Residual-Based Error Bound for Physics-Informed Neural Networks (Supplementary Material)

Shuheng Liu
Xiyue Huang ${ }^{2}$
Pavlos Protopapas ${ }^{3}$
${ }^{1,3}$ Institute for Applied Computational Science, Harvard University, Cambridge, Massachusetts, USA
${ }^{2}$ Data Science Institute, Columbia University, New York, New York, USA

A PROOF OF PROPOSITIONS IN SECTION 5.1.1

In this part, we first discuss the properties of the operator \mathcal{I}_{λ}, which is defined in the main paper. We then use these properties to prove relevant statements regarding Alg. 1 and Alg. 2 in Section 5.1 .1 of the main paper.

A. 1 PROPERTIES OF INVERSE OPERATOR $\mathcal{I}_{\lambda}=\mathcal{L}_{\lambda}^{-1}$

Let $\mathcal{L}_{\lambda}(\lambda \in \mathbb{C})$ be the differential operator $\mathcal{L}_{\lambda} \phi:=\frac{\mathrm{d} \phi}{\mathrm{d} t}-\lambda \phi$. The inverse of $\mathcal{L}_{\lambda} \phi=\psi$ is given by $\phi=\mathcal{I}_{\lambda} \psi$ if $\phi(0)=0$, where

$$
\begin{equation*}
\mathcal{I}_{\lambda} \psi(t):=e^{\lambda t} \int_{0}^{t} e^{-\lambda \tau} \psi(\tau) \mathrm{d} \tau \tag{1}
\end{equation*}
$$

In addition to $\mathcal{I}_{\lambda}=\mathcal{L}_{\lambda}^{-1}$, there are a few properties of operator \mathcal{I}_{λ} that we are interested in

1. Linearity: $\mathcal{I}_{\lambda}\left(c_{1} \psi_{1}+c_{2} \psi_{2}\right)=c_{1} \mathcal{I} \psi_{1}+c_{2} \mathcal{I} \psi_{2}$ for all functions ψ_{1}, ψ_{2} and constants $c_{1}, c_{2} \in \mathbb{C}$
2. Monotonicity: For $\lambda \in \mathbb{R}$, there is $\left(\forall t \in I, \psi_{1}(t) \leq \psi_{2}(t)\right) \Longrightarrow\left(\forall t \in I, \mathcal{L}_{\lambda} \psi_{1}(t) \leq \mathcal{L}_{\lambda} \psi_{2}(t)\right)$,
3. Commutativity: $\mathcal{I}_{\lambda_{1}} \circ \mathcal{I}_{\lambda_{2}}=\mathcal{I}_{\lambda_{2}} \circ \mathcal{I}_{\lambda_{1}}$ for all $\lambda_{1}, \lambda_{2} \in \mathbb{C}$. This can be shown because $\mathcal{L}_{\lambda_{1}} \circ \mathcal{L}_{\lambda_{2}}=\mathcal{L}_{\lambda_{2}} \circ \mathcal{L}_{\lambda_{1}}$. Therefore, the inverse operators $\mathcal{I}_{\lambda_{2}} \circ \mathcal{I}_{\lambda_{1}} \mathcal{I}_{\lambda_{1}} \circ \mathcal{I}_{\lambda_{2}}$ must also be equal.
4. Absolute Inequality: $\left|\mathcal{I}_{\lambda} \psi(t)\right| \leq \mathcal{I}_{\mathcal{R} e(\lambda)}|\psi(t)|$, which we prove in the next subsection.

A. 2 PROOF OF OPERATOR INEQUALITY $\left|\mathcal{I}_{\lambda} \psi\right| \leq \mathcal{I}_{\mathcal{R} e(\lambda)}|\psi|$

Proposition For any $\lambda \in \mathbb{C}$ and scalar function $\psi: \mathbb{R}^{+} \rightarrow \mathbb{C}$, there is

$$
\begin{equation*}
\left|\mathcal{I}_{\lambda} \psi(t)\right| \leq \mathcal{I}_{\mathcal{R} e(\lambda)}|\psi(t)| . \tag{2}
\end{equation*}
$$

Proof Let $\phi=\mathcal{I}_{\lambda} \psi$. Since $\mathcal{L}=\mathcal{I}^{-1}$, the problem is equivalent to proving $|\phi| \leq \mathcal{I}_{\mathcal{R} e(\lambda)}|\psi|$, where

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \phi-\lambda \phi=\psi \tag{3}
\end{equation*}
$$

To see this, we multiply both sides with an integrating factor $e^{-\lambda t}$ and integrate from 0 to t,

$$
\begin{gather*}
\int_{0}^{t} e^{-\lambda \tau}\left(\frac{\mathrm{d}}{\mathrm{~d} \tau} \phi(\tau)-\lambda \phi(\tau)\right) \mathrm{d} \tau=\int_{0}^{t} e^{-\lambda \tau} \psi(\tau) \mathrm{d} \tau \tag{4}\\
e^{-\lambda t} \phi(t)-\phi(0)=\int_{0}^{t} e^{-\lambda \tau} \psi(\tau) \mathrm{d} \tau \tag{5}
\end{gather*}
$$

Since $\phi=\mathcal{I}_{\lambda} \psi$, there is $\phi(0)=0$. Hence we have

$$
\begin{align*}
\phi(t) & =e^{\lambda t} \int_{0}^{t} e^{-\lambda \tau} \psi(\tau) \mathrm{d} \tau \tag{6}\\
|\phi(t)| & =\left|e^{\lambda t} \int_{0}^{t} e^{-\lambda \tau} \psi(\tau) \mathrm{d} \tau\right| \tag{7}
\end{align*}
$$

For $\lambda \in \mathbb{C}$, there is $\left|e^{ \pm \lambda t}\right|=e^{ \pm \mathcal{R} e(\lambda) t}$, where $\mathcal{R} e(\lambda)$ is the real part of λ. Hence,

$$
\begin{align*}
|\phi(t)| & =e^{\mathcal{R} e(\lambda) t}\left|\int_{0}^{t} e^{-\lambda \tau} \psi(\tau) \mathrm{d} \tau\right| \tag{9}\\
& \leq e^{\mathcal{R} e(\lambda) t} \int_{0}^{t}\left|e^{-\lambda \tau} \psi(\tau)\right| \mathrm{d} \tau \tag{10}\\
& =e^{\mathcal{R} e(\lambda) t} \int_{0}^{t} e^{-\mathcal{R} e(\lambda) \tau}|\psi(\tau)| \mathrm{d} \tau=: \mathcal{I}_{\mathcal{R} e(\lambda)}|\psi(t)| \tag{11}
\end{align*}
$$

A. 3 PROOF OF TIGHT AND LOOSE BOUNDS

This section proves inequality 11 in the main paper, namely,

$$
\begin{equation*}
|\eta(t)| \leq \mathcal{B}_{\text {tight }}(t):=\left(\mathcal{I}_{\mathcal{R} e\left(\lambda_{1}\right)} \circ \cdots \circ \mathcal{I}_{\mathcal{R} e\left(\lambda_{n}\right)}\right) r(t) \tag{12}
\end{equation*}
$$

and, if $\mathcal{R} e\left(\lambda_{j}\right) \leq 0$ for all λ_{j},

$$
\begin{equation*}
\mathcal{B}_{\text {tight }}(t) \leq \mathcal{B}_{\text {loose }}(t):=\frac{1}{Z!} \prod_{\substack{j=1 \\ \mathcal{R e}\left(\lambda_{j}\right) \neq 0}}^{n} \frac{1}{\mathcal{R} e\left(-\lambda_{j}\right)} \max _{\tau \in I}|r(\tau)| t^{Z} \tag{13}
\end{equation*}
$$

where Z is the number λ_{j} whose real part is 0 .
Proof For any linear differential operator $\mathcal{L}=\frac{\mathrm{d}^{n}}{\mathrm{~d} t^{n}}+a_{n-1} \frac{\mathrm{~d}^{n-1}}{\mathrm{~d} t^{n-1}}+\cdots+a_{0}$ whose coefficients $\left\{a_{j}\right\}_{j=0}^{n-1}$ satisfy

$$
\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{0}=\prod_{j=1}^{n}\left(\lambda-\lambda_{j}\right)
$$

it can be verified that $\mathcal{L}=\mathcal{L}_{\lambda_{1}} \circ \cdots \circ \mathcal{L}_{\lambda_{n}}$, where $\mathcal{L}_{\lambda_{j}} \phi:=\frac{\mathrm{d} \phi}{\mathrm{d} t}-\lambda_{j} \phi$ as defined in appendix A.1 Then by the proposition in appendix A. 1 the inverse operator is given by

$$
\begin{equation*}
\mathcal{L}^{-1}=\left(\mathcal{L}_{\lambda_{1}} \circ \cdots \circ \mathcal{L}_{\lambda_{n}}\right)^{-1}=\mathcal{L}_{\lambda_{n}}^{-1} \circ \cdots \circ \mathcal{L}_{\lambda_{1}}^{-1}=\mathcal{I}_{\lambda_{n}} \circ \cdots \circ \mathcal{I}_{\lambda_{1}} \tag{14}
\end{equation*}
$$

Through repeated application of Inequality 2, we can prove Eq. 12

$$
\begin{align*}
|\eta(t)| & =\left|\mathcal{L}^{-1} r(t)\right| \tag{15}\\
& =\left|\left(\mathcal{I}_{\lambda_{n}} \circ \cdots \circ \mathcal{I}_{\lambda_{1}}\right) r(t)\right| \tag{16}\\
& =\left|\mathcal{I}_{\lambda_{n}}\left(\mathcal{I}_{\lambda_{n-1}} \circ \cdots \circ \mathcal{I}_{\lambda_{1}}\right) r(t)\right| \tag{17}\\
& \leq \mathcal{I}_{\mathcal{R} e\left(\lambda_{n}\right)}\left|\left(\mathcal{I}_{\lambda_{n-1}} \circ \cdots \circ \mathcal{I}_{\lambda_{1}}\right) r(t)\right| \tag{18}\\
& \leq\left(\mathcal{I}_{\mathcal{R} e\left(\lambda_{n}\right)} \circ \mathcal{I}_{\mathcal{R} e\left(\lambda_{n-1}\right)}\right)\left|\left(\mathcal{I}_{\lambda_{n-2}} \circ \cdots \circ \mathcal{I}_{\lambda_{1}}\right) r(t)\right| \tag{19}\\
& \leq \cdots \\
& \leq\left(\mathcal{I}_{\mathcal{R} e\left(\lambda_{n}\right)} \circ \cdots \circ \mathcal{I}_{\mathcal{R} e\left(\lambda_{1}\right)}\right)|r(t)|=: \mathcal{B}_{\text {tight }}(t) . \tag{20}
\end{align*}
$$

In order to prove Eq. 13 , consider the cases of $\mathcal{R} e(\lambda)<0$ and $\mathcal{R} e(\lambda)=0$ separately.

- If $\mathcal{R} e(\lambda)<0$, for any constant $c \in \mathbb{R}^{+}$, there is

$$
\begin{equation*}
\mathcal{I}_{\mathcal{R} e(\lambda)}[c]=e^{\mathcal{R} e(\lambda t)} \int_{0}^{t} c e^{-\mathcal{R} e(\lambda) \tau} \mathrm{d} \tau=\frac{c}{-\mathcal{R} e(\lambda)}\left(1-e^{\mathcal{R} e(\lambda) t}\right) \leq \frac{c}{-\mathcal{R} e(\lambda)} \quad \text { for } \quad t \geq 0 \tag{21}
\end{equation*}
$$

- If $\mathcal{R} e(\lambda)=0$, for any monomial $c t^{m}$, there is

$$
\begin{equation*}
\mathcal{I}_{\operatorname{Re}(\lambda)}\left[c t^{m}\right]=\mathcal{I}_{0}\left[c t^{m}\right] \int_{0}^{t} c \tau^{m} \mathrm{~d} \tau=\frac{c}{m+1} t^{m+1} \quad \text { for } \quad t>0 \tag{22}
\end{equation*}
$$

Let $R_{\max }:=\max _{\tau \in I}|r(t)|$ be the max absolute residual. Let $Z=\left|\left\{\lambda_{j}: \mathcal{R} e\left(\lambda_{j}\right)=0,1 \leq j \leq n\right\}\right|$. Assume without loss of generality that $\mathcal{R} e\left(\lambda_{1}\right), \ldots, \mathcal{R} e\left(\lambda_{n-Z}\right)<0$ and that $\mathcal{R} e\left(\lambda_{n-Z+1}\right)=\cdots=\mathcal{R} e\left(\lambda_{n}\right)=0$. By the monotonicity of operator $\mathcal{I}_{\mathcal{R} e(\lambda)}$, there is $\mathcal{I}_{\mathcal{R} e(\lambda)} \phi_{1}(t) \leq \mathcal{I}_{\mathcal{R} e(\lambda)} \phi_{2}(t)$ if $\phi_{1}(t) \leq \phi_{2}(t)$ for all $t \in I$. Hence,

$$
\begin{align*}
& \mathcal{B}_{\text {tight }}(t)=\left(\mathcal{I}_{\mathcal{R} e\left(\lambda_{n}\right)} \circ \cdots \circ \mathcal{I}_{\mathcal{R} e\left(\lambda_{1}\right)}\right)|r(t)| \tag{23}\\
& \leq\left(\mathcal{I}_{\mathcal{R} e\left(\lambda_{n}\right)} \circ \cdots \circ \mathcal{I}_{\mathcal{R} e\left(\lambda_{1}\right)}\right) R_{\max } \tag{24}\\
& \leq\left(\mathcal{I}_{\mathcal{R} e\left(\lambda_{n}\right)} \circ \cdots \circ \mathcal{I}_{\mathcal{R} e\left(\lambda_{2}\right)}\right) \frac{1}{-\mathcal{R} e\left(\lambda_{1}\right)} R_{\max } \tag{25}\\
& \leq \ldots \\
& \leq\left(\mathcal{I}_{\mathcal{R} e\left(\lambda_{n}\right)} \circ \cdots \circ \mathcal{I}_{\mathcal{R} e\left(\lambda_{n-z+1}\right)}\right) \prod_{j=1}^{n-Z} \frac{1}{-\mathcal{R} e\left(\lambda_{j}\right)} R_{\max } \tag{26}\\
& =\mathcal{I}_{0}^{Z}\left[\prod_{\substack{j=1 \\
\operatorname{Re}\left(\lambda_{j}\right) \neq 0}}^{n} \frac{1}{-\mathcal{R} e\left(\lambda_{j}\right)} R_{\max }\right] \tag{27}\\
& =\frac{1}{Z!} \prod_{\substack{j=1 \\
\operatorname{Re}\left(\lambda_{j}\right) \neq 0}}^{n} \frac{1}{-\mathcal{R e}\left(\lambda_{j}\right)} R_{\max } t^{Z}=: \mathcal{B}_{\text {loose }}(t) \tag{28}
\end{align*}
$$

which proves Eq. 13 .

B PROOF OF PROPOSITIONS IN SECTION 5.1.3

In this part, we prove relevant statements regarding Alg. 3 in Section 5.1.1 of the main paper.
Consider the problem 12 in main paper. The error $\boldsymbol{\eta}$ of the network solution \mathbf{u} satisfies the equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{\eta}+A \boldsymbol{\eta}=\mathbf{r}(t) \quad \text { s.t. } \quad \boldsymbol{\eta}(t=0)=\mathbf{0} \tag{29}
\end{equation*}
$$

where $\mathbf{r}(\mathbf{t})=\frac{\mathrm{d}}{\mathrm{d} t} \mathbf{u}(t)+A \mathbf{u}(t)-\mathbf{f}(t)$ is the residual vector.
With the Jordan canonical form 13 , we multiply both sides of Eq. 29 by P^{-1},

$$
\begin{gather*}
P^{-1} \frac{\mathrm{~d}}{\mathrm{~d} t} \boldsymbol{\eta}+P^{-1} A \boldsymbol{\eta}=P^{-1} \mathbf{r}(t) \tag{30}\\
P^{-1} \frac{\mathrm{~d}}{\mathrm{~d} t} \boldsymbol{\eta}+J P^{-1} \boldsymbol{\eta}=P^{-1} \mathbf{r}(t) \tag{31}\\
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{\delta}+J \boldsymbol{\delta}=\mathbf{q}(t) \tag{32}
\end{gather*}
$$

where $\boldsymbol{\delta}(t):=P^{-1} \boldsymbol{\eta}(t)$ and $\mathbf{q}(t)=P^{-1} \mathbf{r}(t)$. Recall that J is a Jordan canonical form consisting of K Jordan blocks. Each Jordan block $J_{k}(1 \leq k \leq K)$ is an $n_{k} \times n_{k}$ square matrix, with eigenvalue λ_{k} on its diagonal and 1 on its super-diagonal,
where $\sum_{k=1}^{K} n_{k}=n$. Expanding the vector notations, there is

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\begin{array}{c}
\delta_{1} \tag{33}\\
\vdots \\
\delta_{n_{1}} \\
\hline \delta_{n_{1}+1} \\
\vdots \\
\frac{\delta_{n_{1}+n_{2}}}{\vdots}
\end{array}\right)+\left(\begin{array}{c|c|c}
J_{1} & 0 & 0 \\
& & \\
\hline 0 & J_{2} & 0 \\
& & \\
\hline 0 & 0 & \ddots
\end{array}\right)\left(\begin{array}{c}
\delta_{1} \\
\vdots \\
\delta_{n_{1}} \\
\hline \delta_{n_{1}+1} \\
\vdots \\
\frac{\delta_{n_{1}+n_{2}}}{\vdots}
\end{array}\right)=\left(\begin{array}{c}
q_{1}(t) \\
\vdots \\
q_{n_{1}}(t) \\
\hline q_{n_{1}+1}(t) \\
\vdots \\
q_{n_{1}+n_{2}(t)} \\
\vdots
\end{array}\right)
$$

Let $N_{k}=n_{1}+\cdots+n_{k}$. For k-th Jordan block indexed by $N_{k-1}<l \leq N_{k}$, there is

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\begin{array}{c}
\delta_{N_{k-1}+1} \tag{34}\\
\vdots \\
\delta_{N_{k}}
\end{array}\right)+\left(\begin{array}{cccc}
\lambda_{k} & 1 & & \\
& \ddots & \ddots & \\
& & \lambda_{k} & 1 \\
& & & \lambda_{k}
\end{array}\right)\left(\begin{array}{c}
\delta_{N_{k-1}+1} \\
\vdots \\
\delta_{N_{k}}
\end{array}\right)=\left(\begin{array}{c}
q_{N_{k-1}+1}(t) \\
\vdots \\
q_{N_{k}}(t)
\end{array}\right)
$$

which can be formulated as the following sequence of scalar equations, also known as Jordan chains:

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} \delta_{N_{k-1}+1}+\lambda_{k} \delta_{N_{k-1}+1} & =q_{N_{k-1}+1}-\delta_{N_{k-1}+2} \tag{35}\\
\frac{\mathrm{~d}}{\mathrm{~d} t} \delta_{N_{k-1}+2}+\lambda_{k} \delta_{N_{k-1}+2} & =q_{N_{k-1}+2}-\delta_{N_{k-1}+3} \tag{36}\\
& \vdots \tag{37}\\
\frac{\mathrm{~d}}{\mathrm{~d} t} \delta_{N_{k}-1}+\lambda_{k} \delta_{N_{k}-1} & =q_{N_{k}-1}-\delta_{N_{k}} \tag{38}\\
\frac{\mathrm{~d}}{\mathrm{~d} t} \delta_{N_{k}}+\lambda_{k} \delta_{N_{k}} & =q_{N_{k}}
\end{align*}
$$

The last equation (Eq. 38) of the Jordan chain can be used to bound $\delta_{N_{k}}$ by applying the inequality 2 ,

$$
\begin{equation*}
\left|\delta_{N_{k}}\right|=\left|\mathcal{I}_{-\lambda_{k}} q_{N_{k}}\right| \leq \mathcal{I}_{-\mathcal{R e}\left(\lambda_{k}\right)}\left|q_{N_{k}}\right| \tag{39}
\end{equation*}
$$

Applying the inequality 2 again to Eq. 37 , there is

$$
\begin{align*}
\left|\delta_{N_{k}-1}\right| & =\left|\mathcal{I}_{-\lambda_{k}}\left(q_{N_{k}-1}+\delta_{N_{k}}\right)\right| \tag{40}\\
& \leq \mathcal{I}_{-\mathcal{R} e\left(\lambda_{k}\right)}\left|q_{N_{k}-1}-\delta_{N_{k}}\right| \tag{41}\\
& \leq \mathcal{I}_{-\mathcal{R} e\left(\lambda_{k}\right)}\left|q_{N_{k}-1}\right|+\mathcal{I}_{-\mathcal{R} e\left(\lambda_{k}\right)}\left|\delta_{N_{k}}\right| \tag{42}\\
& \leq \mathcal{I}_{-\mathcal{R} e\left(\lambda_{k}\right)}\left|q_{N_{k}-1}\right|+\mathcal{I}_{-\mathcal{R} e\left(\lambda_{k}\right)}^{2}\left|q_{N_{k}}\right| \tag{43}
\end{align*}
$$

The first inequality is a direct application of Eq. 2. The second inequality is based on linearity of the operator \mathcal{I} and the triangle inequality. The third inequality is obtained by substituting Eq. 39 . Here the superscript in \mathcal{I}^{2} denotes compositional square $\mathcal{I}^{2}=\mathcal{I} \circ \mathcal{I}$.
By induction, for the k-th Jordan block $\left(N_{k-1}<l \leq N_{k}\right)$, there is

$$
\begin{equation*}
\left|\delta_{l}\right| \leq \sum_{j=0}^{N_{k}-l} \mathcal{I}_{-\mathcal{R} e\left(\lambda_{k}\right)}^{j+1}\left|q_{l+j}\right| \tag{44}
\end{equation*}
$$

We use this inequality to bound the norm of the error vector, $\|\boldsymbol{\eta}\|$, as well as absolute value of each component, $\left|(\boldsymbol{\eta})_{l}\right|$.

B. 1 COMPONENTWISE BOUND

Using matrix notations, Eq. 44 can be rewritten as

$$
\begin{equation*}
\boldsymbol{\delta}^{|\cdot|} \preceq \mathcal{I}_{\mathbf{q}}{ }^{|\cdot|} \tag{45}
\end{equation*}
$$

where \preceq denotes componentwise inequality, the superscript $|\cdot|$ denotes componentwise absolute value, and $\boldsymbol{\mathcal { I }}$ is defined as operator matrix $\mathcal{I}:=\left(\begin{array}{ccc}\mathbf{I}_{1} & & \\ & \mathbf{I}_{2} & \\ & & \ddots\end{array}\right)$ where each $\mathbf{I}_{k}=\left(\begin{array}{cccc}\mathcal{I}_{-\mathcal{R e}\left(\lambda_{k}\right)} & \mathcal{I}_{-\mathcal{R} e\left(\lambda_{k}\right)}^{2} & \ldots & \mathcal{I}_{-\mathcal{R} e\left(\lambda_{k}\right)}^{n_{k}} \\ 0 & \mathcal{I}_{-\mathcal{R} e\left(\lambda_{k}\right)} & \ldots & \mathcal{I}_{-\mathcal{R} e\left(\lambda_{k}\right)}^{n_{k}-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \mathcal{I}_{-\mathcal{R} e\left(\lambda_{k}\right)}\end{array}\right)$ is an $n_{k} \times n_{k}$ upper-triangular block. Notice that $(A B)^{|\cdot|} \preceq A^{|\cdot|} B^{|\cdot|}$ for any compatible matrices A and B. Recall $\boldsymbol{\delta}(t)=P^{-1} \boldsymbol{\eta}(t)$ and $\boldsymbol{q}(t)=P^{-1} \mathbf{r}(t)$, there is

$$
\begin{equation*}
\boldsymbol{\eta}^{\cdot \cdot \mid} \preceq P^{|\cdot|} \boldsymbol{\delta}^{|\cdot|} \preceq P^{\cdot \cdot} \boldsymbol{I}\left[\mathbf{q}^{|\cdot|}\right] \preceq P^{\mid \cdot \cdot} \boldsymbol{I}\left[\left(P^{-1}\right)^{\cdot \cdot \mid} \mathbf{r}^{\cdot \mid \cdot}\right] \tag{46}
\end{equation*}
$$

B. 2 NORM BOUND

By Eq. 45 , we have $\|\boldsymbol{\delta}\| \leq\|\mathcal{I}[\|\mathbf{q}\| \mathbf{1}]\|$, where $\mathbf{1}$ is $n \times 1$ (constant) column vector whose components are all equal to 1 .
With $\boldsymbol{\eta}=P \boldsymbol{\delta}$ and $\mathbf{q}=P^{-1} \mathbf{r}$, there is $\|\boldsymbol{\eta}\| \leq\|P\|\|\boldsymbol{\delta}\|$ and $\|\mathbf{q}\| \leq\left\|P^{-1}\right\|\|\mathbf{r}\|$, where $\|\cdot\|$ denotes the norm of a vector or the induced norm of a matrix. Consequently,

$$
\begin{align*}
\|\boldsymbol{\eta}(t)\| & \leq\|P\|\|\boldsymbol{\delta}(t)\| \tag{47}\\
& \leq\|P\|\|\mathcal{I}[\|\mathbf{q}(t)\| \mathbf{1}]\| \tag{48}\\
& \leq\|P\|\left\|\boldsymbol{\mathcal { I }}\left[\left\|P^{-1}\right\|\|\mathbf{r}\| \mathbf{1}\right]\right\| \tag{49}\\
& \leq\|P\|\left\|P^{-1}\right\|\|\boldsymbol{\mathcal { I }}[\|\mathbf{r}\| \mathbf{1}]\| \tag{50}\\
& =\operatorname{cond}(P)\|\boldsymbol{I}[\|\mathbf{r}(t)\| \mathbf{1}]\| \tag{51}
\end{align*}
$$

