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1 PROOF OF PROPOSITION 3

Equivalently, ρ-gap-adjusted misspecification (Definition 2) satisfies

|f(x)− f0(x)| ≤ ρ |f∗ − f0(x)| , ∀x ∈ X . (1)

Proof of preservation of max value: maxx∈X f(x) = f∗. Let f∗
w := maxx∈X f(x). We first prove f∗

w ≤ f∗ by contradic-
tion. Suppose f∗

w > f∗, since X is compact, there exists xw ∈ X such that f(xw) = f∗
w > f∗. Then by eq. (1) this

implies
f(xw)− f0(xw) ≤ ρ(f∗ − f0(xw)) ⇒ f∗ < f∗

w = f(xw) ≤ ρf∗ + (1− ρ)f0(xw) ≤ f∗

Contraction! Therefore, f∗
w ≤ f∗. On the other hand, choose x0 ∈ argmaxx∈X f0(x), then by eq. (1) f(x0) = f0(x0) = f∗.

This implies f∗
w ≥ f∗. Combing both results to obtain f∗

w = f∗.

Proof of preservation of maximizers: argmaxx f(x) = argmaxx f0(x). Using that f(x) ≤ ρf∗ + (1 − ρ)f0(x) and
maxx∈X f(x) = f∗, it is easy to verify argmaxx f(x) ⊂ argmaxx f0(x). On the other hand, if x′ ∈ argmaxx f0(x), then
by eq. (1) f(x′) = f0(x

′) = f∗ and this means argmaxx f0(x) ⊂ argmaxx f(x).

Proof of self-bounding property. This directly comes from the definition.

2 PROPERTY OF WEAK ρ-GAP-ADJUSTED MISSPECIFICATION

First we recall Definition 4.

Definition 1 (Restatement of Weak ρ-gap-adjusted misspecification). Denote f∗
w = maxx∈X f(x). Then we say f is (weak)

ρ-gap-adjusted misspecification approximation of f0 for a parameter 0 ≤ ρ < 1 if:

sup
x∈X

∣∣∣∣f(x)− f∗
w + f∗ − f0(x)

f∗ − f0(x)

∣∣∣∣ ≤ ρ.

Under the weak ρ-gap-adjusted misspecification condition, it no longer holds f∗
w = f∗. However, it still preserves the

maximizers.

Proposition 2. Under the weak ρ-gap-adjusted misspecification condition, it holds

argmax
x

f(x) = argmax
x

f0(x).
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Proof. Suppose x′ ∈ argmaxx f(x), then by definition

|f∗ − f0(x
′)| = |f(x′)− f∗

w + f∗ − f0(x
′)| ≤ ρ|f∗ − f0(x

′)| ⇒ (1− ρ)|f∗ − f0(x
′)| ≤ 0 ⇒ x′ ∈ argmax

x
f0(x).

On the other hand, if x′ ∈ argmaxx f0(x), then

|f∗
w − f(x′)| = |f(x′)− f∗

w + f∗ − f0(x
′)| ≤ ρ|f∗ − f0(x

′)| = 0 ⇒ x′ ∈ argmax
x

f(x).

The next proposition shows the weak ρ-adjusted misspecification condition characterizes the suboptimality gap between f
and f0.

Proposition 3. Denote g(x) := f∗
w − f(x) ≥ 0, g0(x) := f∗ − f0(x) ≥ 0, then the weak ρ-gap-adjusted misspecification

condition implies:
(1− ρ)g0(x) ≤ g(x) ≤ (1 + ρ)g0(x), x ∈ X .

This can be proved directly by the triangular inequality. This reveals the weak ρ-gap-adjusted misspecification condition
requires g(x) to live in the band [(1−ρ)g0(x), (1+ρ)g0(x)], and the concrete maximum values f∗

w and f∗ can be arbitrarily
different.

3 LINEAR BANDITS UNDER THE WEAK ρ-GAP-ADJUSTED MISSPECIFICATION

We need to slightly modify LinUCB [Abbasi-yadkori et al., 2011] and work with the following LinUCBw algorithm.

Algorithm 1 LinUCBw (adapted from Abbasi-yadkori et al. [2011])
Input: Predefined sequence βt for t = 1, 2, 3, ... as in eq. (2); Set λ = σ2/C2

w and Ball0 = W .
1: for t = 0, 1, 2, ... do

2: Select xt = argmaxx∈X max[w⊤,c]∈Ballt [w
⊤, c]

[
x
1

]
.

3: Observe yt = f0(xt) + ηt.
4: Update

Σt+1 = λId+1 +

t∑
i=0

[
xi

1

]
· [x⊤

i , 1] where Σ0 = λId+1.

5: Update [
ŵt+1

ĉt+1

]
= argmin

w,c
λ

∥∥∥∥[wc
]∥∥∥∥2

2

+

t∑
i=0

(w⊤xi + c− yi)
2
2.

6: Update

Ballt+1 =

{[
w
c

] ∣∣∣∣ ∥∥∥∥[wc
]
−

[
ŵt+1

ĉt+1

]∥∥∥∥2
Σt+1

≤ βt+1

}
.

7: end for

Theorem 4. Suppose Assumptions 5, 6, and 7 hold. W.l.o.g., assuming c∗ = f∗ − f∗
w ≤ F . Set

βt = 8σ2

(
1 + (d+ 1) log

(
1 +

tC2
b (C

2
w + F 2)

dσ2

)
+ 2 log

(
π2t2

3δ

))
. (2)



Then Algorithm 1 guarantees w.p. > 1− δ simultaneously for all T = 1, 2, ...

RT ≤ F + c∗ +

√
8(T − 1)βT−1(d+ 1)

(1− ρ)2
log

(
1 +

TC2
b (C

2
w + F 2)

dσ2

)
.

Remark 5. The result again shows that LinUCBw algorithm achieves Õ(
√
T ) cumulative regret and thus it is also a

no-regret algorithm under the weaker condition (Definition 4). Note Definition 4 is quite weak which even doesn’t require
the true function sits within the approximation function class.

Proof. The analysis is similar to the ρ-gap-adjusted case but includes c∗ = f∗ − f∗
w. For instance, let ∆w

t denote the
deviation term of our linear function from the true function at xt, then

∆w
t = f0(xt)− w⊤

∗ xt − c∗,

And our observation model (eq. (1)) becomes

yt = f0(xt) + ηt = w⊤
∗ xt + c∗ +∆w

t + ηt.

Then similar to Lemma 10, we have the following lemma, whose proof is nearly identical to Lemma 10.

Lemma 6 (Bound of deviation term). ∀t ∈ {0, 1, . . . , T − 1},

|∆t| ≤
ρ

1− ρ
w⊤

∗ (x∗ − xt).

We also provide the following lemma, which is the counterpart of Lemma 13.

Lemma 7. Define ut =

∥∥∥∥[xt

1

]∥∥∥∥
Σ−1

t

and assume βt is chosen such that w∗ ∈ Ballt. Then

w⊤
∗ (x∗ − xt) ≤ 2

√
βtut.

Proof. Let w̃, c̃ denote the parameter that achieves argmaxw,c∈Ballt w
⊤xt + c, by the optimality of xt,

w⊤
∗ x∗ − w⊤

∗ xt =
[
w⊤

∗ , c
∗] [x∗

1

]
−
[
w⊤

∗ , c
∗] [xt

1

]
≤

[
w̃⊤, c̃

] [xt

1

]
−
[
w⊤

∗ , c
∗] [xt

1

]
= (

[
w̃⊤, c̃

]
−
[
ŵ⊤

t , ĉt
]
+

[
ŵ⊤

t , ĉt
]
−

[
w⊤

∗ , c
∗]) [xt

1

]
≤

∥∥[w̃⊤, c̃
]
−
[
ŵ⊤

t , ĉt
]∥∥

Σt

∥∥∥∥[xt

1

]∥∥∥∥
Σ−1

t

+
∥∥[ŵ⊤

t , ĉt
]
−

[
w⊤

∗ , c
∗]∥∥

Σt

∥∥∥∥[xt

1

]∥∥∥∥
Σ−1

t

≤ 2
√
βtut

where the second inequality applies Holder’s inequality; the last line uses the definition of Ballt (note that both[
w̃⊤, c̃

]
,
[
w⊤

∗ , c
∗] ∈ Ballt).

The rest of the analysis follows the analysis of Theorem 8.

4 SIMULATION

In this section, we run a simulation on a 1-dimensional test function shown in Figure 1(a). Here we run the first 10 iterations
with uniform sampling and the remaining 100 iterations are using LinUCB algorithm. In Figure 1(b) we can see that
cumulative regret is increasing with uniform sampling but it doesn’t increase when running LinUCB. The reason behind it is
that under the gap-adjusted misspecification, LinUCB is able to quickly find the optimal point x∗ = 0.
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(a) 1-dimensional test function.
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Figure 1: Simulation function and result.
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