned by BISCUIT to
identify the regions in which the robotic arm interacts with a
causal variable. Based on our theoretical results, we expect
that some of the learned variables are identical to the true
interaction variables I1, ...IK up to permutations and sign-
flips. In all settings, we find that the learned binary variables
match the true interaction variables with an average F1 score
of 98% for the same permutation of variables as in the R2

evaluation. This shows that BISCUIT identified the true
interaction variables. Thus, in practice, one could use a few
samples with labeled interaction variables to identify the
learned permutation of the model.

6.2 CAUSALWORLD

CausalWorld (Ahmed et al., 2020) is a robotic manipula-
tion environment with a tri-finger robot, which can interact
with objects in an enclosed space by touch (see Figure 5b).
The environment also allows for interventions on various
environment parameters, including the colors or friction pa-
rameters of individual elements. We experiment on this en-
vironment by recording the robot’s interactions with a cube.
Besides the cube position, rotation and velocity, the causal
variables are the colors of the three fingertips, as well as
the floor, stage and cube friction, which we visualize by the
colors of the respective objects. All colors and friction pa-
rameters follow an additive Gaussian noise model. When a
robot finger touches the cube, we perform a stochastic per-
fect intervention on its color. Similarly, an interaction with
the friction parameters correspond to touching these objects
with all three fingers. The regime variable Rt is modeled by
the angles of the three motors per robot finger from the cur-
rent and previous time step, providing velocity information.

This environment provides two new challenges. Firstly, not
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Table 1: R2 scores (diag ↑ / sep ↓) for the identification of
the causal variables on CausalWorld and iTHOR.

Models CausalWorld iTHOR

iVAE (Khemakhem et al., 2020a) 0.28 / 0.00 0.48 / 0.35
LEAP (Yao et al., 2022b) 0.30 / 0.00 0.63 / 0.45
DMS (Lachapelle et al., 2022b) 0.32 / 0.00 0.61 / 0.40
BISCUIT-NF (Ours) 0.97 / 0.01 0.96 / 0.15

all interactions are necessarily binary. In particular, the col-
lisions between the robot and the cube have different effects
depending on the velocity and direction of the fingers of the
robot, which are not part of the state of the causal variables
at the previous time step. Additionally, the robotic system is
present in the observation/image, while our theoretical re-
sults assume that Rt is not a direct cause of Xt. We adapt
BISCUIT-NF and the baselines to this case by adding Rt as
additional information to the decoder, effectively removing
the need to model Rt in the latent space.

On this task, BISCUIT identifies the causal variables well,
as seen in Table 1. Because the cube position, velocity and
rotation share the same interactions, in the evaluation we
consider them as a multidimensional variable. Although
the true model cannot be fully described by binary interac-
tion variables, BISCUIT still models the binary information
of whether a collision happens or not for the cube, since
it is the most important part of the dynamics. We verify
this in Appendix C.2.3 by measuring the F1 score between
the predicted interaction variables and ground truth interac-
tions/collisions. BISCUIT achieves an F1 score of 50% for
all cube-arm interactions, which indicates a high similarity
between the learned interaction and the ground truth col-
lisions considering that collisions only happen in approxi-
mately 5% of the frames. The mismatches are mostly due to
the learned interactions being more conservative, i.e., being
1 already a frame too early sometimes. Meanwhile, none of
the baselines are able to reconstruct the image sufficiently,
missing the robotic arms and the cube as shown in Appendix
C.2.3. While this might improve with significant tuning ef-
fort, BISCUIT-NF is not sensitive to the difficulty of the re-
construction due to its separate autoencoder training stage.

6.3 ITHOR - EMBODIED AI

To illustrate the potential of causal representation learning
in embodied AI, we apply BISCUIT to the iTHOR environ-
ment (Kolve et al., 2017). In this environment, an embod-
ied AI agent can perform actions on various objects in an
3D indoor scene such as a kitchen. These agent-object in-
teractions can often be described by a binary variable, e.g.,
pickup/put down an object, open/close a door, turn on/off
an object, etc., which makes it an ideal setup for BISCUIT.

Our goal in this environment is to identify the causal vari-

Input Image Learned Interactions Combined Image

Figure 7: Visualizing the learned interaction variables of
BISCUIT for an example input image (left). We show the
locations, i.e., values of Rt ∈ [0, 1]2, for which each inter-
action variable is greater than zero/active as different colors.
For readability, only nine interaction variables are shown.
The right image is an overlay of both. BISCUIT accurately
learns the interactions and adapts them to the input image.

ables, i.e., the objects and their states, from sequences of in-
teractions. We perform this task on the kitchen environment
shown in Figure 5c. This environment contains two movable
objects, i.e., a plate and an egg, and seven static objects, e.g.,
a microwave and a stove. Overall, we have 18 causal vari-
ables, which include both continuous, e.g., the location of
the plate, and binary variables, e.g., whether the microwave
is on or off. Causal variables influence each other by state
changes, e.g., the egg gets cooked when it is in the pan and
the stove is turned on. Further, the set of possible actions
that can be performed depends on the previous time step,
e.g., only one object can be picked up at a time. For training,
we generate a dataset where we randomly pick a valid action
at each time step. We model the regime variableRt as a two-
dimensional pixel coordinate, which is the position of a pixel
showing the interacted object in the image (Rt ∈ [0, 1]2).
This simulates iTHOR’s web demo (Kolve et al., 2017),
where a user interacts with objects by clicking on them.

We train BISCUIT-NF and our baselines on this dataset,
and compare the latent representation to the ground truth
causal variables in terms of the R2 score in Table 1. Al-
though the baselines reconstruct the image mostly well, the
causal variables are highly entangled in their representa-
tions. In contrast, BISCUIT identifies and separates most of
the causal variables optimally, except for the two movable
objects (egg/plate). This is likely due to the high inherent
correlation of the two objects, since their positions cannot
overlap and only one of them can be picked up at a time.

Besides evaluating the causal representation, we also visual-
ize the learned interaction variables of BISCUIT in Figure 7.
Here, each color represents the region in which BISCUIT
identified an interaction with a different causal variable. Fig-
ure 7 shows that BISCUIT has identified the correct interac-
tion region for each object. Moreover, it allows for context-
dependent interactions, as the location of the plate influ-
ences the region of its corresponding interaction variable.

Finally, we can use the learned causal representation to per-
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Input Image 1 Input Image 2 Generated Output

Figure 8: Performing interventions in the latent space. First,
the two inputs images are encoded into latent space. Then,
we replace the latents of the front-left stove and microwave
in the first image by the corresponding latents of the second
image. Decoding these new latents creates an unseen sce-
nario where the egg is uncooked, but the stove is turned on.
This shows the modularity of BISCUIT’s representations.

form interventions and create novel combinations of causal
variables. For this, we encode two images into the learned
latent space of BISCUIT, and combine the latent representa-
tions of the causal variables to have a novel image decoded.
For example, in Figure 8, we replace the latents representing
the front-left stove and the microwave state in the first im-
age by the corresponding latents of the second image. BIS-
CUIT not only integrates these changes without influenc-
ing any of the other causal variables, but generates a com-
pletely novel state: even though in the iTHOR environment,
the egg is instantaneously cooked when the stove turns on,
BISCUIT correctly combines the state of the egg being raw
with the stove burning. This shows the capabilities of BIS-
CUIT to model unseen causal interventions.

7 CONCLUSION

We prove that under mild assumptions, causal variables
become identifiable from high-dimensional observations,
when their interactions with an external system can be de-
scribed by unknown binary variables. As a practical algo-
rithm, we propose BISCUIT, which learns the causal vari-
ables and their interaction variables. In experiments across
three robotic-inspired datasets, BISCUIT outperforms previ-
ous methods in identifying the causal variables from images.

While in experiments, BISCUIT shows strong identification
even for complex interactions, the presented theory is cur-
rently limited to binary interaction variables. Although the
first step may be to generalize the theory to interaction vari-
ables with more than two states, extensions to unknown do-
mains or sparse, continuous interaction variables are other
interesting future directions. Instead of assuming distinct in-
teraction patterns, future work can extend these results to
partial identifiability, similar to Lachapelle et al. (2022a);
Lippe et al. (2022a). Finally, our results open up the opportu-
nity for empirical studies showing the benefits of causal rep-
resentations for complex real-world tasks like embodied AI.
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