
Accelerating Voting by Quantum Computation
(Supplementary Material)

Ao Liu1 Qishen Han1 Lirong Xia1 Nengkun Yu2

1Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, USA
2Department of Computer Science, Stony Brook University, Stony Brook, NY, USA

The Appendix of UAI-23 Accepted Paper
Accelerating Voting by Quantum Computation

A IMPLEMENTATION OF QUANTUM
COUNTING ALGORITHM.

In this section, we aim to introduce the implementation of
the quantum part of Algorithm 1 from a more technical
perspective. We will first introduce the basics of quantum
computing. Then we will specify the implementation of
circuits of quantum counting in Algorithm 1, and why they
accelerate the voting process.

A.1 QUANTUM BASICS.

Basic quantum computation. Quantum bit (or qubit in
short) is the counterpart of classical bit, which takes a de-
terministic binary from {0, 1}. Qubit, on the other hand, is
represented by a linear combination of {|0⟩, |1⟩}, which are
counterparts to {0, 1}, respectively. That is, every qubit |ψ⟩
is written as

|ψ⟩ = α|0⟩+ β|1⟩,

where α and β are complex numbers and are usually called
amplitudes. If we measure the qubit, there is |α|2 probability
to get 0 and |β|2 probability to get 1. Naturally, we always
have |α|2 + |β|2 = 1 because the probabilities should sum
to 1. Qubits sometimes are written as vectors to simplify
notations. Formally,[

α
β

]
≜ α|0⟩+ β|1⟩.

t > 1 qubits are presented as a 2t-dimensional vector, where
the j-th component of the vector (denoted as αj) represents
the amplitude of |j1 · · · jt⟩ (or |j⟩), where j1 · · · jt is the
binary representation of j. Similar to the 1-qubit case, the
probability of observing j1, · · · , jt from those t qubit equals
to |αj |2.

A quantum operation (quantum gate) Q on t qubits is de-
noted by a 2t × 2t unitary matrix, which means the matrix’s
inverse is its Hermitian conjugate. Applying a quantum op-
eration Q on quantum state |ψ⟩ is denoted by

Q|ψ⟩ ≜ Q(2t×2t) ψ⃗(2t),

where the the quantum operator Q(2t×2t) is a 2t×2t unitary
matrix and the quantum state ψ⃗(2t) is a 2t dimensional
column vector.

Quantum circuit of some useful quantum operators.1
Quantum circuits run from the left-hand side to the right-
hand side. For example, the following circuit means apply-
ing Hadamard gate H on a quantum state |ψ⟩.

|ψ⟩ H where H =
1√
2

[
1 1
1 −1

]
.

The quantum circuit notion

|ψ⟩
0/1

b

denotes measuring quantum state |ψ⟩ with 0/1 base (b de-
notes the result of measurement). Naturally, the complexity
of quantum measurement and Hadamard gate are both Θ(1).

Quantum oracle [Berthiaume and Brassard, 1994, Van Dam,
1998, Kashefi et al., 2002] is a widely-used operator to en-
code binary functions or binary information. Given t qubits
and a binary function f : {0, · · · , 2t − 1} 7→ {0, 1}, quan-
tum oracle (based on function f(·)) applies a phase shift of
−1 = eπi if f(x) = 1 and does nothing otherwise. We can
query oracle many times and regard the number of queries
as the cost [Grover, 1996]. Formally,{

Of |x⟩ = |x⟩ if f(x) = 1
Of |x⟩ = −|x⟩ otherwise .

1All quantum circuits of this paper are drawn using the Quan-
tikz package [Kay, 2018] for LATEX.

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<aoliu.cs@gmail.com>?Subject=Your UAI 2023 paper

Suppose we have a quantum gate G on t qubits. The follow-
ing operation is called controlled-G.

G

=

[
I(2t×2t) 0(2t×2t)

0(2t×2t) G(2t×2t)

]
,

where I denotes the identity matrix, and 0 denotes the zeros
matrix. To simplify notations, we also write

Ga

=

. . .

. . .G G

(repeat a times).

A.2 IMPLEMENTATION OF QUANTUM
COUNTING CIRCUIT.

Figure 1 shows the quantum counting circuit, which is a
combination of Grover search algorithm [Grover, 1996] and
quantum reverse Fourier transformation (the QFT † opera-
tor) Followings we focus on introducing Grover algorithm
and why it accelerates the computation.

Grover operator. Grover algorithm is an efficient search
algorithm. Given a binary function f : {0, 1, · · · , 2t−1} →
{0, 1}, Grover algorithms returns an x with f(x) = 1 with
high probability. The Grover operation in Algorithm 1 is
constructed by the quantum circuit in Figure 2, where t =
⌈log n⌉ denotes the minimum number of quantum bits to
encode n. The quantum operator QPS is called quantum
phase shifting, which provides a phase shift of −1 on every
state except |0⟩. Mathematically,

|0⟩ QPS−→ |0⟩ and

|x⟩ QPS−→ −|x⟩ for any x ∈ 1, · · · , 2t − 1.

Here, |x⟩ represents the x-th base state of the t qubits. The
high-level idea of Grover operator’s functionality is shown
in Figure 3, where |ψ⟩ is the input of Grover operators in
quantum counting, and {|α⟩, |β⟩} is a pair of orthogonal
bases. The formal definition of |ψ⟩, |α⟩, and |β⟩ can be
found in Appendix A.3. Under the |α⟩ |β⟩ base, the quantum
oracle Ofj reflects |ψ⟩ over |α⟩, while the rest parts of G
reflectsOfj |ψ⟩ over |ψ⟩. The angle between the output state
G|ψ⟩ and initial state |ψ⟩

θ = 2arcsin
(√

histj · 2−t
)
,

which includes the information about histj . Since function
arcsin(

√
x) grows quadratically faster than linear functions

when x is small, we expect that an estimation about
arcsin(

√
x) could be quadratically more accurate than

directly estimate x.

A.3 FUNCTIONALITY FOR GROVER
ALGORITHM

According to (6.4) in Nielsen and Chuang [2010], Hadamard
gate changes t qubits of |0⟩ to an equal superposition state
(equal probability of observing any outcome under quantum
measurements).

|ψ⟩ = 1

2t/2
·
2t−1∑
x=0

|x⟩.

Letting f : {0, · · · , 2t−1} 7→ {0, 1} be the binary function
to construct the quantum oracle, and ◦

n1 be the number of x
such that f(x) = 1. The orthogonal bases |α⟩ and |β⟩ are
defined as,

|α⟩ ≜ 1√
2t − ◦

n1
·
∑

x:f(x)=0

|x⟩ and

|β⟩ ≜ 1√
◦
n1

·
∑

x:f(x)=1

|x⟩.

Under the |α⟩ |β⟩ base, the equal superposition state

|ψ⟩ =
√

2t − ◦
n1

2t
|α⟩+

√
◦
n1
2t

|β⟩.

Since
θ = 2arcsin

(√
◦
n1 · 2−t

)
,

we have

|ψ⟩ = cos

(
θ

2

)
|α⟩+ sin

(
θ

2

)
|β⟩,

Of |ψ⟩ = cos

(
θ

2

)
|α⟩+ sin

(
−θ
2

)
|β⟩, and

G|ψ⟩ = cos

(
3θ

2

)
|α⟩+ sin

(
3θ

2

)
|β⟩.

B MISSING PROOFS AND DISCUSSIONS

B.1 MISSING PROOF FOR LEMMA 3

Lemma 3. Given ε ∈ (0, 0.5], any fast (2-candidate) ma-
jority voting algorithm based on sampling with replace-

ment requires at least Ω
(

n2·(1
2−ε)

2

MoV2

)
runtime and at least

Ω

(
log
(n2·(1

2−ε)
2

MoV2

))
space to achieve Pr [correct] ≥ 1−ε.

Proof. For majority voting (when m = 2), the correspond-
ing profile with margin of victory MoV is nwin = (⌊n/2⌋+ MoV) votes for the winner

nlose = (⌈n/2⌉ − MoV) votes for the loser
. (1)

|0⟩ . . .
0/1

b1

|0⟩ . . .
0/1

b2

...
...

...
...

|0⟩ . . .
0/1

bs

|0⟩ . . .

...
...

. . .

|0⟩ . . .

Register 1
s qubits

H

QFT †
H

H

Register 2
t qubits

H

G20 G21 G2s−1 trash

H

Figure 1: The circuit for quantum counting algorithm.

...
...t qubits Ofj

H

QPS

H

H H

Figure 2: The circuit for Grover operator.

G| ۧ𝝍

| ۧ𝝍

Of | ۧ𝝍

| ۧ𝜷

| ۧ𝜶

𝜃

𝜃/2

𝜃/2

Figure 3: An illustration of Grover operator’s functionality
(Figure 6.3 in Nielsen and Chuang [2010]).

Figure 4 interprets the sampling (with replacement) pro-
cess as a communication problem. We (the receiver) get a
noisy data point about the winner from the sampling pro-
cess. According to the above profile, we get the correct
winner with nwin

n probability and get the incorrect winner
with nlose

n = 1− nwin
n probability. This sampling process is

equivalent to the noisy communication channel in Figure 4,
which gives the correct binary message with nwin

n probability.

𝑐1 wins 𝑐1 ≻ 𝑐2

𝑐2 wins 𝑐2 ≻ 𝑐1

𝑛win/𝑛

𝑛win/𝑛

𝑛lose/𝑛

𝑛lose/𝑛

Sender Communication Channel Receiver

Figure 4: The communication channel presentation of sam-
pling with replacement.

According to Equation (1.35) in MacKay [2003], the ca-
pacity of the above communication channel Cap = 1 −
H(nwin/n), where H : (0, 1) → (0, 1] denotes the binary
entropy function. Mathematically,

H(p) ≜ −p log(p)− (1− p) log(1− p).

Proposition 1 (H(p)’s Bounds, Theorem 1.2 in [Topsøe,
2001]). Given any p ∈ (0, 1),

4p(1− p) < H(p) <
(
4p(1− p)

)1/ ln 4
.

With the lower bound in Proposition 1, we know the com-
munication channel’s capacity

Cap = 1−H(nwin/n) ≤ 1−H(1/2 + MoV/n)
< 1− 4 · (1/2− MoV/n) · (1/2 + MoV/n)

= 4MoV2/n2.

The “≤” follows by the monotonicity of H(p). The next
proposition (the well-known Shannon’s theorem) connects
the channel capacity with the error probability of binary
information.

Proposition 2 ([Shannon, 1948]). Given a communication
channel with capacity Cap, reconstructing each single-bit
message with error probability ε ∈ (0, 0.5] requires receiv-
ing at least 1−H(ε)

Cap bits (in expectation) from the channel.

By Proposition 2 and the upper bound in Proposition 1,
the required number of bits from the channel (the required
number of samples)

T ≥ 1−H(ε)

Cap
>
n2 ·

(
1−

(
4ε(1− ε)

)1/ ln 4
)

4MoV2

= Ω

(
n2 ·

(
1
2 − ε

)2
MoV2

)
.

Lemma 3 follows by the observation that the time-
complexity and the space-complexity of getting T samples
are Ω(T) and Ω(log T) respectively.

B.2 COMPARE SAMPLING WITH AND WITHOUT
REPLACEMENT

Although Theorem 3 holds only for sampling with replace-
ment algorithms, we believe that when the algorithm only
uses the histogram of the sample votes to calculate the win-
ner, and the sampled size T is small compared to n, then
there is no major difference for sampling without replace-
ment algorithms, because two samplings will converge to
the same distribution when n goes to infinity.

Let hist be the histogram for a profile P , and histj is
the number of votes for j-th ranking in the profile. In
the sampling with replacement, the number of votes for
j-th ranking in the sample follows binomial distribution
B(T, histj/n). For the sample without replacement, the
number of votes for j-th ranking follows hypergeometric
distribution H(n,histj , T). (A hypergeometric distribution
H(n,histj , T) considers drawing T samples from n items,
among which exactly histj items have a specific feature, and
characterizes the probability that a certain number of fea-
tured items is sampled.) The following proposition tells us
that hypergeometric distribution H(n,histj , T) converges
to binomial distribution B(T, histj/n) when n→ ∞.

Theorem 1 (Corollary 4.1 in [Teerapabolarn and
Wongkasem, 2011].). Let X be a random variable that
follows hypergeometric distribution H(n,histj , T), and Y
be a random variable that follows binomial distribution
B(T, histj

n). For any t ∈ {0, · · · , T}, fixed p =
histj
n , and

T = o(
√
n), limn→∞ |P (X = t)− P (Y = t)| = 0.

Therefore, when n is large and sampling size T is small
compared to n, the sample histograms will be close to each
other between sampling with and without replacement.

C ADDITIONAL EXPERIMENTS

C.1 IMPLEMENTATION DETAILS

For the classical algorithm, we use MATLAB’s built-in func-
tion mnrnd to draw samples for ĥist (follows multi-nominal
distribution). For the quantum algorithm, we first calculate
the distribution of quantum counting according to (5.26) in
Nielsen and Chuang [2010] and then draw samples from the
calculated distribution. For all experiments of this paper, we
use 105 independent trails to estimate Pr [correct]. All ex-
periments of this paper are implemented through MATLAB
2022b and run on a Windows 11 desktop with AMD Ryzen
9 5900X CPU and 32GB RAM.

C.2 ADDITIONAL EXPERIMENTAL RESULTS

Plurality. For plurality, we use the following profile P ,
n+2(m!−1)MoV

m! votes for c1 ≻ · · · ≻ cm

n−2MoV
m! votes for each other type of votes

.

It’s easy to check that the margin of victory of the above pro-
file is MoV under plurality. Figure 6 plots the comparison
between quantum-accelerated voting and classical voting
for m = 4. Similar acceleration as m = 2 can be observed
for m = 4.

We also observe that that Pr[correct] may not monotoni-
cally increase with the increase of log2(K · 2s). e.g., for
Figure 5, K = 1, and MoV = 256, the Pr[correct] for
s = 15 is smaller than s = 14. The non-monotonicity is
not an uncommon phenomenon in quantum algorithms (e.g.,
Kerenidis et al., 2019, Chen et al., 2020, Bausch, 2020). This
phenomenon comes from the discrete manner of quantum
noises, which differs from the noise in classical sampling.
We also note that our theoretical analysis bounds the asymp-
totic manner of Pr[correct], instead of the monotonicity. To
be slightly more technical, this decrease comes from the
noise (i.e. tail probability) of the quantum counting, which
is different from the classical counting noise. The tail prob-
ability of quantum counting also depends on the relative
distance between the ground truth and its best s-bit esti-
mation. The closer it is, the smaller the tail probability is.

The relative distance may not monotonically decrease with
the increase of s. For example, assume the ground truth of
ϕ is 0.0001 (in binary decimal). If using 1-bit estimation,
the relative distance is (0.0001 − 0.0)/0.1 = 1/8. How-
ever, if using 3-bit estimation, the relative distance becomes
(0.0001 − 0.0)/0.001 = 1/2, which is much larger than
1/8.

Borda. For Borda, we let d = 4MoV
(m−2)!·m and set the profile

as 
n+(m−1)d

m!

votes for each type such that
c1 is top-ranked

n−d
m! votes for each other type of votes

.

It’s easy to check that the margin of victory of the above
profile is MoV under Borda. Figure 6 plots the comparison
between quantum-accelerated voting and classical voting
for m = 4. Similar behavior as plurality can be observed
for Borda.

Copeland. For Copeland, we set the profile as
n−2MoV

m! + 2MoV
(m−2)!

votes for each type in the
form of c1 ≻ c2 ≻ others

n−2MoV
m! votes for each other type of votes

. (2)

It’s easy to check that the margin of victory of the above pro-
file is MoV under Copeland. Figure 7 plot the comparison
between quantum-accelerated voting and classical fast vot-
ing form = 4. Similar behavior as plurality can be observed
for Copeland.

Single transferable vote (STV). For STV, the same profile
as Copeland (see Equation (2)) is used. It’s easy to check
that the margin of victory of the profile is MoV under STV.
Figure 8 plot the comparison between quantum-accelerated
voting and classical voting for m = 4. Similar behavior as
plurality can be observed for STV.

Additional notes. Since Copeland and STV shares the
same profile, Figure 7 and Figure 8 look similar. However,
they are not the same and some small differences can be
observed between the two figures. We also note that all four
voting rules (plurality, Borda, Copeland, and STV) reduce
to the majority voting when m = 2.

References

Johannes Bausch. Recurrent quantum neural networks. In
Proceedings of the 34th International Conference on Neu-
ral Information Processing Systems, pages 1368–1379,
2020.

André Berthiaume and Gilles Brassard. Oracle quantum
computing. Journal of modern optics, 41(12):2521–2535,
1994.

Yanhu Chen, Shijie Wei, Xiong Gao, Cen Wang, Yinan
Tang, Jian Wu, and Hongxiang Guo. A low failure rate
quantum algorithm for searching maximum or minimum.
Quantum Information Processing, 19(8), 2020.

Lov K Grover. A fast quantum mechanical algorithm for
database search. In Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing, pages
212–219, 1996.

Elham Kashefi, Adrian Kent, Vlatko Vedral, and Konrad
Banaszek. Comparison of quantum oracles. Physical
Review A, 65(5):050304, 2002.

Alastair Kay. Tutorial on the quantikz package, 2018.

Iordanis Kerenidis, Jonas Landman, Alessandro Luongo,
and Anupam Prakash. q-means: a quantum algorithm
for unsupervised machine learning. In Proceedings of
the 33rd International Conference on Neural Information
Processing Systems, pages 4134–4144, 2019.

David JC MacKay. Information theory, inference and learn-
ing algorithms. Cambridge university press, 2003.

Michael A. Nielsen and Isaac L. Chuang. Quantum Com-
putation and Quantum Information: 10th Anniversary
Edition. Cambridge University Press, 2010.

Claude E Shannon. A mathematical theory of communica-
tion. The Bell system technical journal, 27(3):379–423,
1948.

Kanint Teerapabolarn and Patcharee Wongkasem. On point-
wise binomial approximation by w-functions. Interna-
tional Journal of Pure and Applied Mathematics, 71:57–
66, 01 2011.

Flemming Topsøe. Bounds for entropy and divergence for
distributions over a two-element set. J. Ineq. Pure & Appl.
Math, 2(2):300, 2001.

Wim Van Dam. Quantum oracle interrogation: Getting all
information for almost half the price. In Proceedings 39th
Annual Symposium on Foundations of Computer Science
(Cat. No. 98CB36280), pages 362–367. IEEE, 1998.

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 256

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 512

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 1024

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 2048

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 4096

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 256

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 512

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 1024

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 2048

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 4096

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 256

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 512

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 1024

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 2048

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 4096

Figure 5: Compare quantum-accelerated voting (blue circles) with classical fast voting (red squares) for plurality when
m = 4. The horizontal axis can be seen as the logarithm of the algorithms’ runtime.

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 256

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 512

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 1024

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 2048

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 4096

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 256

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 512

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 1024

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 2048

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 4096

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 256

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 512

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 1024

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 2048

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 4096

Figure 6: Compare quantum-accelerated voting (blue circles) with classical fast voting (red squares) for Borda when m = 4.
The horizontal axis can be seen as the logarithm of the algorithms’ runtime.

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 256

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 512

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 1024

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 2048

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 4096

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 256

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 512

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 1024

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 2048

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 4096

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 256

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 512

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 1024

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 2048

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 4096

Figure 7: Compare quantum-accelerated voting (blue circles) with classical fast voting (red squares) for Copeland when
m = 4. The horizontal axis can be seen as the logarithm of the algorithms’ runtime.

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 256

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 512

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 1024

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 2048

4 6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 1, MOV = 4096

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 256

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 512

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 1024

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 2048

6 8 10 12 14 16

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 3, MOV = 4096

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 256

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 512

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 1024

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 2048

7 9 11 13 15 17

log
2
 (K 2 s)

0.4

0.6

0.8

1

Pr
[c

or
re

ct
]

K = 5, MOV = 4096

Figure 8: Compare quantum-accelerated voting (blue circles) with classical fast voting (red squares) for STV when m = 4.
The horizontal axis can be seen as the logarithm of the algorithms’ runtime.

	Implementation of Quantum Counting Algorithm.
	Quantum Basics.
	Implementation of Quantum Counting Circuit.
	Functionality for Grover algorithm

	Missing proofs and discussions
	Missing Proof for Lemma 3
	Compare sampling with and without replacement

	Additional Experiments
	Implementation Details
	Additional experimental results

