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A CORRECTNESS AND SECURITY ANALYSIS OF PP-EXP

A.1 PROOF OF THEOREM 1

In terms of algorithm correctness, we need to consider the problem of overflow or underflow errors during the execution of
Algorithm 2. First, the PP-Exp algorithm involves computations on two algebraic structures, namely, the ring of integers
ZL modulo L and the fixed-point set Q<ZL,lf>. Specifically, the operations on shares are performed on ZL and others are
performed on Q<ZL,lf>.

Underflow: The PP-Exp has the risk of underflow when calculating e−ř and eď in Line 5 and Line 13 of Algorithm 2. The
minimum value of e−ř and eď is eumin−řmax . To guarantee that PP-Exp will not overflow during computation, we need
ensure that eumin−řmax can be expressed as a fixed-point number with precision lf . This is equivalent to eumin−řmax ·2lf ≥ 1.
Therefore, lf ≥ (řmax − umin) log

e
2 is needed to ensure that PP-Exp does not underflow during the calculation.

Overflow: PP-Exp has the potential to overflow when computing [eu]j for j ∈ {0, 1} in Line 14. Since [eu]j is the share of
eu, the maximum value of the reconstruction process is

[eumax ]0 + [eumax ]1 = eumax+ř · 2lf · ([e−ř]0 + [e−ř]1) = eumax · 22lf

according to Line 14 of Algorithm 2. Therefore, eumax · 22lf ≤ 2l−1 is required to ensure that the reconstruction process
does not overflow. As u < 0 (i.e., umax = 0), it is achieved that PP-Exp does not overflow if lf < l−1

2 .

A.2 PROOF OF THEOREM 2

In terms of algorithm security, we analyze the probability of PP-Exp privacy leakage and the expected degree of information
leakage. The number of possible values of u is mu and the number of possible values of r is mr, then the probability that
the algorithm leads to additional privacy leakage of input u is

(1 + 2 + · · ·+mu) · 2
mumr

=
mu · (mu − 1)

mumr
=

mu − 1

mr
. (1)

The probability that the PP-Exp is secure is 1− mu−1
mr

= mr−mu+1
mr

.

Since the exponents are all negative in the Gaussian process regression, the number of u values is reduced by half. This
allows the probability of input u leakage to be further reduced. For example, when lf = 229, supposing the input u takes
values in the range [−4, 0] and r takes values in the range [−16, 16) (i.e., the number of values of u and r are 231 + 1 and
234 + 1, respectively), the probability that the algorithm to be secure is 234−231

234 = 7
8 .

The expected degree of information leakage is used to describe the amount of privacy leakage of the PP-Exp algorithm.
It can be understood by the following simple example. Suppose u ∈ {−2,−1, 0}, r ∈ {−2,−1, 0, 1, 2} and d = u+ r ∈
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{−4,−3,−2,−1, 0, 1, 2}. The probabilities of d taking different values are as follows:

Pr{d = −4} = Pr{d = 2} = 1
15 ,

Pr{d = −3} = Pr{d = 1} = 2
15 ,

Pr{d = −2} = Pr{d = −1} = Pr{d = 0} = 3
15 .

(2)

If d ∈ {−2,−1, 0}, u can take any of −2,−1, 0 such that no additional information about u is revealed by d. Therefore,
the degree of information leakage of u is 3

15 · 1
3 = 1

5 . If d ∈ {−4, 2}, u will only correspond to unique values, and the
degree of information leakage of u is 2 · 1

15 · 1. If d ∈ {−3, 1}, there are two possible values of u. The degree of information
leakage of u is 2 · 2

15 · 1
2 = 2

15 . Therefore, the degree of information leakage of u averaged over d ∈ {−4,−3, 1, 2} is
2
15 + 2

15 + 1
5 = 7

15 .

In PP-Exp, there are 2k
mumr

, k = 1, 2, · · · ,mu − 1 probabilities that mu − k possible values of the input u are excluded by
d. Therefore, the average degree of information leakage of input u is

(1− mu − 1

mr
) · 1

mu
+

mu−1∑
k=1

(
2k

mumr
) · 1

k
=

mr −mu + 1

mumr
+

2(mu − 1)

mumr
=

mu +mr − 1

mu ·mr
. (3)

It is important to note that the PP-Exp algorithm only exposes the exact value of u when the maximum and minimum values
are in the range where u and r are taken simultaneously. This probability is

2

mn
=

2

(231 + 1) · (234 + 1)
<

2

231 · 234
=

1

264
. (4)

B PRIVACY-PRESERVING MATRIX INVERSION

In this section, we will give the construction details of the privacy-preserving matrix inversion (PP-MI) operation. The main
idea of the PP-MI is to transform the matrix inversion process into MPC-friendly operations such as multiplication and
division. Next, we will first briefly recall the process of positive definite matrix inversion via Cholesky decomposition and
then provide the pseudo-code of the PP-MI algorithm.

Let U = (uh,k)h,k=1,2,...,n be an n× n positive definite matrix. It can be decomposed as U = LDL⊤ where L is a unit
lower triangular matrix and D is a diagonal matrix. Let dk be the kth diagonal element of D for k = 1, . . . , n. We can

Algorithm 1 Privacy-preserving Cholesky decomposition
Setup. The servers determine an integer ring ZL.
Input. S0 holds the share [U]0; S1 hold the share [U]1.
1: // Offline phase:
2: T generates A,B ∈ Zn×n

L randomly, and calculates C = AB;
3: T sends ([A]j , [B]j , [C]j) to Sj .
4: // Online phase:
5: for j ∈ {0, 1} do:
6: [d1]j ← [u1,1]j ;
7: Sj calculates [l1:n,1]j = [u1:n,1]j/[u1,1]j by calling PP-Div;
8: for k ∈ {2, 3, . . . , n} do:
9: Sj calculates [dk]j = [uk,k]j − [

∑k−1
m=1 l

2
k,mdm]j by calling PP-MM;

10: Sj calculates [l̂k+1:n,k]j = [uk+1:n,k]j − [
∑k−1

m=1 lk,mdmlk+1:n,m]j by calling PP-MM;
11: Sj calculates [lk+1:n,k]j = [l̂k+1:n,k]j/[dk]j by calling PP-Div;
12: end for
13: end for ▷ Sj gets [L]j , [D]j .
Output. Sj output the share [L]j , [D]j for j ∈ {0, 1}.



Algorithm 2 Privacy-preserving forward
Setup. The servers determine an integer ring ZL.
Input. S0 holds the share [U]0, [L]0; S1 hold the share [U]1, [L]1.
1: // Offline phase:
2: T generates A,B ∈ Zn×n

L randomly, and calculates C = AB;
3: T sends ([A]j , [B]j , [C]j) to Sj .
4: // Online phase:
5: v1,1 ← 1
6: for j ∈ {0, 1} do
7: for k ∈ {2, 3, . . . , n} do
8: Sj calculates [vk,1:k−1]j = −[

∑k−1
m=1 vm,1:k−1lk,m]j by calling PP-MM;

9: end for
10: end for ▷ Sj gets [V]j .
Output. Sj outputs the share [V]j for j ∈ {0, 1}.

Algorithm 3 Privacy-preserving backward
Setup. The servers determine an integer ring ZL.
Input. S0 holds the share [V]0, [L]0, [D]0; S1 hold the share [V]1, [L]1, [D]1.
1: // Offline phase:
2: T generates A,B ∈ Zn×n

L randomly, and calculates C = AB;
3: T sends ([A]j , [B]j , [C]j) to Sj .
4: // Online phase:
5: Sj calculates [Λ]j = [V⊤]j [D

−1]j [V]j by calling PP-Div and PP-MM. ▷ Sj gets [Λ]j .
Output. Sj outputs the share [Λ]j for j ∈ {0, 1}.

calculate L,D through (5). For k = 1, 2, . . . , n and h = k + 1, k + 2, . . . , n.
dk = uk,k −

k−1∑
m=1

l2k,m · dm ,

lh,k = (uh,k −
k−1∑
m=1

lh,m · lk,m · dm)/dk .

(5)

Supposing UΛ = I for a given n× n identity matrix I. Next, we will introduce how to compute Λ from I,L, and D. Then,
we can have U−1 = Λ.

Let V ≜ DL⊤Λ. Then, UΛ = (LDL⊤)Λ = LV = I and V is a unit lower triangular matrix. For k = 1, 2, . . . , n and
h = k + 1, k + 2, . . . , n, we can calculate each element of V as:

vh,k = −
h−1∑
m=1

vm,k · lh,m. (6)

we can calculate the matrices Λ using (7):

Λ = U−1 = ((LDL⊤))−1 = (L−1)⊤D−1L−1 = V⊤D−1V. (7)

Based on equations (5), (6), and (7), we can implement PP-MI by reasonably invoking privacy-preserving multiplication
(PP-MM) and privacy-preserving division (PP-Div) in Knott et al. [2021]. Let U be the an n × n positive definite
matrix, ua;b,k:h ≜ (ui,j)

j=k,...,h
i=a,...,b . The PP-MI algorithm for U consists of three parts, and their pseudo-codes refer to

the Algorithms 1-3. Note that the pseudo-codes are note exactly the same as (5)-(7) since we vectorize some steps for
accelerating the computation.

C COMMUNICATION COMPLEXITY ANALYSIS

In this section, we will analyze the communication complexity of PP-MI step by step. We only analyze the communication
complexity in the online phase. The process of the offline phase can be done by the server during idle time.



For PP-MI, we will analyze the communication cost for Algorithms 1, 2 and 3, separately. For Algorithm 1, there is 1
vector-wise division in line 7. For each k = 2, ..., n− 1, there are 4 rounds of vector-wise multiplication for lines 9-10 and 1
vector-wise division for line 11. When k = n, there are only 2 rounds of vector-wise multiplication for line 9. We do not
need to compute lines 10-11 when k = n. There are 17 rounds of communication for each element/vector-wise PP-Div
and 1 round of communication for each element/vector-wise PP-MM. Consequently, the total communication round for
Algorithm 1 is 17 + (n− 2) ∗ (4 + 17) + 2 = 21n− 23. Since there are O(n3) element-wise multiplications and O(n2)
element-wise divisions included in Algorithm 1, its communication complexity is O(n3l).

For Algorithm 2, it includes 1 vector-wise multiplication for each k = 2, . . . , n and each round of computation (i.e., line
8 for each k) consists of (k − 1)2 element-wise multiplications. Therefore, Algorithm 2 incurs a total of n− 1 rounds of
communication and its communication complexity is O(n3l).

For Algorithm 3, it contains 1 matrix division and 1 matrix multiplication with n2 elements in line 5. Therefore, the total
number of communication rounds required to execute Algorithm 3 is 17 + 1 = 18. The communication complexity is
O(n2l).

In summary, the PP-MI algorithm incurs 21n−23+n−1+18 = 22n−6 rounds of communication and the communication
complexity is O(n3l).

D ADDITIONAL EXPERIMENTAL RESULTS (PP-GPR VS. DP-GPR)

Another technique that has been widely used to achieve privacy preservation in machine learning is differential-
privacy (DP) [Dwork et al., 2014]. By adding noise that satisfies the privacy budget, DP-based privacy-preserving machine
learning algorithms achieve some privacy protection at the expense of the accuracy of the model. In the domain of Gaussian
process regression (GPR) algorithms, Smith et al. [2018] proposed a significant contribution by presenting the first privacy-
preserving GPR algorithm. However, it is important to note that their approach only safeguards the privacy of the model
outputs y through the addition of noise levels that adhere to a given privacy budget. Consequently, their algorithm falls short
of achieving complete protection for both the model inputs and outputs.

To demonstrate the effectiveness of our algorithm, we present the loss of predictive mean of DP-GPR on the diabetes dataset
for different levels of DP guarantee (i.e., varying ϵ) using the SE kernel. As can be seen, even with a large privacy budget
(i.e., ϵ = 1.0), DP-GPR incurs significantly larger computational errors due to the additional DP noise compared to the
proposed PP-GPR. The Lossµ of our proposed algorithm is kept below 0.01% (Table 2 in the main paper).

Table 1: Comparison of our algorithm with the DP-based algorithm in the relative difference Lossµ.

n Test ϵ = 1.0 ϵ = 0.5 ϵ = 0.2 Ours
80 20 18.6%(±23.4) 42.9%(±188.3) 96.6%(±584.8) 0.0007%(±3.6e− 04)

150 50 27.8%(±19.4) 61.2%(±311.6) 148.6%(±1457.7) 0.0018%(±1.3e− 03)
300 100 18.3%(±10.5) 33.5%(±23.7) 80.6%(±133.3) 0.0058%(±2.5e− 03)
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