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Abstract

We consider the problem of sequentially maxim-
ising an unknown function over a set of actions
while ensuring that every sampled point has a
function value below a given safety threshold. We
model the function using kernel-based and Gaus-
sian process methods, while differing from previ-
ous works in our assumption that the function is
monotonically increasing with respect to a safety
variable. This assumption is motivated by various
practical applications such as adaptive clinical trial
design and robotics. Taking inspiration from the
GP-UCB and SAFEOPT algorithms, we propose
an algorithm, monotone safe UCB (M-SAFEUCB)
for this task. We show that M-SAFEUCB enjoys
theoretical guarantees in terms of safety, a suitably-
defined regret notion, and approximately finding
the entire safe boundary. In addition, we illustrate
that the monotonicity assumption yields signific-
ant benefits in terms of the guarantees obtained,
as well as algorithmic simplicity and efficiency.
We support our theoretical findings by perform-
ing empirical evaluations on a variety of functions,
including a simulated clinical trial experiment.

1 INTRODUCTION

The sequential optimisation of an unknown and expensive-
to-evaluate function f is a fundamental task with a number
of interesting challenges. This task arises in various real-
world applications, such as robotics [Lizotte et al., 2007],
hyperparameter tuning in machine learning [Snoek et al.,
2012], environmental monitoring [Srinivas et al., 2012],
adaptive clinical trial design [Takahashi and Suzuki, 2021b],
recommendation systems [Vanchinathan et al., 2014], and
many others. Gaussian process (GP) based techniques such
as GP-UCB [Srinivas et al., 2012], Thompson Sampling

[Thompson, 1933] and Expected Improvement [Mockus
et al., 1978] are particularly popular for this task.

In recent years, a variety of works have considered the
important issue of safety, where some actions (function
inputs) need to be avoided altogether. Various algorithms
such as SAFEOPT [Sui et al., 2015], STAGEOPT [Sui et al.,
2018] and SAFEOPT-MC [Berkenkamp et al., 2021] have
been proposed to tackle this problem. The main idea behind
these algorithms is to start with a safe seed set of inputs,
and sequentially expand and explore the candidate set of
potentially safe points to eventually identify a reachable
safe set and/or the maximiser within that set.

In this work, our main goal is to show that monotonicity
with respect to just a single input variable can be highly
beneficial for this task. Consider a function f that we would
like to maximise while ensuring that all selected points have
value at most h.1 We assume that the unknown function
f is monotonically increasing (not necessarily strictly in-
creasing) with respect to a safety variable s ∈ [0, 1], while
possibly remaining highly non-monotone with respect to the
remaining variables x. We consider performance measures
based on both a form of cumulative regret and a notion of
identifying the entire safe region. Briefly, the benefits of
monotonicity in s are:

(i) Our theoretical bounds have improved dependencies
over previous works, particularly with respect to the
domain size (see Appendix C.1 for details).

(ii) By exploiting the monotonicity, we can circumvent the
need to explicitly keep track of potential expanders, as
existing algorithms do.

(iii) Under monotonicity, continuity, and the mild additional
assumption that s = 0 is always safe, we show that
every safe point is reachable, which is not the case for
general non-monotone functions.

Intuitively, the presence of the safety variable allows the
1This is distinct from previous works that require a value of at

least h, and we discuss the differences in Section 2.
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algorithm to choose how cautious it should be while ex-
ploring the domain, and creates a more favourable function
landscape for exploration. For instance, the algorithm can
“back off” or “proceed with caution” (lower s) when con-
sidering less-explored x values, but subsequently act more
aggressively (higher s) when it becomes more confident that
it is safe to do so.

Applications: Consider the task of adaptive clinical trial
design, where the goal is to recruit patients for drug trials in
order to evaluate the safety and efficacy of a drug or drug
combinations [Coffey and Kairalla, 2008, Berry, 2006]. It is
well-accepted that patient characteristics play a significant
role in both safety and efficacy given a drug dose [Lee et al.,
2020]. Thus, it is helpful to model the drug dose as the
safety variable s, and patient characteristics as the variable
x, both of which influence the unknown toxicity, say ftox.
For many classes of drugs such as cytotoxic agents, the tox-
icity and efficacy both increase strictly as the drug dose is
increased [Chevret, 2006]. In such cases, for Phase I clinical
trials, it is usually necessary to find the Maximum Tolerated
Dose (MTD), which is the dose with the maximum toxicity
within the permitted threshold for the patient characteristics
under consideration [Aziz et al., 2021, Riviere et al., 2014,
Shen et al., 2020]. Formulating this task in our problem
setting can result in (i) maximisation of benefits (via regret
minimisation) and (ii) minimisation of harmful effects to
patients involved in the study (via safety constraints), while
simultaneously (iii) identifying safety information about the
entire set of patient characteristics (via sub-level set estima-
tion), each of which are important goals of adaptive clinical
trial design. GP optimisation has been recently used for this
task [Takahashi and Suzuki, 2021b,a], but the safety con-
straints were met in these works by being highly cautious in
dose increments (single step increments for discrete dosage
levels), and no theoretical guarantees were sought.

Problems in robotics may also serve as potential applications
for our problem setup. For example, consider the scenario
where a robot performs a task with certain parameters given
by the variable x, but that there also exists a parameter s
indicating the speed (or more generally, any measure of
“caution” with lower values being more cautious) at which
the task is attempted. Then, one may seek to optimise the
parameters while ensuring that s is never pushed too high to
become unsafe, leading to a natural monotonicity constraint.
We explore a simple inverted pendulum problem of this kind
in Section 5. We note that in some cases, it may be more
natural to have separate functions f and g for measuring
reward and safety, and we discuss such variations in Section
3.

Related Work: Sui et al. [2015] proposed the first al-
gorithm, SAFEOPT, for safe GP optimisation. STAGEOPT

was proposed by Sui et al. [2015] as a variation of SAFE-
OPT, where safe set finding and function optimisation

were separated into two distinct phases. Berkenkamp et al.
[2021] proposed a generalised version of SAFEOPT called
SAFEOPT-MC to tackle the problem when safety functions
are decoupled from the function being optimised. Other al-
gorithms such as GOOSE [Turchetta et al., 2019] seek to be
more goal-directed during safe set expansion. Safe explora-
tion using Gaussian processes has also been considered by
Schreiter et al. [2015], but for the goal of active learning
of the unknown function. To our knowledge, none of these
works have explored the benefits of having a safety variable
leading to monotonicity. Moreover, their theoretical guaran-
tees exhibit certain weaknesses with respect to the domain
size that we are able to circumvent; see Section 4 for the
details.

Another related line of work introduces algorithms such as
GOSAFE [Baumann et al., 2021] and GOSAFEOPT [Sukhija
et al., 2022] to address safe Bayesian optimisation problems.
Their setting is fundamentally different to ours, since they
consider a dynamic system with time-varying inputs, and
allow intervening with a safe backup policy when an im-
minent safety violation is detected in the original policy.
Our setup considers static functions without interventions
(which may not be feasible in some applications, e.g., once a
drug dose is administered it may not be possible to change).

A different approach to safe GP optimisation is taken in
[Amani et al., 2021], in which conditions are explored un-
der which an initial safe seed set can be sampled enough
times for the resulting samples alone to expand the safe
set significantly (and include the global safe maximiser).
However, this requires careful assumptions on the seed set
depending strongly on the kernel, and the idea appears to be
most suited to finite-dimensional feature spaces (e.g., linear
or polynomial kernels); see Appendix C.3 for discussion.

In a parallel line of work, the problem of level set estima-
tion and related settings involving excursion sets has been
considered, e.g., see [Gotovos et al., 2013, Bogunovic et al.,
2016, Bolin and Lindgren, 2015]. GP optimisation with
monotonicity assumptions has also been considered by Li
et al. [2017] and Wang and Welch [2018]. However, these
works do not consider safety constraints, and consequently,
the associated algorithms are significantly different.

A notable prior work combining safety and monotonicity is
[Wang et al., 2022], but they study a non-GP setting where
all the arms (corresponding to x in our setting) are modeled
separately, and the goal is best-arm identification. This leads
to a precise characterisation of the number of arm pulls.
However, their setup, algorithm, and results remain very
different from our work, where smoothness with respect to
x (as well as s) plays a crucial role.

Finally, safety has been considered in a variety of other
settings including linear bandits [Amani et al., 2019, Khezeli
and Bitar, 2020] and reinforcement learning [Turchetta et al.,
2016, Berkenkamp et al., 2017, Turchetta et al., 2020], but
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compared to the works outlined above for GP settings, these
are less directly relevant to ours.

Contributions: Summarising the above discussions, we
list our main contributions as follows:

• We study the problem of safe sequential optimisation
of an unknown function, and introduce the idea of
considering monotonicity of the function with respect
to a “safety” variable. We propose the monotone safe
UCB (M-SAFEUCB) algorithm for this problem.

• We show that with high probability, M-SAFEUCB
achieves sub-linear regret (for a suitably-defined re-
gret notion to follow), only selects safe actions, and
identifies the safe (sub-level) set of the function with
high accuracy.

• We experimentally evaluate M-SAFEUCB alongside
other baselines on a variety of functions, and demon-
strate that the resulting performance aligns with the
theoretical guarantees.

2 PROBLEM STATEMENT

We consider the problem of sequentially maximising a fixed
but unknown function f : D → R over a set of decisions
while satisfying safety constraints, where D = DS ×DX ,
DX ⊂ Rd is a compact set and DS = [0, 1]. As discussed
above, we assume that the function is monotonically in-
creasing in the first argument. At each round t, an algorithm
selects an action (st,xt) ∈ DS ×DX , and subsequently ob-
serves the noisy reward yt = f(st,xt)+εt. The action must
be chosen at round t such that it depends upon the actions
picked and the rewards observed up to round t− 1, denoted
by Ht−1 = {(sk,xk, yk) : k = 1, . . . , t− 1} (i.e., the his-
tory). The algorithm is also required to satisfy the safety
constraint f(st,xt) ≤ h ∀t ≥ 1 with high probability.

Goal: The goals of an algorithm in our problem setting
include maximising its cumulative reward and/or finding the
entire h-sub-level set of f , while only choosing safe actions.
These desiderata are formalised as follows. For cumulative
regret, we consider the following definition:

RT =

T∑
t=1

rt, where rt = h− f(st,xt), (1)

where we compare against h rather than maxs,x∈D f(s,x)
in view of the safety requirement. For the sub-level set, we
define

Lh(f) = {(s,x) ∈ D|f(s,x) ≤ h}, (2)

which we seek to approximate to high accuracy (see below).
For the safety requirement, we seek that the sampled points
satisfy f(st,xt) ≤ h ∀t ≥ 1 with high probability.

Returning to the notion of the safe sub-level set, we quantify
the quality of a solution L̂ returned by an algorithm after T
rounds, with respect to a given point (s,x) ∈ D, using the
following misclassification loss:

lh(s,x) =


max{0, h− f(s,x)} if (s,x) /∈ L̂,
∞, if (s,x) ∈ L̂ and (s,x) /∈ Lh(f),

0, if (s,x) ∈ L̂ and (s,x) ∈ Lh(f).
(3)

Essentially, this loss function penalises an algorithm heavily
for classifying unsafe points as safe, while the penalty for
classifying safe points as unsafe increases linearly with the
difference in the function value from the threshold. We re-
quire that the algorithm should return an ε-accurate solution
with probability at least 1− δ, i.e.,

P
{

max
s,x∈D

lh(s,x) ≤ ε
}
≥ 1− δ. (4)

We note that the notion of regret that we consider is primar-
ily of interest when coupled with (4), rather than in itself.
Small RT is generally desirable since it implies that we
are eventually sampling points with the highest possible
safe function value. However, one way of achieving small
RT might be to always choose the same x and gradually
increasing s until a low-regret point is found. The additional
condition (4) precludes this possibility.

Assumptions: Certain smoothness assumptions on the
function f are necessary in order to be able to provide the-
oretical guarantees. Similar to much of the earlier work in
the area of GP optimisation, we assume that f has bounded
norm in the reproducing kernel Hilbert space (RKHS) of
functions D → R, with positive semi-definite kernel func-
tion k : D × D → R. This RKHS, denoted by Hk(D), is
completely specified by its kernel function k(·, ·) and vice-
versa, with an inner product 〈·, ·〉k obeying the reproducing
property: f(z) = 〈f, k(z, ·)〉k ∀f ∈ Hk(D). The RKHS
norm ||f ||k =

√
〈f, f〉k is a measure of the smoothness

of f with respect to the kernel function k, and satisfies
f ∈ Hk(D) if and only if ||f ||k <∞. We assume a known
upper bound B on the RKHS norm of the unknown tar-
get function, i.e., ||f ||k ≤ B. We also adopt the standard
assumption of bounded variance: k(z, z) ≤ 1 ∀z ∈ D.

In addition, we make the following assumptions regarding
the function domain, monotonicity, and safety:

1. DS = [0, 1] is continuous, while DX can be either dis-
crete or continuous (our algorithms are written for the
discrete case, and we discuss the distinction between
the two in Appendix C.2);

2. The function f is monotonically increasing in the
first argument, i.e., for all x ∈ DX , f(s,x) is a non-
decreasing function of s ∈ DS ;
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3. The action (0,x) is safe for every x in the domain, i.e.,
for all x ∈ DX , f(0,x) ≤ h;

4. The function f exceeds the threshold h for at least one
point in the domain, i.e., max(s,x∈D) f(s,x) > h.

The third assumption above is natural since s = 0 corres-
ponds to the most cautious selection possible, and the fourth
assumption is mild since otherwise every action is safe and
hence no algorithm would ever choose an unsafe action.

Finally, the noise sequence {εt}t≥1 is assumed to be con-
ditionally R-sub-Gaussian for a fixed constant R ≥ 0, i.e.,

∀t ≥ 0,∀λ ∈ R,E
[
eλεt |Ft−1

]
≤ exp

(
λ2R2

2

)
(5)

where Ft−1 is the σ-algebra generated by the random vari-
ables {sk,xk, εk}t−1k=1 and xt.

Difference to Existing Settings: An important distinc-
tion between our work and certain previous ones (e.g.,
[Sui et al., 2015, 2018]) is that we consider all points be-
low the threshold to be safe, rather than all points above
the threshold. Our setting corresponds to trying to max-
imise a function while avoiding the risk of pushing it too
far (e.g., dosage in clinical trials), whereas the alternative
setting corresponds to needing to avoid excessively low-
performance decisions (e.g., parameter configurations that
may cause a drone to crash). The resulting algorithms are
somewhat different since in our setting, maximisation al-
gorithms will have a natural tendency to move closer to the
safety threshold.

While the above difference is important to keep in mind, it
is also worth noting that it becomes insignificant when one
considers variations of the problem with separate safety and
reward functions (see Section 3 for further discussion). In
addition, in our experiments we adapt SAFEOPT to suit our
setting.

3 PROPOSED ALGORITHM

Gaussian Process Model: As is common in prior works,
we consider algorithms that use Bayesian modeling (despite
the non-Bayesian problem formulation). For this purpose,
we use a Gaussian likelihood model for the observations,
and a Gaussian process (GP) prior for uncertainty over the
unknown function f . We let GP (µ(·), k(·, ·)) denote a GP
with mean µ and kernel k. In the following, we often shorten
the GP input (s,x) to z to simplify notation.

The algorithm uses a zero-mean GP, GP (0, k(·, ·)), with k
being the same as that defining the RKHS. The Gaussian
likelihood has an associated variance parameter, which we
denote by λ (i.e., corresponding to additive N (0, λ) noise
in the Bayesian model).

With the Bayesian model in place, we have the following
standard posterior update equations:

µt(z) = kt(z)T (Kt + λI)
−1

yt, (6)

kt (z, z′) = k (z, z′)− kt(z)T (Kt + λI)
−1
kt (z′) , (7)

σ2
t (z) = kt(z, z). (8)

Proposed Algorithm: We propose an algorithm called
monotone safe UCB (M-SAFEUCB), and provide its theor-
etical guarantees in Section 4. The key idea is to exploit the
knowledge that the function f is monotonically increasing
in the first argument, s, and thus, continually sample points
in the domain that have their upper confidence bound equal
to the threshold value h.

In more detail, M-SAFEUCB uses a (standard) combination
of the current posterior mean and standard deviation to
construct an upper confidence bound (UCB) envelope for
the function f over D, given by

UCBt−1(s,x) = µt−1(s,x) + βtσt−1(s,x), (9)

where βt is a time-dependent constant, that is set as per
Lemma 1 below. In each round t, it chooses a sample such
that UCBt−1(s,x) = h (favouring higher s in the rare case
of having multiple such s for a single x). This trades off
between exploration and exploitation, i.e., it leads to selec-
tion of more points close to the currently optimal solution
while exploring as well. If multiple such points are available
with UCB equal to h, then M-SAFEUCB selects the one
that has the maximum posterior variance, thus helping to
reduce uncertainty and encourage exploration.

To account for all possibilities that may arise in each round
t, we set the candidate s(x)t ∈ DS and the candidate set S(x)

t

for each x ∈ DX as follows:

• If there exists (s,x) ∈ D such that UCBt−1(s,x) = h,
then s(x)t = max{s : (s,x) ∈ D,UCBt−1(s,x) =

h} and S(x)
t = {(s(x)t ,x)};

• If ∀s ∈ DS , UCBt−1(s,x) > h, then s(x)t = 0 (based
on the assumption that for all x ∈ DX , f(0,x) ≤ h)
and S(x)

t = {(s(x)t ,x)};

• If ∀s ∈ DS , UCBt−1(s,x) < h, then S(x)
t = ∅.

Next, the set St is formed by taking the union over all
candidate sets S(x)

t , i.e., St =
⋃

x∈DX
S
(x)
t . Then, (st,xt)

is chosen by maximising the predictive variance:

(st,xt) = arg max
(s,x)∈St

σt−1(s,x). (10)

We note that if no (s,x) ∈ D satisfies µt−1(s,x) +
βtσt−1(s,x) ≥ h for a certain t ≤ T , then it must be
the case that with high probability, the entire function f lies
below the safety threshold. This is precluded by assumption
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Algorithm 1 M-SAFEUCB

Input: Prior GP (0, k), parameters R,B, λ, δ
for t = 1, . . . , T do

βt = B +R
√

2 (γt−1 + 1 + ln(1/δ))
St = ∅
for x ∈ DX do . find max. safe s∀x

if UCBt−1(s,x) > h∀s : (s,x) ∈ D then
s
(x)
t = 0

St = St ∪ {(s(x)t ,x)}
else if ∃s : (s,x) ∈ D, UCBt−1(s,x) = h then

s
(x)
t = max{s : (s,x) ∈ D,

UCBt−1(s,x) = h}
St = St ∪ {(s(x)t ,x)}

end if
end for
if St = ∅ then . if safe everywhere, set s = 1 ∀x

for x ∈ DX do
St = St ∪ {(1,x)}

end for
end if
(st,xt) = arg maxs,x∈St

σt−1(s,x)
Update posterior to get µt, σt

end for
UCBT (s,x) = min

1≤t≤T
UCBt(s,x)∀(s,x) ∈ D

for x ∈ DX do . form safe boundary
if UCBT (s,x) > h∀s : (s,x) ∈ D then

s
(x)
T = 0

else
s
(x)
T = max{s :(s,x) ∈ D, UCBT (s,x) ≤ h}

end if
end for
L̂T = {(s,x) ∈ D : s ≤ s(x)T }
return L̂T

4 of our problem statement. However, with a low probability,
it may also be the case that the noisy observations make
the function “appear” to be below the threshold h to the al-
gorithm. In this low probability scenario, ∀x ∈ DX , we set
s
(x)
t = 1 and select (st,xt) ∈ St as earlier by maximising

variance.

While we make the mild assumption that at least one unsafe
point exists, if it happens that f is safe for all s,x ∈ D,
the algorithm will still eventually identify s = 1 as safe for
every x. In this scenario, the problem essentially becomes
an unconstrained optimisation problem, and our notion of
regret is no longer appropriate (since every point has a strict
gap to h).

Finally, at the end of T rounds, the algorithm considers the
intersection of the confidence regions across all rounds and
all x ∈ DX , and forms an estimate of the safe sub-level set
with respect to the upper bound of this intersection (denoted

by UCBT (s,x)}) as follows:

s
(x)
T = max{s : (s,x) ∈ D,

UCBT (s,x) ≤ h}, ∀x ∈ DX , (11)

L̂T = {(s,x) ∈ D : s ≤ s(x)T }. (12)

Note on Two-Function Settings: Throughout the paper,
we focus on the case that the function f dictates both the
objective (higher is better) and the safety (too high is unsafe).
However, our ideas can also be applied in scenarios where
these functions differ; say, with f(s,x) being the objective
and g(s,x) dictating the safety. In the following, suppose
that whenever we query a point, we observe noisy samples
from both f and g. The two functions both have RKHS
norm at most B, and the algorithm can form two separate
GP posteriors for them.

First suppose that both f and g are monotone with respect
to s. Moreover, similar to the current setup, suppose that the
objective is to find the highest possible s associated with
each x. Then, one can simply apply our main algorithm to g,
with Theorem 2 guaranteeing that we (approximately) find
the entire safe boundary. Since both f and g are monotone,
the highest safe s for g is also the highest safe s for f , and
the overall problem is essentially unchanged compared to
the single-function setting. As an example, this scenario
corresponds to the task of finding the MTD in clinical trials
as discussed in section 1.

In general, one may be interested in scenarios where only g
is monotone with respect to s, whereas f is more general.
Even in such cases, Algorithm 1 could be used as an initial
step to find the safe boundary of g, as is guaranteed by
Algorithm 1. Then, the safe boundary could be passed to a
downstream optimiser that seeks to maximise f (either over
all safe (s,x), or over all s for each individual x). This is
akin to how the stage-wise algorithm in [Sui et al., 2018]
operates.

Finally, more sophisticated algorithms may be possible that
utilise information observed about f and g jointly through-
out the course of the algorithm, but such investigations are
left for future work.

Note on Contextual Settings: In some scenarios, it may
be useful to incorporate context variable c in the problem
setup, besides the action variables s,x. For example, a clin-
ical trial setting different from our previous motivating one
might consist of choosing a drug dose s (with monotone be-
havior) and the dosage of a different drug x (not necessarily
monotone), while also having access to patient character-
istics c (e.g., BMI). All of these impact the drug toxicity,
but in contrast to (s,x), it may be that c cannot be chosen
actively and is instead given by “nature”.

In such scenarios, Algorithm 1 can be readily extended to
incorporate context variables following the discussion on
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contextual safe Bayesian optimisation from [Berkenkamp
et al., 2021]. This approach allows joint modelling of the
unknown function with the variables (s,x, c), so that in-
formation can be shared across contexts during optimisation.
The proposed selection rule in this case would be: for the
given context ct, search through the x’s and find the highest
possible safe s associated with each x (using the UCB as
usual), and then among all candidate (s,x)’s, choose (st,xt)
to be the one with the highest posterior variance. Since the
idea behind this extension closely follows [Berkenkamp
et al., 2021], we do not elaborate on it further in this work.

4 THEORETICAL RESULTS

We present our main theoretical results in this section, under
the set of assumptions outlined in 2. The proofs are provided
in Appendix A. We note that in asymptotic statements, we
treat the dimension d and sub-Gaussian parameter R (see
(5)) as constants, and similarly treat the kernel as fixed.

Lemma 1. (Theorem 2, [Chowdhury and Gopalan, 2017])
Fix δ > 0, and suppose that βt is set as follows:

βt = B +R
√

2(γt−1 + 1 + ln (1/δ)). (13)

Then, we have the following with probability at least 1− δ:

|µt−1(s,x)− f(s,x)| ≤ βtσt−1(s,x), ∀x, s, t, (14)

where γt is the maximum information gain at time t:

γt := max
A⊂D:|A|=t

I(yA; fA). (15)

Here, I(yA; fA) denotes the mutual information between
fA = [f(x)]x∈A and yA = fA+εA, where εA ∼ N (0, λI).

This lemma follows from Theorem 2 from [Chowdhury
and Gopalan, 2017]. The quantity γt is ubiquitous in the
GP bandit literature, and quantifies the maximum possible
reduction in uncertainty about f after observing yA at a set
of points A ⊂ D.

Theorem 1. Under the setup and assumptions of Section
2, and the choice of βt in Lemma 1, M-SAFEUCB satisfies
the following regret bound with probability at least 1− δ:

RT = O
(
B
√
TγT +

√
TγT (γT + ln(1/δ))

)
. (16)

As an example, with the squared exponential (SE) kernel
on a compact subset D ⊂ Rd, γT is O(lnd+1 T ) (Srinivas
et al., 2010). Thus RT /T → 0 as T →∞, resulting in sub-
linear regret. The same holds for the Matérn kernel when
the smoothness parameter ν is not too small.

The following theorem formalises the statement that the
algorithm approximately identifies the entire safe region.

Theorem 2. Consider the setup and assumptions of Section
2, and the choice of βt in Lemma 1. With lh(s,x) as defined
in equation (3), M-SAFEUCB finds an ε-accurate solution
L̂ with probability at least 1− δ:

P
{

max
s,x∈D

lh(s,x) ≤ ε
}
≥ 1− δ, (17)

where ε scales as follows:

ε = O
(
B
√
γT /T +

√
(γT + ln(1/δ))γT /T

)
. (18)

Substituting the bound on γT stated above for the squared
exponential kernel (or the Matérn kernel when ν is not too
small), we find that ε→ 0 as T →∞.

The proof of Theorem 1 follows a similar general struc-
ture to regret analyses for GP-UCB and related algorithms
[Srinivas et al., 2012, Chowdhury and Gopalan, 2017]. In
contrast, Theorem 2 requires less standard techniques; see
Appendix A for the complete argument.

Dependence on DX : As we mentioned in Section 1, our
theory circumvents strong dependencies on the domain size
that are present in previous works for safe settings, and in
fact holds even for continuous domains. The guarantees
of SAFEOPT [Sui et al., 2015] (and related algorithms in
follow-up works) roughly state that the entire reachable safe
region, up to deviations of ε, will be identified with high
probability once the time horizon T satisfies

T

βT γT
≥ C|R̄0|

ε2
, (19)

where C is a suitably-defined constant, and R̄0 ⊆ DX is
a safe region that can potentially be reached from some
initial safe seed set. While their setup is slightly different
from ours (see Section 2), the associated guarantees readily
transfer without significant modification. Under the mild
assumption that R̄0 occupies a constant fraction of the do-
main, the requirement in (19) incurs a linear dependence on
the domain size.

Our main results (Theorems 1 and 2) show that, in fact, the
dependence on the domain size can be avoided altogether
when we have the additional variable s that the function is
monotone with respect to. We refer the reader to Appendix
C.1 for further discussion in this regard.

Dependence on γT and T : Our regret bound in Theorem
1 incurs γT

√
T dependence on T (up to logarithmic terms),

and our convergence rate in Theorem 2 analogously incurs
dependence γT√

T
. This dependence matches that of GP-UCB

[Srinivas et al., 2012] and other related algorithms for the
standard (non-safe) setting, as well as SAFEOPT (and oth-
ers) for the safe setting [Sui et al., 2015].

In the standard setting, it is known that the scaling can be
improved to

√
γT
T for simple regret [Vakili et al., 2021], and
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Figure 1: The results of running M-SAFEUCB on the functions ftox (first column), fsyn1
(second column) and fsyn2

(third
column). All functions are monotonically increasing in the input variable s. The first row shows the safe boundary as
predicted by the algorithm (in blue) along with the actual safe boundary (in red), overlaid on the plot of the function. The
second row shows the plots for the instantaneous and average cumulative regrets incurred by M-SAFEUCB, as well as
SAFEOPT and PREDVAR (SAFEOPT-u denotes using an underestimate of the Lipschitz constant). The last row shows the
maximum distance to the safe boundary across x ∈ [0, 2] as a function of the time step. In each case, M-SAFEUCB is able
to find the safe boundary almost exactly without sampling unsafe points, and the regret decreases towards zero.

√
TγT for cumulative regret [Li and Scarlett, 2022, Cam-

illeri et al., 2021]; these improved bounds are near-optimal
for common kernels such as Matérn. However, the tech-
niques for attaining this improvement appear to be difficult
to apply in the safe setting. For instance, the approaches of
[Li and Scarlett, 2022] and [Camilleri et al., 2021] use a
small number of batches (e.g., O(log T ) or O(log log T )).
In our setting, the safe set cannot be confidently expanded
until the end of each batch, and this may be too infrequent
to eventually find the safe boundary. In view of these diffi-
culties, we believe that attaining near-optimal γT depend-
ence in safe settings would be of significant interest for
future work.

5 EXPERIMENTS

In this section, we present experimental results for M-
SAFEUCB, and compare the performance to other repres-
entative algorithms for safe Bayesian optimisation 2. The
experiments serve to (i) investigate the cumulative regret of
M-SAFEUCB and compare against baselines, (ii) compare
the boundary of the sub-level set estimated by M-SAFEUCB
with the actual boundary, and (iii) verify that unsafe points
are not sampled during the optimisation. We emphasise that
the main goal of this paper is not to have our algorithm out-
perform or “replace” any baselines. Rather, our main goal is
to investigate the benefits of monotonicity, particularly from
a theoretical standpoint. We provide the main information

2The code is available at https://github.com/
arpanlosalka/m-safeucb.
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regarding the functions, algorithms, and implementation
here, and provide more details in Appendix B.

Simulated Clinical Trial: We first evaluate the perform-
ance of M-SAFEUCB on a synthetic function that simulates
dose-toxicity response of certain drugs. We model toxicity
using the logistic function following [Wang et al., 2022],
and specifically consider the following:

ftox(d, a) =
1

1 + e−θda
(20)

where d and a represent the drug dose (safety variable s) and
the patient’s age (x) respectively. As discussed in Section
1, we consider the scenario where both the drug toxicity
and efficacy increase monotonically with increasing dosage,
and thus, the task reduces to finding the maximum tolerated
dose (MTD). We note that while the logistic function is often
used to model dose-toxicity response, we incorporate the
patient’s age in the function here, such that the toxicity of
a drug dose increases as the patient’s age increases. This
simulates the scenario that the MTD for a patient with a
higher age is lower than that for a patient with a lower
age. We set θ = 5, the toxicity threshold h = 0.9, and the
range of inputs is set as d ∈ [0, 1], a ∈ [0, 2] (after suitable
scale/shift).

We use the Matérn- 52 kernel with trainable length-scale and
variance parameters with log-normal priors. Based on min-
imal manual tuning and seeking simplicity, βt is set to 5 and
is kept constant throughout the optimisation (as in common
in the Bayesian optimisation literature).

Fig. 1 shows the results obtained by running M-SAFEUCB,
including the boundary of the safe set estimated, the regret
incurred, and the worst-case (over x) distance to the true safe
boundary as a function of time. In each case, M-SAFEUCB
succeeds in estimating the boundary very closely without
sampling unsafe points, and the instantaneous regret goes to
zero, indicating sub-linear cumulative regret.

We compare the performance of M-SAFEUCB with the
SAFEOPT algorithm [Sui et al., 2015], and an active learn-
ing algorithm PREDVAR, that simply selects the point with
the highest posterior variance (among those known to be
safe) in each round [Schreiter et al., 2015]. We found that
all algorithms maintain the safety requirement, and are
roughly equally effective at identifying the safe region. In
terms of regret, however, PREDVAR performs worse, and
M-SAFEUCB tends to be best.

We note here that we ran the SAFEOPT by using the correct
estimate of the Lipschitz constant L, as well as an under-
estimate, to demonstrate the effect on performance when a
proper estimate of L is unavailable (SAFEOPT-u in Figure
1). We found that this can result in significantly degraded
performance of SAFEOPT when L is underestimated (see
Appendix B for more discussion on the effect of L). Fur-
ther, SAFEOPT incurs a substantially higher computation
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Figure 2: Results of running M-SAFEUCB, SAFEOPT and
PREDVAR on the inverted pendulum swing-up problem. The
top image shows the plots for the instantaneous and average
cumulative regrets incurred by the algorithms. The bottom
image shows the maximum distance to the safe boundary
across x for the algorithms as a function of the time step.

time due to the requirement of finding the set of potential
expanders.

Oscillating Synthetic Functions: Next, we evaluate the
performance of M-SAFEUCB on two functions with a
more complex form of the safe boundary. The functions
are defined as follows:

fsyn1
(s, x) = (1 + s) (1 + cos(10x)) ,

fsyn2
(s, x) = s (exp(x) sin(10x) + sin(5x) + 5) /3.

(21)
Both functions are monotonically increasing in the input
variable s, and satisfy the remaining assumptions, i.e., ∀x ∈
[0, 2], f(0, x) ≤ h and max(s,x)∈D f(s, x) > h, where the
input range is set to s ∈ [0, 1], x ∈ [0, 2] and the h is set to
2. We use the Matérn- 52 kernel as earlier, and set βt to 5 for
fsyn1

, and 10 for fsyn2
.

Fig. 1 shows the results obtained by running M-SAFEUCB,
as well as SAFEOPT and PREDVAR. Similar to the earlier
results, M-SAFEUCB achieves sub-linear regret and finds
the entire safe boundary while satisfying safety constraints.
SAFEOPT also shows similar performance when a good es-
timate of L is available. PREDVAR and SAFEOPT-u perform
worse in terms of regret, as can be expected.

Inverted Pendulum: We consider the inverted pendulum
swing-up problem, a classic control task from the OpenAI
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Figure 3: Results of running M-SAFEUCB, SAFEOPT and PREDVAR on the function fsyn3
(s,x) given by (22). The left

image shows the plots for the instantaneous and average cumulative regrets incurred by the three algorithms. The right
image shows the maximum distance to the safe boundary across x for the three algorithms as a function of the time step.

Gym [Brockman et al., 2016] as a representative example of
problems from robotics that fit into our problem setup. The
goal of this task is to apply a torque to the free end of the
pendulum to swing it to an upright position, starting from a
random initial position. We modify the environment to suit
the assumptions of our problem statement (see Appendix B
for details). The algorithm is supposed to choose the initial
torque that is applied to the pendulum, and the motion is
simulated for 100 time steps. We modify the reward function
as follows: (i) it equals the original reward if the pendulum
does not cross the upright position, (ii) it equals zero if the
pendulum reaches the upright position with zero angular
velocity, and (iii) if the upright position is crossed, then
we let the reward equal the angular velocity at the time of
crossing. These changes are made primarily to ensure that
the resulting reward function is smooth, and the action of not
applying a torque (s = 0) is safe for all starting positions.

The goal is to maximise the reward function, while ensuring
that the upright position is not crossed (thus, h = 0), i.e.,
case (ii) above is the optimal one, and case (iii) is unsafe.

The experimental results of running M-SAFEUCB on this
setup are presented in Figure 2, while comparing with SAFE-
OPT and PREDVAR. We again observe strong similarities
in terms of satisfying the safety threshold and finding the
safe region. In this case we find that SAFEOPT also closely
matches M-SAFEUCB in terms of regret, albeit at the cost
of much higher computation time.

3D Input: Similar to the earlier experiments involving
synthetic functions with 2D inputs, we evaluate the perform-
ance of M-SAFEUCB on the following function with 3D
inputs:

fsyn3
(s,x) = s2 + x21 + x22, (22)

where s denotes the safety variable and x = (x1, x2) de-
notes the other input variable. The domain of each variable
is set to [0, 1], and the safety threshold is set to h = 2, thus
satisfying the assumptions that for all x ∈ DX , f(0,x) ≤ h,

and max(s,x)∈D f(s,x) > h. The average cumulative re-
gret and the instantaneous regret for M-SAFEUCB along
with other baseline algorithms are shown in Figure 3. We
mostly observe similar behavior to the 2D case, except that
PREDVAR now incurs larger error bars.

Summary: Overall, our experimental results illustrate that
(i) explicit expansion is not necessary under our assumed
monotonicity conditions, and (ii) monotonicity not only
benefits our proposed algorithm, but can also benefit other
baselines and safe GP exploration methods in general.

6 CONCLUSION

We have demonstrated that monotonicity with respect to a
single safety variable can have significant benefits for safe
GP exploration and optimisation, including improved the-
oretical guarantees, algorithmic simplicity, and every safe
point being reachable under mild conditions. Potential dir-
ections for future work include (i) seeking

√
γT (rather than

γT ) dependence in the theoretical bounds, (ii) further study-
ing more general scenarios with separate functions for safety
and reward, (iii) determining other helpful function proper-
ties beyond monotonicity, and (iv) studying extensions to
reinforcement learning settings, possibly either offline or
online.
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