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Abstract

Studying the computational complexity and de-
signing fast algorithms for determining winners
under voting rules are classical and fundamental
questions in computational social choice. In this
paper, we accelerate voting by leveraging quantum
computation: we propose a quantum-accelerated
voting algorithm that can be applied to any anony-
mous voting rule. We show that our algorithm can
be quadratically faster than any classical algorithm
(based on sampling with replacement) under a wide
range of common voting rules, including positional
scoring rules, Copeland, and single transferable
voting (STV). Precisely, our quantum-accelerated
voting algorithm outputs the correct winner with
high probability in Θ

(
n

MoV

)
time, where n is the

number of votes and MoV is margin of victory, the
smallest number of voters to change the winner.
In contrast, any classical voting algorithm based
on sampling with replacement requires Ω

(
n2

MoV2

)
time under a large class of voting rules. Our theo-
retical results are supported by experiments under
plurality, Borda, Copeland, and STV.

1 INTRODUCTION

Driven by the critical public need of revolutionalizing mod-
ern democratic systems [Mancini, 2015, Brill, 2018], voting
has been widely applied in many collective decision-making
scenarios beyond political elections. Examples include
search engines [Dwork et al., 2001], crowdsourcing [Mao
et al., 2013], database management [Belardinelli and Grandi,
2019], and blockchain governance [Grossi, 2022], just to
name a few. In such large-scale, high-frequency collective
decision-making scenarios, it is desirable that the winner
is computed as soon as possible, ideally in sub-linear time
in the number of votes, and perhaps at a (small) cost of its

correctness. In fact, the study of computational complexity
and algorithmic aspects of voting rules has been a key topic
of computational social choice [Brandt et al., 2016].

One natural approach is to randomly sample a subset of
votes (with or without replacement) and compute the winner
of the sampled votes. The idea can be dated back to Venetian
elections in the 13th century [Walsh and Xia, 2012] and has
recently attracted much attention from the computational
social choice community [Bhattacharyya and Dey, 2021,
Flanigan et al., 2020, 2021]. However, the performance of a
sampling algorithm is restricted by the number of samples
needed to guarantee a certain level of correctness, which de-
termines its runtime. Specifically, the runtime of a sampling
algorithm would be quadratically related to the number of
votes (see Table 1). Is there a faster algorithm, for example,
sub-linear to the number of votes, that still preserves a high
probability of correctness?

Quantum computation appears to be a promising approach,
as it has successfully accelerated many computational tasks
such as search [Grover, 1996], optimization [Hogg and Port-
nov, 2000], and machine learning [Benedetti et al., 2016,
Ajagekar and You, 2020, 2021]. However, we are not aware
of previous work on accelerating voting using quantum com-
putation. Thus, the following problem remains open.

Can voting be accelerated by quantum computation?

We address this question with YES both theoretically and ex-
perimentally. We accelerate voting by designing a sub-linear
quantum-accelerated voting algorithm where a small prob-
ability of “errors” is allowed, which outperforms the clas-
sical sampling-based voting algorithms. Our contributions
are three-fold. First, we propose the quantum-accelerated
voting algorithm (Algorithm 1). Our algorithm leverages
the widely-used techniques of quantum counting [Brassard
et al., 1998] to generate the histogram of the votes. The sim-
ple architecture guarantees that our algorithm will be easy
to implement in the future. Second, we theoretically prove
that our algorithm is quadratically faster than any classical
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sampling-based algorithm for many common voting rules,
including positional scoring rule, STV, Copeland, and max-
imin (see Table 1). Third, we experimentally verify our theo-
retical results under the plurality, Borda, Copeland, and STV
(Section 6). In Section 7, we provide heuristics that may
further improve the performance of quantum-accelerated
voting.

Runtime Space Requirement
Quantum (Thm. 2) Θ

(
n

MoV

)
Θ
(
log( n

MoV )
)

Classical (Thm. 3) Ω
(

n2

MoV2

)
Ω
(

log( n2

MoV2 )
)

Table 1: Summary for the theoretical results, where n is
the number of votes, and MoV is the margin of victory. All
results in the table assume a constant error rate (e.g., 1%).

Our quantum-accelerated voting algorithm accelerates vot-
ing most significantly in the case where the margin of victory
is sub-linear in n, e.g., MoV = Θ(nc) with c ∈ (0, 1). In
this case, MoV is relatively small compared with n, and a
Θ( n

MoV ) acceleration from classical to quantum algorithm is
significant. The ratio n

MoV = Θ(n1−c) implies that the algo-
rithm is sub-linear. See Section 5 for detailed discussions.

Related works and discussions. To the best of our knowl-
edge, our work is the first to use quantum computation to
accelerate voting. Vaccaro et al. [2007]introduced the idea
of quantum computation to voting. The quantum voting
algorithm in Vaccaro et al. [2007] provides security guar-
antees (against colluding attacks [Lian and Zhang, 2009]).
Xue and Zhang [2017] improved the result in Vaccaro et al.
[2007] by proposing a simpler voting protocol but with
stronger security guarantees. Khabiboulline et al. [2021]
focuses on achieving anonymity without losing security
guarantees. However, all approaches above require Ω(n)
quantum communication cost and thus take Ω(n) time.

There is a large literature on efficient (classical) algorithms
for the winner determination problem. Wang et al. [2019]
purposed fast algorithms to compute winners in ranked pairs
and STV under parallel-universes tiebreaking [Conitzer
et al., 2009], which is known to be NP-complete. Vari-
ous papers have shown that the winner of Dodgson rule,
while is NP-hard to compute in the worst case [Bartholdi
et al., 1989], can be efficiently computed with high probabil-
ity when the ranking is generated i.i.d. [McCabe-Dansted
et al., 2008, Homan and Hemaspaandra, 2009] and under
semi-random models [Xia and Zheng, 2022]. This line of
work focuses on designing algorithms for NP-hard winner
determination problems, while our paper focuses on further
accelerating voting whose winner determination problem is
in P.

2 PRELIMINARIES

VOTING.
In voting, n > 1 voters cast their votes onm > 1 candidates.
The candidates are denoted as c1, · · · , cm. A vote represents
a voter’s preference towards the candidates, which is a full-
ranking (linear order) over candidates. Since there are m!
types of full rankings for m candidates, a vote can be repre-
sented as an m!-dimensional unit vector. That means if the
vote is the j-th type, the j-th dimension of the vector is 1,
and all other dimensions are 0’s. The vote of the i-th voter is
denoted as Vi = (Vi,1, · · · , Vi,m!). For example, if the i-th
vote is the j-th type, we have that Vi,j = 1 and Vi,j′ = 0
for all j′ 6= j. A profile P is a collection of n voters’ rank-
ings. A voting rule r is a mapping from the profile P to the
winner(s) among m candidates.

A histogram hist is an m! dimension vector that records the
number of each type of ranking in the profile. We use r(hist)
to denote the winner under an anonymous voting rule r and
a profile with histogram hist. In this paper, we assume that
the voting rule r satisfies anonymity and canceling out [Liu
et al., 2020]. An anonymous voting rule selects the winner
only based on the histogram of the profile and does not
depend on the identity of the voter. A voting rule satisfies
canceling out if the winner does not change after adding one
copy of each ranking to the profile. Most common voting
rules satisfy both anonymity and canceling-out, such as
plurality, Borda, Copeland, and STV.

Plurality. The candidate ranked top in the most number of
votes is chosen as the winner.

Borda. Firstly, the rule calculates the Borda score of each
candidate. A candidate ranked i-th in a vote gains a score of
(m−i) from that vote. For example, the Borda scores for the
vote [c1 � c2 � c3 � c4] are {c1 : 3, c2 : 2, c3 : 1, c4 : 0}.
The Borda score of a candidate is the sum of scores it gains
from each vote. Then, the candidate with the largest Borda
score is chosen as the winner.

Copeland. Copeland compares each pair of candidates,
where the winner gets 1 point, and the loser gets 0 point. If
two candidates are tied, both get 0.5 points. After finishing
all pairwise comparisons, the candidate receiving the most
points is chosen as the winner.

Single transferable vote (STV). STV is an (m− 1)-round
voting rule. In each round, the candidate receiving the least
number of top-ranked votes is eliminated. When all (m− 1)
rounds are finished, the remaining candidate is chosen as
the winner.

Margin of victory. Margin of victory (MoV) is the smallest
number k such that there exist a set of k voters who can
change the winner by voting differently.

QUANTUM COMPUTATION.
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Quantum counting algorithm1 [Brassard et al., 1998].
Quantum counting is one of the key parts of our proposed
quantum-accelerated voting algorithm. It counts the number
of solutions to a search problem. Given a binary function
f : {0, 1, · · · , 2t − 1} → {0, 1}, the quantum counting cir-
cuit for f computes the number of x ∈ {0, 1, · · · , 2t − 1}
such that f(x) = 1. A quantum counting circuit uses t
quantum bits to encode the function and s quantum bits
to calculate and record the output. More specifically, sup-
posing n1 is the number of x such that f(x) = 1. The
quantum counting circuit with t + s quantum bits out-
puts a binary decimal ϕ̂ = 0.b1b2 · · · bs, which estimates
ϕ = arcsin

(√
n1 · 2−t

)
/π. For example, binary decimal

0.011 represents (2−2 + 2−3) = 3/8. In the next lemma,
we present three useful properties of quantum counting.

Lemma 1 (Properties of quantum counting). The quantum
counting algorithm has the following three properties
1 (Tail bound, Inequality (5.34) in [Nielsen and Chuang,
2010]). For any δ > 2−s,

Pr[|ϕ̂− ϕ| ≥ 2−s + δ] ≤ 1

2(δ · 2s − 1)
.

2. Its runtime is Θ(2s).
3. Its space requirement is (t+ s) quantum bits (qubits).

The first property in Lemma 1 says that a larger s provides
a stronger theoretical guarantee on the accuracy of quantum
counting. However, a larger s also corresponds to longer
runtime. The detailed implementation of quantum counting
and the reasoning behind why it accelerates can be found in
Appendix A.

Applying quantum counting to voting. We apply the quan-
tum counting algorithm to estimate the histogram of a pro-
file. For any j ∈ {1, · · · ,m!}, we estimate the j-th type of
votes by setting the following binary function:

fj(x) =


1

if candidate x’s vote
is of the j-th type

0 otherwise

. (1)

The number of x’s with fj(x) = 1 is the number of votes of
j-th type, i.e., histj . The histogram of the votes is generated
by enumerating all the j’s. We assume that the information
in histj is stored in quantum RAM, which means the in-
formation can be efficiently encoded into quantum circuits
[Giovannetti et al., 2008a,b, Park et al., 2019].

3 QUANTUM-ACCELERATED VOTING
ALGORITHM

Formal definition of quantum-accelerated voting. We
formally define quantum-accelerated voting in Algorithm 1.

1This paper adopts the same notation system as Nielsen and
Chuang [2010], which is a textbook about quantum computation.

In classical voting, votes are usually sent to an “aggregator”,
who is responsible for aggregating the votes and announc-
ing the winner. Our quantum-accelerated voting follows a
similar procedure, where the “aggregator” uses an algorithm
accelerated by quantum computation. Basically, Algorithm 1
repeats the quantum counting algorithm by K rounds. In
each round, quantum counting estimates the histogram of the
profile hist and applies the voting rule to the estimated his-
togram ĥist to compute an estimated winner c(k) = r(ĥist).
Then, the classical plurality voting rule is used to aggregate
the estimated winners of K rounds, i.e. c(1), · · · , c(K). That
is: the “aggregator” announces the candidate who is the
estimated winner of the most rounds as the (final) winner.
A tie-breaking rule (e.g., random tie-breaking) is applied
when there are multiple candidates with the most rounds as
the estimated winner. In Section 4, we will show that Algo-
rthm 1 (a combination of quantum and classical algorithms)
has a better runtime than the quantum algorithm only.

Algorithm 1: Quantum-Accelerated Voting Algorithm
1: Inputs: n voters’ votes V0, · · · ,Vn−1, a voting rule r,

number of iteration K, and the number of qubits s ≥ 2
2: Initialization: Construct the binary functions
f1, f2, · · · , fm! based on V0, · · · ,Vn−1

3: for k ∈ {1, · · · ,K} do
4: Initialize an m!-dimensional vector ĥist
5: for j ∈ {1, · · · ,m!} do
6: Construct and apply quantum counting circuit for

fj with s qubits. Denote the output of the
quantum counting circuit as 0.b1 · · · bs.

7: Set the j-th component of ĥist as
2t · sin2 (π · 0.b1 · · · bs)

8: end for
9: Set c(k) = r(ĥist) as the winner of the k-th round

10: end for
11: Output the (classical) plurality winner of

c(1), · · · , c(K).

Construct binary functions. We construct a binary func-
tion fj to store the information about the j-th type of vote.
fj(x) = 1 if and only if the x-th voter casts the j-th type of
vote. Formally, fj : {0, 1, · · · , 2t − 1} → {0, 1} is defined
according to Equation (1), where t = dlog ne is the number
of bits to encode n, and the voters are numbered from 0 to
(n − 1). For x ∈ {n, · · · , 2t − 1}, we just set fj(x) = 0
for padding. Then, the number of x such that fj(x) = 1 is
exactly the number of votes of the j-th type, i.e. histj .

Count the histogram. For each type j, a quantum count-
ing circuit is constructed and used to estimate histj . The
output of the counting circuit is ϕ̂ = 0.b1b2 · · · bs, which es-
timates ϕ = arcsin

(√
histj · 2−t

)
/π. Therefore, ĥistj =

2t · sin2 (π · 0.b1 · · · bs) estimates histj . By enumerating all
types j, we get ĥist, which estimates the histogram hist.
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Decide the winner. The quantum counting procedure (and
the voting rule) runs for K rounds. Each round’s estimated
winner is computed according to the estimated histogram
ĥist. Finally, the quantum-accelerated voting algorithm out-
puts the candidate that wins in the most number of rounds.

4 THEORETICAL ANALYSIS OF
QUANTUM-ACCELERATED VOTING

In this section, we provide theoretical guarantees about Al-
gorithm 1’s Pr [correct] 2, runtime, and space requirements.
In our analysis, the number of candidates m is fixed. Fig-
ure 1 illustrates a roadmap of the results in this section.

Theorem 2: Main result 

(quantum + classical) 

Theorem 1: 𝐾 = 1 case 

(quantum only)

Lemma 2: Accuracy, runtime, and 

space requirement for different 𝑠

Proposition 1: The estimated 

histogram is similar to the real 

histogram with high probability.

Proposition 2: Histograms with small 

difference shares the same winner.

set 𝐾

set 𝑠

Lemma 1: Quantum counting

Figure 1: The logical chain of the theorems, lemmas, and
propositions about Algorithm 1. For example, the arrow
from Theorem 1 to Theorem 2 represents that Theorem 2 is
proved based on Theorem 1.

In Theorem 1, we show the theoretical guarantee of Algo-
rithm 1 when K = 1. Note that when K = 1, the outer for
loop in Algorithm 1 only runs for one round, which means
the classical plurality voting rule directly outputs c(1). In
other words, Algorithm 1 only contains quantum counting
(and the voting rule r) when K = 1. To simplify notations,
we define a function σ(·) as follows.

σ(ε) = 2 +

⌈
t+ log

(m!

2ε
+ 2

)
+ log

(
π · (m!)

)
− log(MoV)

⌉
= Θ

(
log

( n

ε · MoV
))
.

Throughout this paper, the logarithm function log(·) repre-
sents log2(·) and ln(·) represents loge(·).

Theorem 1 (Theoretical guarantee of Algorithm 1 when
K = 1). For any given ε ∈ (0, 1), Algorithm 1 with K = 1
and s = σ(ε) has the following three properties.
1. Its Pr [correct] ≥ 1− ε.
2. Its runtime is Θ

(
n

ε·MoV

)
.

3. Its space requirement is Θ
(
log( n

ε·MoV )
)
.

2Throughout this paper, we use Pr [correct] to represent the
probability (for an algorithm) to output the correct winner. For-
mally, Pr [correct] , Pr[the algorithm’s output = r(P )], where
P is the voting profile and r is the voting rule.

For readability, we will present the proof of Theorem 1 after
the proof of Theorem 2. In Theorem 2, we will present the
theoretical guarantee of Algorithm 1 when parameter K is
set properly. Under this setting, Algorithm 1 contains both
quantum and classical aggregation methods. Comparing
Theorem 1 with Theorem 2, we know the (classical) plurality
voting can reduce the (1/ε) term in runtime to log(1/ε).

Theorem 2 (Theoretical guarantee of Algorithm 1). For any
given ε ∈ (0, 1), Algorithm 1 with K = b24 ln(1/ε)c + 1
and s = σ(1/4) = Θ

(
log(n/MoV)

)
has the following

three properties.
1. Its Pr [correct] ≥ 1− ε.
2. Its runtime is Θ

(
n log(1/ε)

MoV

)
.

3. Its space requirement is Θ
(

log(n log(1/ε)
MoV )

)
.

Proof. Setting s = σ(1/4), we know that Algorithm 1 out-
puts the correct winner in each round with at least p = 3

4
probability according to Theorem 1. By Chernoff bound,

Pr [correct] ≥ Pr[r(P ) wins in more than K/2 rounds]

> 1− exp

(
−
(

1− 1

2p

)2
·K · p

2

)
.

Thus, Pr [correct] ≥ 1− ε holds when

K >
2p · ln(1/ε)

(p− 1/2)2
= 24 ln(1/ε).

Then, Theorem 2 follows by the monotonicity of Chernoff
bound towards K.

Now, we have presented the two main theorems about Algo-
rithm 1 and are ready to show the full proof of Theorem 1.

Proof of Theorem 1. Theorem 1 follows by setting s =
σ(ε) for the following lemma, which bounds Pr [correct],
runtime, and space complexity of quantum-accelerated vot-
ing for different settings on the numbers of qubits s.

Lemma 2. For any s ≥ 2, quantum-accelerated voting (Al-
gorithm 1) with K = 1 has the following three properties.
1. Its Pr [correct] ≥ 1 − m!

2(δ·2s−1) for any δ ∈
(2−s, MoV

2t+1π·(m!) − 2−s)

2. Its runtime is Θ(2s)
3. Its space requirement is Θ(log(n) + s).
Note that Property 1 holds only when the feasible region of
δ is non-empty, which sets a constraint for s.

Proof. Runtime and space requirement. The runtime and
the space requirement properties come from the correspond-
ing properties of quantum counting (see Lemma 1). As the
anonymous rule r computes the winner based on an m! di-
mension histogram, its runtime and space requirement will
only depend on the number of candidates m, which is Θ(1)
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in our analysis. Thus, when K = 1, Algorithm 2 has the
following two properties.

runtime = Θ(1)︸︷︷︸
the voting rule r

+ Θ(2s)︸ ︷︷ ︸
quantum counting

= Θ(2s).

space requirement = Θ(1)︸︷︷︸
the voting rule r

+ t+ s︸︷︷︸
quantum counting

= Θ(1) + blog(n)c+ s

= Θ(log(n) + s).

Pr[correct]. To simplify the notation, let histj be the his-
togram by adding (or removing) the same fraction of each
ranking to ĥist so that the sum of the histogram is n: for
all dimension j, histj = ĥistj + (||hist||1 − ||ĥist||1)/(m!)
(recall that ||hist||1 = n). By the assumption of canceling-
out (see the second paragraph in Section 2 for its definition),
we know that r(hist) = r(ĥist).

The proof of the Pr [correct] property is obtained by the
following two propositions. Proposition 1 guarantees that
the `1-norm between hist and hist is bounded by MoV with
at least 1− m!

2(δ·2s−1) probability. Proposition 2 guarantees
that any histogram in the neighborhood of hist with `1-
norm smaller than 2MoV shares the same winner with hist.
Therefore, with at least 1− m!

2(δ·2s−1) probability, hist (and

therefore ĥist) leads to the correct winner.

The next proposition shows that histj is close to histj with
high probability.

Proposition 1. For all δ ∈ (2−s, MoV
2t+1π·(m!) − 2−s), the

probability that
∣∣∣∣hist− hist

∣∣∣∣
1
< MoV is at least 1 −

m!
2(δ·2s−1) .

Proof. This proof fixes an arbitrary pair of s and δ satisfying
the condition. We prove a stronger result that the probability
that for all dimension j, |histj − histj | < MoV

m! is at least
1− m!

2(δ·2s−1) . When the stronger result holds,

∣∣∣∣hist− hist
∣∣∣∣
1
≤

m!∑
j=1

|histj − histj | < m! · MoV
m!

= MoV.

Therefore, the probability that for all dimension j, |histj −
histj | < MoV

m! is at least 1− m!
2(δ·2s−1) directly implies that

the probability that
∣∣∣∣hist− hist

∣∣∣∣
1
< MoV is at least 1−

m!
2(δ·2s−1) .

By applying the union bound on Lemma 1 for all dimensions
j, we know that for all dimension j, the probability that
|ϕ̂j − ϕj | < 2−s + δ is at least 1 − m!

2(δ·2s−1) . Then we
show that |ϕ̂j − ϕj | < 2−s + δ for all dimension j implies
|histj − histj | < MoV

m! for all j.

Suppose |ϕ̂j − ϕj | < 2−s + δ holds for all dimension
j. Let h(x) = 2t sin2(πx). We have h(ϕ̂j) = ĥistj and
h(ϕj) = histj . Note that dh(x)

dx = 2tπ sin(2πx) ≤ 2tπ
holds for arbitrary x. Therefore,

|ĥistj − histj | ≤ 2tπ|ϕ̂j − ϕj | < 2tπ · (δ + 2−s).

Let d = 2tπ · (δ + 2−s). By summing over all dimensions
j, we have∣∣∣||ĥist||1 − ||hist||1

∣∣∣ ≤ m!∑
j=1

|ĥistj − histj | < (m!)d.

Given the bound of difference between ĥist and hist, we
show that since hist is the modified ĥist, the difference
between hist and hist is also bounded. Now we consider the
difference between histj and histj for any dimension j.

For the upper bound, we have ĥistj < histj + d and
(||hist||1 − ||ĥist||1) < (m!)d. Therefore,

histj = ĥistj + (||hist||1 − ||ĥist||1)/(m!)

< histj + 2d.

Similarly, for the lower bound, we have ĥistj > histj − d.
Therefore, histj > histj − 2d.

Therefore, for all dimension j, |histj − histj | < 2d. The
condition that δ < MoV

2t+1π·(m!) − 2−s guarantees that 2d =

2t+1π · (δ + 2−s) < MoV
m! . Therefore, for all dimension j,

|histj − histj | < MoV
m! , which finishes our proof.

Proposition 2. For any histogram hist such that ||hist||1 =∣∣∣∣hist
∣∣∣∣
1

and
∣∣∣∣hist− hist

∣∣∣∣
1
< 2MoV, r(hist) = r(hist).

Proof. We consider the voting rule r that allows voters to
vote fractionally. That is, each voter has a total weight of
1 and can assign the weight arbitrarily to every ranking.
Accordingly, MoV is the smallest amount of weight of votes
to change the winner.

Suppose the statement is not true, and there exists a hist
such that

∣∣∣∣hist− hist
∣∣∣∣
1
< 2MoV and r(hist) 6= r(hist).

Let J1 be the set of dimension j such that histj > histj , and
J2 be the set of j such that histj < histj . Since ||hist||1 =∣∣∣∣hist

∣∣∣∣
1

= n, there exists a way of transforming hist to hist
by accumulating all the excess weights of the dimensions in
J1 and assigning it to the dimensions in J2. The changes in
the weight∑

j∈J1

|histj − histj | =
∑
j∈J2

|histj − histj | ≥ MoV

by the definition of MoV. However, this contradicts the
assumption that∣∣∣∣hist− hist

∣∣∣∣
1

=
∑

j∈(J1∪J2)

|histj − histj | < 2MoV.
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Therefore, for any histogram hist such that∣∣∣∣hist− hist
∣∣∣∣
1
< 2MoV, r(hist) = r(hist).

Then, the Pr [correct] property of Lemma 2 follows by com-
bining Proposition 1 and Proposition 2.

According to Lemma 2, Algorithm 1’s Pr [correct] ≥ 1 −
m!

2(δ·2s−1) . In order to achieve Pr [correct] of 1−ε, constraint
δ ≥ 2−s(m!

2ε + 1) needs to be satisfied. Combining the
constraint and the feasible region in Lemma 2, we know that
δ ∈

[
2−s(m!

2ε + 1), MoV
2t+1π·(m!) − 2−s

)
, which must not be

empty, i.e.

2−s
(
m!

2ε
+ 1

)
<

MoV
2t+1π · (m!)

− 2−s. (2)

It’s not hard to verify that s = σ(ε) satisfies the constraint
in (2). Then, Theorem 2 follows by setting δ = 2−s(m!

2ε +1)
and s = σ(ε) for Lemma 2.

5 COMPARE QUANTUM AND
CLASSICAL VOTING

This section compares quantum-accelerated voting with (the
best performance of) classical voting algorithms. The classi-
cal algorithm is designed according to the idea of sampling
(either with or without replacement). At the high level, it
uses the randomly sampled votes to estimate the winner. We
analyze the runtime and space requirements for classical
sampling algorithms and compare them with those of our
quantum-accelerated voting algorithm.

When does quantum (may) accelerate voting? Firstly, we
provide an intuitive explanation of when quantum would
accelerate voting the most. We first think about the cases
where classical algorithms (e.g., randomly sampling a subset
of votes and using the subset to predict the winner) do not
need to be improved or cannot be improved. When the
margin of victory MoV = Θ(n), classical algorithms are
already very fast according to the Chernoff bound, which
says the classical algorithms’ error rate can be exponentially
small in terms of runtime [Bhattacharyya and Dey, 2021].
Another case is when MoV is very small (e.g., MoV =
Θ(1)) where classical algorithms’ performance is close to
the optimal. In this case, any algorithm has to look into each
vote to decide the winner. Since the complexity of counting
every vote is Θ(n), there is not a lot of space for the classical
algorithms to be improved.

Between these two extremes is the case where quantum
accelerates voting most significantly, for example, when
the margin of victory MoV = Θ(nc), where c ∈ (0, 1) is
a constant. In this case, the classical voting would be as
slow as Ω( n2

MoV2 ) for a fixed error rate ε. On the other hand,
the runtime of the quantum-accelerated voting, Θ( n

MoV ), is

quadratically faster. This comparison is also shown in our
experiment of m = 2 and MoV = 1024 for plurality (the
middle column in Figure 2), where the number of voters
n ≈ 106 and MoV =

√
n, i.e. the winner gets ∼0.2% more

votes than the loser.

Theorem 3 establishes a theoretical “complexity lower
bound” of any classical voting algorithms (based on sam-
pling with replacement) for many common voting rules.
Consequently, sampling-based algorithm with replacement
is at least quadratically slower than quantum-accelerated
voting. Here, an algorithm being “ sampling-based” means
the sampling method is the only method for the algorithm
to get information about the voting profile P . We say one
voting rule reduces to majority voting for two candidates
if the voting rule always has the same winner as majority
(using whatever tie-breaking method) when m = 2. Most
commonly used voting rules reduce to majority for two can-
didates (e.g., any positional scoring rules, STV, Copeland,
and maximin, just to name a few).

Theorem 3. Given any fixed m ≥ 2, for any ε ∈ (0, 0.5],
any fast voting algorithm based on sampling with replace-
ment for the voting rule such that reduces to majority vot-

ing for two candidates requires at least Ω

(
n2·( 1

2−ε)
2

MoV2

)
(expected) runtime and at least Ω

(
log
(n2·( 1

2−ε)
2

MoV2

))
(ex-

pected) space to achieve Pr [correct] ≥ 1− ε in the worst
case.

When ε is a constant, the bound in Theorem 3 becomes
Ω
(

n2

MoV2

)
, which is tight according to Bhattacharyya and

Dey [2021]. We note Theorem 3 is more general than the
bounds in Bar-Yossef et al. [2001] (require a lower bound
for ε) and Canetti et al. [1995] (only holds for small-scale
samplings).

Appendix B.2 shows that sampling without replacement has
the same asymptotic manner as sampling with replacement
when the number of samples T = o(

√
n), which is the

setting of fast majority voting in many application scenarios.

Proof of Theorem 3. Step 1. A lower bound of runtime and
space requirement for any fast majority voting algorithm for
two candidates (Lemma 3).

Lemma 3. For any ε ∈ (0, 0.5], any fast (2-candidate) ma-
jority voting algorithm based on sampling with replacement

requires at least Ω

(
n2·( 1

2−ε)
2

MoV2

)
(expected) runtime and

at least Ω

(
log
(n2·( 1

2−ε)
2

MoV2

))
(expected) space to achieve

Pr [correct] ≥ 1− ε.

The proof of Lemma 3 can be found in Appendix B.1. Note
that the ε part of the bound in Lemma 3 is not tight when ε
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is close to 0. This is because our bound is given by the infor-
mation limit, which cannot be reached when reconstructing
a limited number of bits. In particular, our problem only
reconstructs 1-bit information (which candidate wins out of
the two candidates).

Step 2. The lower bound for the fast voting algorithm for
m > 2 candidates cannot be smaller than the lower bound
for the two-candidate case.

Suppose Theorem 3 is not true, and there exists a fast vot-
ing algorithm A for voting rule r such that for any pro-

file P , A has a runtime of o
(
n2·( 1

2−ε)
2

MoV2

)
and achieves

Pr[A(P ) is correct] ≥ 1− ε (the reasoning for space com-
plexity will be similar). And suppose A takes a profile P of
m candidates a, b, c3, · · · , cm as the input and sample votes
from P with replacement. We show that there exists a fast
algorithm for majority voting A′ with the same runtime and
accuracy. Let P ′ be a voting profile for two candidates a
and b, and let na and nb be the number of votes for a and
for b respectively. We construct algorithm A′ as follows:

A′ is almost the same as A except for the different input
and sampling. A′ takes a profile P ′ of two candidates a and
b as the input. Whenever there needs a sample, A samples
a vote from P ′. If the voter votes for a, then A′ convert
it to a � b � c3 � · · · � cm; and if it votes for b, then
A′ convert it to b � a � c3 � · · · � cm. If the winner
calculated is neither a nor b, A′ will set a to the winner.
Except for the sampling,A′ running on P ′ is equivalent toA
running on the following profile P and set the same winner
as A does: there are na votes of a � b � c3 � · · · � cm
and nb votes of b � a � c3 � · · · � cm.

If a is the winner in P ′, then na ≥ nb, and the margin
of victory for the majority vote is MoV′ = 1

2 (na − nb).
Then it is not hard to verify that when r is one of the rules
mentioned in the statement, a is also the winner inP , and the
margin of victory in P is MoV = MoV′. Therefore, A set
the winner asA with probability at least 1−ε under runtime

o

(
n2·( 1

2−ε)
2

MoV2

)
. Then A′, with the same operation to A,

will also set the winner as A with probability at least 1− ε
under the same runtime. Similarly, if b is the winner, A′ can
output the correct winner with probability at least 1−ε under
the same runtime. Therefore, A′ is a fast majority voting
algorithm based on sampling with a replacement that can

achieve Pr[correct] ≥ 1− ε under runtime o
(
n2·( 1

2−ε)
2

MoV2

)
,

which contradicts with Lemma 3.

6 EXPERIMENTAL RESULTS

Basic settings. We numerically compare the proposed
quantum-accelerated voting (Algorithm 1) with a fast clas-

sical voting based on sampling with replacement (Algo-
rithm 2). We set the number of samples T in Algorithm 2 to
be K · 2s, where s and K are the parameters of Algorithm 1.
By doing this, the runtime of both algorithms is Θ(K · 2s).
We set the number of voters n = 220 ≈ 106, which is at
a similar order of magnitude as the number of voters in a
typical state of the United States. For example, the num-
ber of registered voters in New Hampshire is 1,009,004 ≈
106 [Independent Voter Project, 2020]. We compare Algo-
rithm 1 and Algorithm 2 on four widely-used voting rules,
which are two scoring rules (plurality and Borda), a pair-
wise rule (Copeland), and an elimination-based rule (STV).
The formal definitions of the four rules can be found in
Section 2. Note that all four rules are covered by Theorem 3.
The implementation details can be found in Appendix C.1.

Algorithm 2: Fast Classical Voting Algorithm
1: Inputs: n voters’ votes V0, · · · ,Vn−1, a voting rule r,

number of samples T
2: Sample T votes uniformly at random with replacement
3: Build the histogram ĥist of the sampled votes.
4: Output r(ĥist) as the winner.

Detailed settings. We use random tie-breaking to break
ties for all voting rules above. For example, if c1 and c2
are tied, each of them will win with 1/2 probability. We
set the number of candidates m ∈ {2, 4} for all rules. In
all experiments of this paper, we estimate the probabil-
ity of outputting the correct winner (Pr[correct]) by the
frequency of observing the correct winner in 105 inde-
pendent trails. We set K ∈ {1, 3, 5} to avoid ties in the
classical part of quantum-accelerated voting algorithm. We
set MoV ∈ {256, 512, 1024, 2048, 4096}, or equivalently,
MoV ∈ {n0.4, n0.45, n0.5, n0.55, n0.6}. Since all four rules
reduce to the majority rule when there are only two can-
didates, we consider the following profile as for m = 2.{

(n/2 + MoV) votes for c1 � c2
(n/2−MoV) votes for c2 � c1

.

It’s easy to check that its margin of victory is MoV under all
four rules above. Figure 2 compares quantum-accelerated
voting with a classical fast voting algorithm (Algorithm 2).
The horizontal axis of Figure 2, log2(K · 2s), can be seen
as the logarithm of the algorithms’ runtime. For all curves,
we set s = 4, 5, · · · , 16 for the twelve points from left to
right, respectively. The detailed settings and experimental
results of m = 4 are shown in Appendix C.2.

Observations. First, with the same order of runtime,
the quantum-accelerated voting algorithm has better
Pr [correct] than classical fast voting no matter under which
setting. For example, in Figure 2, MoV = 1024, K = 1,
and s = 14, the quantum-accelerated voting algorithm out-
puts the correct winner almost for certain. However, the
classical algorithm only has∼60% probability of outputting
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Figure 2: Compare quantum-accelerated voting (blue circles) with classical fast voting (red squares) for plurality, Borda,
Copeland, and STV when m = 2. The horizontal axis can be seen as the logarithm of the algorithms’ runtime.

the correct winner. Second, quantum-accelerated voting re-
quires much less runtime to achieve the same Pr [correct].
For example, in Figure 2, MoV = 1024, and K = 1, to
achieve ∼90% Pr[correct], the quantum algorithm requires
210 runtime. In comparison, the classical algorithm with 216

runtime can only achieve ∼70% Pr[correct]. Both observa-
tions match our theoretical result: the proposed algorithm is
quadratically faster than any classical algorithm.

7 FURTHER ACCELERATING
QUANTUM VOTING

Can quantum-accelerated voting algorithm be further accel-
erated? This section discusses some heuristics.

Pre-sampling. One way to improve the average perfor-
mance of the quantum-accelerated voting algorithm is to
pre-sample a small subset of the votes. For example, in the
majority vote for binary candidates, if the pre-sample votes
indicate an almost irreversible win of a candidate, then we
directly announce the winner and skip the quantum com-
puting. By carefully setting the pre-sampling size and the
skipping thresholds, we may improve the average run-time
while keeping high Pr [correct].

Sampling + quantum. Another natural idea is to apply the
quantum-accelerated voting algorithm on a sampled subset
of the votes. Sampling decreases the number of votes, so the
quantum circuit consumes fewer bits and operators, which

reduces the time and space cost. However, such improve-
ment sacrifices Pr [correct], as both sampling and quantum
computing has a probability to make a mistake. It is still
unclear if such a sampling-quantum algorithm would be
faster to achieve the same level of Pr [correct].

8 CONCLUSIONS AND FUTURE WORKS

In this paper, we took the first step in using quantum
computation to accelerate voting. Our proposed quantum-
accelerated voting algorithm can quadratically accelerate
various widely-used voting rules and may potentially im-
prove the efficiency of voting in large-scale and/or high-
frequency decision-making scenarios.

An extension of this paper is to further accelerate the pro-
posed algorithm by combining existing acceleration tech-
niques in classical fast voting algorithms. Since voting is
widely used in artificial intelligence, it would also be in-
teresting to apply the proposed methods to accelerate the
algorithms in other fields (e.g., search engine, crowdsourc-
ing, database management, and blockchain governance).

As real quantum computers may come across quantum er-
rors caused by quantum interference and environmental
effects, another interesting extension is to test the robust-
ness of the proposed algorithm. For example, testing its
performance on real quantum computers and/or running
experiments with quantum errors taken into account.
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