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Abstract

Neural networks are universal approximators and
are studied for their use in solving differential equa-
tions. However, a major criticism is the lack of
error bounds for obtained solutions. This paper
proposes a technique to rigorously evaluate the er-
ror bound of Physics-Informed Neural Networks
(PINNs) on most linear ordinary differential equa-
tions (ODEs), certain nonlinear ODEs, and first-
order linear partial differential equations (PDEs).
The error bound is based purely on equation struc-
ture and residual information and does not de-
pend on assumptions of how well the networks are
trained. We propose algorithms that bound the er-
ror efficiently. Some proposed algorithms provide
tighter bounds than others at the cost of longer run
time.

1 INTRODUCTION

Differential equations (DEs) are a useful mathematical tool
for describing various phenomena in natural sciences, engi-
neering, and humanity studies. As universal approximators,
neural networks are powerful in approximating unknown
functions. With back-propagation and modern computing
devices, neural networks are convenient to differentiate,
making them an ideal choice for solving differential equa-
tions.

However, a major criticism of neural network solutions to
DEs is the lack of error bound. Traditional numerical meth-
ods, such as the finite difference method (FDM) and the
finite element method (FEM), compute numerical solutions
with known error bounds. Unlike traditional methods, the er-
ror bounds of neural network solutions are not well-studied.
Therefore, solving DEs with neural networks requires ad
hoc customization and empirical hyperparameter finetuning.
If the error of any given network can be bounded, we can

train neural networks until the error falls below a specified
tolerance threshold.

Our contribution is that we propose rigorous error-bounding
algorithms for any neural network solution to certain classes
of equations, including linear ODEs, certain nonlinear
ODEs, and first-order linear PDEs. These algorithms can
also be extended to bound the error of other classes of equa-
tions as well. The proposed algorithms only use residual
information and equation structure as inputs and do not rely
on assumptions of finetuning.

Section 2 introduces the symbols and notations adopted in
this paper. Section 3 reviews the literature on emerging ar-
eas of research that are relevant to solving DEs with neural
networks. Section 4 explains the existing effort to bounding
the error of neural network DE solutions. Sections 5 and 6
propose various algorithms for the error bound of ODEs and
PDEs, respectively. Section 7 uses the method of manufac-
tured solution to verify the validity of each error-bounding
algorithm and provides visualization of the tightness of the
bounds.

2 SYMBOLS AND NOTATIONS

DEs in this paper are posed w.r.t. unknown function v,

Dv = f,

where D is a possibly nonlinear differential operator and
f is some forcing function. Unlike the exact solution v(·),
a neural network solution u(·) does not strictly satisfy the
equation. Instead, it incurs an additional residual term, r,
which the network aims to minimize, to the equation,

Du = f + r.

The input to v, u, f , and r is time t for ODEs and spa-
tial coordinates (x, y) for PDEs. We limit our reasoning to
2-dimensional PDEs in this work. In cases with multiple
unknown functions, we use vector notations v, u, and r
instead of the scalar notations v, u, and r.
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The loss function of the network solution is defined as the
L2 norm of residual r over the domain of interest,

Loss(u) :=
1

|I|

∫
I

‖r‖2dI =
1

|I|

∫
I

‖Du− f‖2dI, (1)

where a spatial domain Ω is substituted for the temporal
domain I in the case of a PDE.

2.1 INITIAL AND BOUNDARY CONDITIONS

For a neural network to satisfy initial or boundary conditions,
we apply a technique called parametrization. As an intuitive
example, the parametrization u(t) = (1−e−t)Net(t)+v(0)
guarantees that u(t) satisfies the initial condition u(0) =
v(0) regardless of the network Net(·). This does not affect
the capability of Net(·) to learn any solution.

The parametrization is more complicated for higher-order
ODEs and most PDEs and has been extensively studied
by Lagaris et al. [1998], Lagaris et al. [2000], McFall and
Mahan [2009], Lagari et al. [2020], and Sukumar and Srivas-
tava [2021]. In this work, we assume all initial and boundary
conditions are exactly satisfied.

2.2 ERROR AND ERROR BOUND

The error of a network solution u is defined as

η := u− v. (2)

We are interested in bounding the error with a scalar function
B such that

‖η(t)‖ ≤ B(t) or ‖η(x, y)‖ ≤ B(x, y) (3)

where ‖η‖ = ‖u − v‖ is the absolute error. If B takes on
the same value B ∈ R+ over the domain, it can be replaced
with a constant B.

Notice that multiple bounds B exist for the same network
solution u. For example, |η(t)| ≤ B(1)(t) ≤ B(2)(t) ≤
· · · ≤ B are bounds in decreasing order of tightness. Tighter
bounds incur a higher computational cost, and looser bounds
(such as constant B) are faster to compute.

A summary of the applicability, restraints, run-time com-
plexity, and relative tightness of all proposed algorithms is
listed in Table 1.

3 LITERATURE REVIEW

Hornik et al. [1989] showed that neural networks are uni-
versal function approximators. Lagaris et al. [1998] first
studied the application of neural networks in solving DEs.
The term physics-informed neural networks, or PINNs, was
first introduced by Raissi et al. [2019] to name neural net-
works that satisfy DEs while fitting observed data points.

Although we train PINNs only to solve DEs without any
observed data in this work, the error-bounding algorithms
we propose work for any given neural network, regardless
of the training process.

Flamant et al. [2020] and Desai et al. [2021] showed that one
main advantage of neural networks over traditional numeri-
cal methods, such as FDM and FEM, is that neural networks
can potentially learn the structure of the solution space and
give a bundle of solutions u(x; Θ) for different equation
setup and initial/boundary conditions parameterized by Θ.
For traditional methods, a new solution must be recomputed
for any slight changes in equation setup or initial/boundary
conditions.

Some effort has been made to redefine the objective loss
function. Yu et al. [2017] applied the Ritz method to a partic-
ular class of variational problems. Mattheakis et al. [2020]
incorporated an additional constraint to force the network
to learn solutions with energy conservation. Parwani and
Protopapas [2021] used an adversarial network for sampling
in particular areas of the domain where the residual is large.

There are also works that study the failure modes of PINNs
and quantify the error of PINN solutions in recent years.
Graf et al. [2021] worked on quantifying the uncertainty of
PINNs using the Bayesian framework. Krishnapriyan et al.
[2021] characterized possible failure modes of PINNs by
studying the performance of PINNs on simple problems and
analyzing their loss landscape. Krishnapriyan et al. [2021]
also concluded that optimization difficulty is the essential
cause of failure.

Our work uncovers the mathematical relationship between
residual information and the error of PINNs on several
classes of ODEs and PDEs. We propose different algorithms
for various classes of equations and experimentally validate
these algorithms.

4 EXISTING WORK

Sirignano and Spiliopoulos [2018] showed that for a class of
quasi-linear parabolic PDEs, a neural network with a single
hidden layer and sufficiently many hidden units could arbi-
trarily approximate the exact solutions. Guo and Haghighat
[2022] proposed an energy-based constitutive relation error
bound for elasticity problems.

De Ryck and Mishra [2022a] derived an error bound for
ReLU networks on parametric hyperbolic conservation laws.
De Ryck and Mishra [2022b] showed that there exists some
PINN with arbitrarily small residual for Kolmogorov PDEs.
De Ryck and Mishra [2022c] derived an error bound for
operator learning with PINNs. The works of De Ryck and
Mishra mentioned above did not bound the error of every
given network. Instead, they mathematically proved the ex-
istence of a network with errors below a specified bound,
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Table 1: Overview of Proposed Algorithms. The symbols in run-time analysis are defined and explained in detail in
Sections 5 and 6, with the exception of K, which is the number of steps used in each numerical integration.

Algorithm Applicable to Restraint Run-Time Comment

Algorithm 1 Linear ODE Semi-stable O(L) Looser than Alg 2
Algorithm 2 Linear ODE O(nL) Tighter than Alg 1
Algorithm 3 Linear ODE System O(n3L) Norm and elementwise bounds
Algorithm 4 Nonlinear ODE Nonlinear term is εvk O(JnL) Bounded solution for family of DEs
Algorithm 5 Linear 1st-Order PDE Coeff. c 6= 0 over domain O(mesh) Constant bound; Looser than Alg 6
Algorithm 6 Linear 1st-Order PDE Solvable characteristics O(KL) Tigher than Alg 5 if computable

under certain assumptions of network architecture, includ-
ing width, depth, and activation functions. The question
remaining to be answered is how to overcome optimization
difficulties and find such a neural network.

Our work differs from the above in that we bound the error
of any neural network regardless of finetuning, even net-
works with randomly initialized weights. Our algorithms
only depend on inputs of residual information r, often used
as training loss, and equations structureDv = f . The output
is a (possibly constant) function that guarantees to bound
the error at any point in domain.

5 ERROR BOUND FOR ODE

This section considers both linear and nonlinear ODEs over
the temporal domain I = [0, T ]. Initial conditions are im-
posed on dk

dtk
v(t = 0) for k = 0, . . . , (n − 1), where n is

the highest order of derivative terms in ODE.

5.1 ERROR BOUND FOR LINEAR ODE

Consider the linear ODE Lv(t) = f(t), where L is a linear
differential operator. Its neural network solution u satisfies
Lu(t) = f(t) + r(t). Since error η := u− v, there is

Lη(t) = r(t). (4)

With the assumption in Section 2.1 that u satisfies the initial
conditions at t = 0, there is

η(0) = 0,
d

dt
η(0) = 0,

d2

dt2
η(0) = 0, . . . (5)

With initial conditions 5 known, a unique inverse transform
L−1to L exists. Applying L−1 to Eq. 4, there is

η(t) = L−1r(t). (6)

Hence, bounding the absolute error |η| is equivalent to
bounding

∣∣L−1r
∣∣. Notice that only a) the equation struc-

ture L and b) the residual information r are relevant to
estimating the error bound. All other factors, including pa-
rameters of the neural network u, forcing function f , and
initial conditions, do not affect the error bound at all.

5.1.1 Single Linear ODE with Constant Coefficients

Consider the case where L = dn

dtn +
∑n−1
j=0 aj

dj

dtj consists of
only constant coefficients a0, a1, . . . ,∈ R. Its characteristic
polynomial (defined below) can be factorized into

λn + an−1λ
n−1 + · · ·+ a0 =

n∏
j=1

(λ− λj), (7)

where λ1, . . . , λn ∈ C are the characteristic roots.

It can be shown that, for a semi-stable system (Re (λj) ≤ 0
for all λj), an error bound can be formulated as

|η(t)| ≤ Bloose(t) := Cλ1:n Rmax t
Z , (8)

where 0 ≤ Z ≤ n is the number of λj whose real part is 0,
Cλ1:n

:= 1
Z!

∏n
j=1;λj 6=0

1
Re(−λj) is a constant coefficient,

and Rmax := maxt∈I |r(t)| is the maximum absolute resid-
ual. Knowing bound 8 is sufficient to qualitatively estimate
the error for applications where only the order of error is
concerned. See Alg. 1 for reference.

An issue with Eq. 8 and Alg. 1 is that they assume
Re (λj) ≤ 0 for all characteristic roots λj . To address
this issue, we propose an alternative error-bounding Alg. 2,
which requires more computation but does not require the
system to be semi-stable and provides a tighter bound.

Notice that the bounds of η in Eq. 6 can be estimated if the
inverse operatorL−1 is known. Let Eq. 7 be the factorization
of characteristic polynomial of L. Define operator Iλ as 1

Iλψ(t) := eλt
∫ t

0

e−λτψ(τ)dτ, ∀ψ : I → C. (9)

We show in supplementary material that L−1 = Iλn ◦
Iλn−1 ◦ · · · ◦ Iλ1 and that |Iλψ| ≤ IRe(λ)|ψ| for any
λ ∈ C and function ψ. Hence, another error bound can be
formulated as

Btight(t) :=
(
IRe(λn) ◦ · · · ◦ IRe(λ1)

)
|r(t)|. (10)

1This paper assumes the network solution exactly satisfies the
initial conditions as discussed in Section 2.1. However, all our
algorithms can be extended to cases where the network solution
differs from the exact solution by some value. This is achieved by
replacing Iλψ(t) with Iλ,δψ(t) = Iλψ(t) + δeλt in Eq. 9.
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Algorithm 1 Loose Error Bound Estimation for Linear ODE
with Constant Coefficients (Requires Semi-Stability)

Input: Coefficients {aj}n−1
j=0 for operator L, residual infor-

mation r(·), domain of interest I = [0, T ], and a sequence
of time points {t`}L`=1 where error bound is to be evaluated
Output: Error bound at given time points {B(t`)}L`=1

Require: L is semi-stable, and t` ∈ I for all `
Ensure: |η(t`)| ≤ B(t`) for all `
{λj}nj=1 ← numerical roots of λn+an−1λ

n−1 +· · · = 0
assert λj ≤ 0 for 1 ≤ j ≤ n
Z,C ← 0, 1
for j ← 1 . . . n do

ifRe (λj) = 0 then
Z ← Z + 1

else
C ← C/Re (−λj)

end if
end for
Rmax ← maxτ∈I |r(τ)| . Use linspace with mini-steps
{B(t`)}L`=1 ←

{
C
Z!Rmax t

Z
`

}L
`=1

return {B(t`)}L`=1

Note: Jenkins and Traub [1970] solves polynomial roots.

It is also proven in supplementary material that Btight is
tighter than Bloose when Bloose is applicable,

|η(t)| ≤ Btight(t) ≤ Bloose(t) ∀t ∈ I. (11)

Based on Eq. 10, we propose Alg. 2, which computes Btight
by repeatedly evaluating integrals in 9 using the cumulative
trapezoidal rule.

Before moving on to the next section, we discuss the effect
of numerical error in Alg. 2 and all pursuant algorithms
which involve numerical integration. Empirically, the er-
ror introduced by numerical integration in negligible for
most cases. To ensure the accuracy of the error bound, we
recommend using a slightly modified trapezoidal rule that,
instead of directly using the node value, takes the maximum
of the node and its two adjacent nodes. This modification
leads to a slighltly looser bound. Yet, this influence is almost
negligible in practice.

5.1.2 Single Linear ODE of the General Form

In general, the coefficients for L can be functions of t.
Namely, L = dn

dtn +
∑n−1
j=0 aj(t)

dj

dtj . Similar to Eq. 7, L
have characteristic roots {λj(t)}nj=1 as functions of t,

λn + an−1(t)λn−1 + · · ·+ a0(t) =

n∏
j=1

(λ− λj(t)).

We can replace constant λj with functions λj(t) in Eq. 9
and compute bound Btight as in Eq. 10. However, the factor-
ization in Eq. 5.1.2 is hard to implement in practice except

Algorithm 2 Tighter Error Bound Estimation for Linear
ODE with Constant Coefficients (Stable and Unstable)
Input & Output: Same as Alg. 1
Require: Same as Alg. 1, except L can be unstable
Ensure: Same as Alg. 1
{λj}nj=1 ← numerical roots of λn+an−1λ

n−1 +· · · = 0

{tk}Kk=0 ← linspace(0, T , sufficient steps)
{B(tk)}Kk=0 ← {|r(tk)|}Kk=0

for j ← 1 . . . n do
intgrKk=0 ← CumTrap(

{
e−λjtkB(tk)

}K
k=0

, {tk}Kk=0)

{B(tk)}Kk=0 ←
{
eλjtk · intgrk

}K
k=0

end for
{B(t`)}L`=1 ← Interp({B(tk)}Kk=0, {tk}Kk=0, {t`}L`=0)
return {B(t`)}L`=1

Note: CumTrap({yk}Kk=1, {xk}Kk=1) computes cumulative
integral

∫ x
0
y(x)dx at discrete points {xk}Kk=1 using trape-

zoidal rule.
Note: Interp({yk}Kk=1, {xk}Kk=1, {x`}L`=1) computes in-
terpolant to a function with given discrete data points
{(xk, yk)}Kk=1 evaluated at {x`}L`=1.

for the first-order case where Lv = dv
dt + a0(t)v. Cases of

second order and higher are out of the scope of this paper.

5.1.3 System of Linear ODEs with Constant
Coefficients

Consider a system of linear ODEs with constant coefficients

d

dt
v +Av = f(t) (12)

where v and f are Rn vectors and A is a n × n matrix.
Denote the Jordan canonical form of A as,

J = P−1AP =

J1
. . .
JK

 where Jk =

λk 1
λk

. . .. . . 1
λk

 .

(13)
Let nk be the size of Jordan block Jk, we construct an
operator matrix III = diag(I1, I2, . . . ), where

Ik =


I−Re(λk) I2

−Re(λk) . . . Ink

−Re(λk)

0 I−Re(λk) . . . Ink−1
−Re(λk)...

...
. . .

...
0 0 . . . I−Re(λk)

 . (14)

An elementwise bound (vector) BBB(t) can be formulated as

ηηη|·|(t) � BBB(t) := P |·|III
[
(P−1)|·| r|·|

]
(t), (15)

where superscript | · | denotes taking elementwise absolute
value and symbol � denotes elementwise inequality. In the
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meantime, a norm bound (scalar) B(t) also exists

‖ηηη(t)‖ ≤ B(t) := cond(P )
∥∥III[‖r‖1](t)∥∥ (16)

where cond(P ) is the conditional number of P w.r.t. in-
duced matrix norm and 1 is an n× 1 column vector of 1s.
Proof of Eq. 15 and Eq. 16 can be found in in supplementary
material. See Alg. 3 for implementation.

Algorithm 3 ODE System Bound (norm and elementwise)
Input: Coefficient matrix A ∈ Rn×n, residual vector r(t),
and a sequence of points {t`}L`=1 where error is to be
bounded
Output: Norm bound (scalar) {B(t`)}L`=1 and component-
wise bound (vector) {BBB(t`)}L`=1 at given time points
Ensure: ‖η(t`)‖ ≤ B(t`) and η(t`) � BBB(t`) for all `
J, P ← Jordan canonicalization of A = PJP−1

for each Jordan block Jk of shape nk × nk do
Ik ← construct operator block using Eq. 14

end for
III ← diag(I1, I2, . . . )
{BBB(t`)}L`=1 ← {P |·|III

[
(P−1)|·|r|·|

]
(t`)}L`=1

{B(t`)}L`=1 ← {cond(P )
∥∥III[‖r‖1](t`)∥∥}L`=1

return {B(t`)}L`=1, {BBB(t`)}L`=1

5.2 NONLINEAR ODE

Nonlinear ODEs are hard to solve in general. In this work,
we only deal with nonlinear ODEs with a single nonlinear
term of the form εvk(t), where ε ∈ R is a small number.
Ideally, |ε| � 1. The exact requirement for ε is given in
Section 5.2.2. The value of ε can vary within a certain range
or be fixed. With the perturbation technique, we obtain a
family of solutions v(t; ε) parameterized by ε at the cost of
solving a (countable) collection of equations. As explained
below in Section 5.2.1, we train finitely many networks,
each approximately solving an equation in the collection.

5.2.1 Perturbation Theory

Consider the nonlinear ODE with nonlinear term εvk(t),

Lv(t) + εvk(t) = f(t), (17)

where L is a linear differential operator discussed in 5.1 and
initial conditions are specified for the system at time t = 0.
Notice that each ε ∈ R corresponds to a solution v(t; ε). We
expand the solution v(t; ε) in terms of ε

v(t; ε) =

∞∑
j=0

εjvj(t) = v0(t) + εv1(t) + . . . (18)

Only v0(t) is subject to the original initial conditions at
t = 0, while other components, v1, v2, . . . , have initial

conditions of 0 at t = 0. Substituting Eq. 18 into Eq. 17,

L
∞∑
j=0

εjvj + ε

 ∞∑
j=0

εjvj

k

= f (19)

∞∑
j=0

εjLvj +

∞∑
j=0

εj+1
∑

j1+···+jk=j
j1,...,jk≥0

vj1 . . . vjk = f (20)

Lv0 +

∞∑
j=1

εj

(
Lvj +

∑
j1+···+jk=j−1
j1,...,jk≥0

vj1 . . . vjk

)
= f.

(21)

In order for Eq. 21 to hold true for all ε, the coefficients for
each εj must match on both sides of Eq. 21. Hence,

Lv0 = f (22)

Lv1 + vk0 = 0 (23)

Lv2 + kvk−1
0 v1 = 0 (24)

Lv3 +
k(k − 1)

2
vk−2

0 v2
1 + kvk−1

0 v2 = 0 (25)
...

...

For ε = 0, Eq. 18 is reduced to v0(t), which solves the
linear problem Lv = f .
The above system can be solved in a sequential manner,
either analytically or using neural networks,

1. Eq. 22 is linear in v0 and can be solved first.

2. With v0 known, Eq. 23 is linear in v1 and can be solved
for v1.

3. Similarly, with v0 and v1 known, Eq. 24 is linear in v2

and can be solved for v2.

4. The process can be repeated for Eq. 25 and beyond.
Only a linear ODE is solved each time.

To solve the system with PINNs, we approximate exact solu-
tions {vj(t)}∞j=1 with neural network solutions {uj(t)}Jj=0
trained sequentially on Eq. 22, Eq. 23, and beyond. In prac-
tice, we only consider components up to order J to avoid the
infinity in expansion 18. Ideally, J should be large enough
so that higher order residuals in expansion 18 can be ne-
glected.

After obtaining {uj(t)}Jj=0, we can reconstruct the solution

u(t; ε) =
∑J
j=0 ε

juj(t) to the original nonlinear equation
17 for varying ε. See Alg. 4 for details.

5.2.2 Expansion of Bounds

The absolute error |η(t; ε)| = |u(t; ε)− v(t; ε)|is given by

|η(t; ε)| =

∣∣∣∣∣∣
J∑
j=0

εj
(
uj(t)− vj(t)

)
−

∞∑
j=J+1

εjvj(t)

∣∣∣∣∣∣
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≤
J∑
j=0

∣∣∣ηj(t)∣∣∣|ε|j +

∣∣∣∣∣∣
∞∑

j=J+1

εjvj(t)

∣∣∣∣∣∣ (26)

where ηj(t) := uj(t) − vj(t) is the component error be-
tween uj(t) and vj(t). Let Bj denote the bound component
such that |ηj(t)| ≤ Bj(t). Assuming J is large and ε is

small such that higher order terms
∣∣∣∑∞j=J+1 ε

jvj(t)
∣∣∣ are

negligible, there is

∣∣∣η(t; ε)
∣∣∣ ≤ B(t; ε) :=

J∑
j=0

Bj(t) |ε|j (27)

where each bound component Bj can be evaluated using the
techinque in Section 5.1. See Alg. 4 for details.

Algorithm 4 Iterative Method for Solution and Error Bound
of Nonlinear ODE 17
Input: Linear operator L, nonlinear degree k, domain
I = [0, T ], highest order J for expansion, and a sequence
{(t`, ε`)}L`=1 where solution u(t; ε) and error bound B(t; ε)
are to be evaluated
Output: Solution {u(t`; ε`)}L`=1 and error bound
{B(t`; ε`)}L`=1

Require: t` ∈ I , and |ε`| to be small (ideally |ε`| � 1)
Ensure: η(t`; ε`) ≤ B(t`; ε`)
u0, r0,← net solution, residual of Lu0 = f
{B0(t`)}L`=1 ← bound of

∣∣L−1r0

∣∣ at {t`}L`=1

for j ← 1 . . . J do
Macro NLj [φ]←∑

j1+···+jk=j−1
j1,...,jk≥0

φj1 . . . φjk

uj , rj ← net solution, residual of Luj + NLj [u] = 0
BNL ← upper bound of |NLj [u]− NLj [v]|
{Bj(t`)}L`=1 ← bound of |L−1rj |+|L−1BNL|

end for
{u(t`; ε`)}L`=1 ←

{∑J
j=0 ε

j
`uj(t`)

}L
`=1

{B(t`; ε`)}L`=1 ←
{∑J

j=0 ε
j
`Bj(t`)

}L
`=1

return {u(t`; ε`)}L`=1 , {B(t`; ε`)}L`=1

Note 1: B0 and B1:J can be evaluated using Alg. 1 or 2.
Note 2: BNL can be estimated even though exact solutions
v0:j−1 are unknown. This is because vi ∈ [ui − Bi, ui +
Bi] for all i, and u0:j−1, B0:j−1 are known from previous
iterations.

6 ERROR BOUND FOR PDE

This section considers first-order linear PDEs defined on a
2-dimensional spatial domain Ω,2

a(x, y)
∂v

∂x
+ b(x, y)

∂v

∂y
+ c(x, y)v = f(x, y) (28)

2Similar techniques can be used for other classes of PDEs and
higher dimensions where the method of characteristics applies.

with Dirichlet boundary constraints defined on Γ ⊂ ∂Ω,

v
∣∣
(x,y)∈Γ

= g(x, y). (29)

We partition the domain into infinitely many characteristic
curves C, each passing through a point (x0, y0) ∈ Γ. The
resulting curve is a parameterized integral curve

C :

{
x′(s) = a(x, y)

y′(s) = b(x, y)
where (·)′ =

d

ds
and

x(0) = x0

y(0) = y0.

For any (x(s), y(s)) on C, functions (v, a, b, c, f) can be
viewed as univariate functions of s. By chain rule, there is

a(x, y)
∂v

∂x
+ b(x, y)

∂v

∂y
= x′(s)

∂v

∂x
+ y′(s)

∂v

∂y
= v′(s).

Hence, Eq. 28 is reformulated as an ODE along curve C,

v′(s) + c(s)v(s) = f(s) s.t. v(0) = g(x0, y0), (30)

where v(s), c(s), and f(s) are shorthand notations for
v(x(s), y(s)), c(x(s), y(s)), and f(x(s), y(s)), respec-
tively.

In particular, if c(x, y) 6= 0 for all (x, y) ∈ Ω, both sides of
Eq. 28 can be divided by c(x, y), resulting in a residual of
r(x, y)/c(x, y) where r(x, y) is the residual of the original
problem. By Eq. 8, a constant error bound on C is |η(s)| ≤
maxs |r(s)/c(s)|. Hence, a (loose) constant error bound B
(see Alg. 5) over the entire domain Ω is

|η(x, y)| ≤ B := max
(x,y)∈Ω

∣∣∣∣r(x, y)

c(x, y)

∣∣∣∣ . (31)

Algorithm 5 Constant Err Bound for Linear 1st-Order PDE
Input: Coefficient c(x, y) in Eq. 28, residual information
r(x, y) and domain of interest Ω
Output: A constant error bound B ∈ R+

Require: c(x, y) 6= 0 for all (x, y) ∈ Ω
Ensure: |η(x, y)| ≤ B for all (x, y) ∈ Ω
{(xk, yk)}k ← sufficiently dense mesh grid over Ω

B ← max
k

∣∣∣∣r(xk, yk)

c(xk, yk)

∣∣∣∣
return B

Independent of the assumption c(x, y) 6= 0, in scenarios
where the curve C passing through any (x, y) can be com-
puted, the error can be computed using Alg. 6.

7 RELEVANT EXPERIMENTS

In this section, we perform experiments on equations with
manufactured solutions using the NeuroDiffEq library [Chen
et al., 2020], which provides convenient tools for training
PINNs.
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Algorithm 6 General Err Bound for Linear 1st-Order PDE
Input: Coefficients a(x, y), b(x, y), c(x, y) in Eq. 28, resid-
ual information r(x, y), domain of interest Ω, Dirichlet
boundary Γ ⊂ ∂Ω, and a sequence of points {(x`, y`)}L`=1

where error is to be bounded
Output: Error bound {B(x`, y`)}L`=1 at given points

Require: Integral curve of vector field
[
a(x, y) b(x, y)

]T
passing through any point (x`, y`) ∈ Ω is solvable

Ensure: |η(x`, y`)| ≤ B(x`, y`) for all `

Cg ← general solution to

{
x′(s) = a(x, y)

y′(s) = b(x, y)

for `← 1 . . . L do
x(s), y(s)← instance of Cg passing through (x`, y`)
s∗ ← solution to x(s) = x`, y(s) = y`

B(x`, y`)← ec(s
∗)

∫ s∗

0

r(x(s), y(s))e−c(x(s),y(s)) sds

end for
return {B(x`, y`)}L`=1

First, we train networks to solve equations and collect their
residual information r. Then, we apply Alg. 1–6 (where
applicable) to derive error bounds using only residual in-
formation r and equation structure, characterized by its
differential operator D. Lastly, we show that the absolute
error strictly falls within the bounds, regardless of how well
the networks are trained.

Throughout this section, we always use networks with two
hidden layers, each consisting of 32 hidden units. Depend-
ing on whether the problem is an ODE or PDE, a network
can have a single input t or two inputs (x, y), but always
have a single output. The activation function is tanh. Un-
less otherwise noted, the training domain is I = [0, 1] for
ODEs and Ω = [0, 1]2 for PDEs. We use a PyTorch Adam
optimizer with default hyperparameters to train networks
for 1000 epochs.

Notice that we list these configurations only for the repro-
ducibility of visualizations. Our error-bounding algorithm
works under any other configurations.

7.1 SINGLE LINEAR ODE WITH CONSTANT
COEFFICIENTS

Here, we study three equations v′′ + 3v′ + 2v = f(t), v′′ +
v = g(t), and v′′−v′ = h(t), whose characteristic roots are
{−1,−2}, {±i}, and {0, 1} respectively. By Section 5.1.1,
the first two equations can be bounded with either Alg. 1 or
Alg. 2, while the last must be bounded with Alg. 2.

They all satisfy initial conditions v(0) = v′(0) = 1. We
pick f(t) = 2t2+8t+7, g(t) = t2+t+3, and h(t) = 1−2t,
so that the manufactured solution is v(t) = t2 + t + 1 for
all three equations. Fig. 1 shows that both Bloose (Alg. 1)

and Btight (Alg. 2) strictly bounds the absolute error.

0 t 1
0.00

0.02

0.04

v′′ + 3v′ + 2v = f(t)

Bloose

Btight

|η|

0 t 1
0.000

0.005

0.010

0.015

v′′ + v = g(t)

Bloose

Btight

|η|

0 t 1
0.000

0.005

0.010
v′′ − v′ = h(t)

Btight

|η|

Figure 1: Loose bound (Alg. 1) and tight bound (Alg. 2)
for 3 second-order linear ODE with constant coefficients.
Notice that the loose bound cannot be applied to the third
equation since it has characteristic roots with positive real
part.

7.2 LINEAR ODE SYSTEM WITH CONSTANT
COEFFICIENTS

In this subsection, we train 6 networks to solve a 6-
dimensional linear system of ODEs with constant coeffi-
cients, namely, d

dtv + Av = f . We pick A = PJP−1

where J =

(
J1
J2
J3

)
with J1 =

(
4 1

4 1
4

)
, J2 =

(
3 1

3

)
,

J3 = 2, and P is a random orthogonal matrix.

We pick the initial conditions to be v(0) = P (0 0 1 0 1 1)T

and the forcing function to be f(t) = P (cos t + 4 sin t +
ln(1 + t), 1

1+t + 4 ln(1 + t) + (t+ 1), 4t+ 5, 2t+ 3t2 +

et, 4et, 2 cos t − sin t)T , so that the manufactured exact
solution is v(t) = P (sin t, ln(t+ 1), t+ 1, t2, et, cos t)T .

After obtaining the residual information r(t) = d
dtu(t) +

Au(t) − f(t), we apply Alg. 3 to obtain componentwise
bound and norm bound of ηηη = u− v. It is shown in Fig. 2
that the bounds hold over the domain.
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Figure 2: Componentwise bound (upper) and norm bound
(lower) for linear ODE system with constant coefficients
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7.3 NONLINEAR ODE – DUFFING EQUATION

In this subsection, we consider a Duffing oscillator, which
is characterized by the following 2nd order nonlinear ODE:

d2v

dt2
+ 3

dv

dt
+ 2v + εv3 = cos t, (32)

under initial conditions v(0) = 1 and v′(0) = 1, where
ε controls the nonlinearity of the equation. Using Alg.
4, we solve the equation on I = [0, 2] for linspaced
ε ∈ (−0.9, 0.9) using neural networks and bound the errors.
The input J to Alg. 4 is chosen to be 6. Namely, we expand
the solution and bound components from degree 0 to 6.

The analytical solution to Eq. 32 is complicated. Hence, we
use the RKF4(5) method to compute numerical solutions
that are close enough to exact solutions for visualization
purposes. See Fig. 3 for network solutions against RKF4(5)
solutions and Fig. 4 for error bounds against absolute error.

0 t 2
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1.00

1.25

ε = −0.900
0 t 2

0.75

1.00

1.25

ε = −0.643
0 t 2

0.75

1.00

ε = −0.386

0 t 2

0.75

1.00

ε = −0.129
0 t 2

0.5

1.0

ε = 0.129
0 t 2

0.5

1.0

ε = 0.386

0 t 2

0.5

1.0

ε = 0.643
0 t 2

0.5

1.0

ε = 0.900

deg 0

deg 0∼1

deg 0∼2

deg 0∼3

deg 0∼4

deg 0∼5

deg 0∼6

RKF45

Figure 3: RKF45 and Network Solutions (max-degree 0∼6)
to Duffing equation 32 for ε ∈ (−0.9, 0.9)
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Up to B5
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Figure 4: True Error vs. error bound (max-degree 0∼6) of
neural network solution to Duffing Equation 32 for ε ∈
(−0.9, 0.9)

7.4 LINEAR PDE SYSTEM WITH NONCONSTANT
COEFFICIENTS
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x′ = x2 + y2 + 1
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Figure 5: Characteristics curves of Eq. 33 (left) and Eq.
34 (right). The red curves, with staring points A to P , are
selected for visualization of absolute error and error bound
in Fig. 6.

7.4.1 PDE Error Bound Evaluation Using Alg. 6
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Figure 6: Absolute error and error bound on selected char-
acteristic curves. These characteristic curve start at points
A through P as shown in Fig. 5a. The blue solid curves are
absolute error along the characteristic curves and red dotted
curves are corresponding bounds.

1291



We try to solve the following first-order linear PDE,

(−x− y)
∂v

∂x
+ (x− y)

∂v

∂y
+ v = 3x− 2y (33)

in spatial domain Ω = [−1, 1]2. The boundary constraints
are v(x,±1) = 2x± 3 and v(±1, y) = 3y ± 2. The manu-
factured solution is given by v(x, y) = 2x+3y. The charac-

teristic curves are integral curves C :

{
x′(s) = −x− y
y′(s) = x− y , or

C :

{
x(s) = R0e

−s cos(s+ θ0)

y(s) = R0e
−s sin(s+ θ0)

, where R0 =
√
x2

0 + y2
0

and θ0 = atan2(y0, x0) are constants determined by the
starting point (x0, y0) ∈ Γ = ∂Ω. See Figure 5 for visual-
ization.

Since the analytical expression of the characteristic curves
is known, Alg. 6 can be applied to evaluate the bound on
each curve. We choose 16 characteristic curves with starting
points A, B, . . . , P , equidistantly placed on the boundary
(Fig. 5a). We plot the absolute error and the computed error
bound along these characteristic curves in Fig. 6. It can be
seen that absolute error lies strictly within the bounds.

7.4.2 PDE Error Bound Evaluation Using Alg. 5

Consider the following PDE

(x2 +y2 +1)
∂v

∂x
+(x2−y2 +2)

∂v

∂y
+(3−2x)v = f (34)

over domain Ω = [−1, 1]2, where f(x, y) = 6 − 4x. The
boundary constraints are v(−1, y) = 2 and v(x, 1) = 2,
and the manufactured solution is v(x, y) = 2.

The characteristic curves C :

{
x′(s) = x2 + y2 + 1

y′(s) = x2 − y2 + 2
are

given by a nonlinear ODE, which is hard to solve analyti-
cally. (See Fig. 5b for visualization) Therefore, Alg. 6 cannot
be applied to evaluate the error bound.

However, the coefficient (3−2x) is nonzero over domain Ω.
Hence, we can use Alg. 5 to compute a constant error bound
|η(x, y)| ≤ B(x, y) ≡ B for all (x, y) ∈ Ω. We visualize
the bound and the maximum absolute error max(x,y)∈Ω |η|
after each training epoch in Fig. 7. As expected, the bound
is loose, which is about an order of magnitude larger than
the max absolute error. Yet, it consistently holds true for
every epoch, even during the early stages of training, when
the network performs poorly.

8 CONCLUSION AND FUTURE WORK

This paper proposes various error-bounding algorithms for
any PINN solution to certain classes of ODEs and PDEs.
These algorithms only require the residual information r(·)
and the equation structure Dv = f as input. There are many

0 200 400 600 800 1000
Number of Training Epochs

10−4

10−3

10−2 B(x, y) ≡ B

max
(x,y)∈Ω

|η(x, y)|

Figure 7: Constant bound B, computed using Alg. 5, and
max absolute error over domain at different epochs of train-
ing.

real-world applications for which the exact solution v(·) is
unknown or hard to compute. However, the residual informa-
tion r(·) is usually, if not always, readily available. With our
proposed algorithms, PINNs can be trained until the error
is gauranteed to fall below a specified tolerance threshold.
The mathematical relationship between residual and error
bound also sheds light on optimizing PINN solutions for
future studies.

The error-bounding algorithms proposed in this paper only
apply to certain classes of ODEs and PDEs. However, the
insights of this paper can be beneficial to future work that
extends to more general classes of ODEs and PDEs, espe-
cially nonlinear ones. We also plan to apply these algorithms
stochastic differential equations, where the error bound is a
probabilistic tail bound.
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