
DeepGD3: Unknown-Aware Deep Generative/Discriminative Hybrid Defect
Detector for PCB Soldering Inspection

(Supplementary Material)

Ching-Wen Ma1 Yanwei Liu1

1College of Artificial Intelligence, National Yang Ming Chiao Tung University, Tainan, Taiwan

A VISUAL EXPLANATION OF THE PREDICTION CONVERTER

τ0 controls the variance of Gaussians. If it is small, the Gaussian looks shaper. If it is large, the Gaussian looks wider.
Figure. 1 explain this concept. Bayesian optimization then optimizes the shape of Gaussians, making them proper for
thresholding.

Figure 1: The effect of τ0 on the shape of probability density function. Black curve: the baseline shape of the probability
density function. Red curve: smaller τ0 makes the shape of the probability density function concentrated. Blue curve: larger
τ0 makes the shape of the probability density function wider.

τ1 and τ2 adjust the thresholds h1j,n and h1j,n by adjusting the variance of the corresponding Gaussians. A larger τ1 makes
h1j,n smaller, resulting in more samples being classified as good samples. A larger τ2 makes h2j,n smaller, resulting in fewer

In order to classify samples, we need to choose standard deviations for the probability

density function of the Gaussian mixture model. 𝜏𝑗
1 and 𝜏𝑗

2 respectively. (𝜏𝑗
1, 𝜏𝑗

2:

standard deviation threshold 1, 2 for GMM model j)

ℎ𝑗,𝑛
2

The larger 𝜏𝑗
1 is, the more test

samples will be classified as
good samples.

ℎ𝑗,𝑛
1

The smaller 𝜏𝑗
1 is, the fewer

test samples will be classified as
good samples.

ℎ𝑗,𝑛
2

ℎ𝑗,𝑛
1

Figure 2: The effect of τ1 and h1j,n. The larger the τ1 is, or similarly, the smaller the h1j,n is, the more test samples will be
classified as good samples.

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<machingwen@nycu.edu.tw>?Subject=DeepGD3

In order to classify samples, we need to choose standard deviations for the probability

density function of the Gaussian mixture model. 𝜏𝑗
1 and 𝜏𝑗

2 respectively. (𝜏𝑗
1, 𝜏𝑗

2:

standard deviation threshold 1, 2 for GMM model j)

The larger 𝜏𝑗
2 is, the fewer test

samples will be classified as
unknown samples.

The smaller 𝜏𝑗
2 is, the more test

samples will be classified as
unknown samples.

ℎ𝑗,𝑛
1

ℎ𝑗,𝑛
2

ℎ𝑗,𝑛
1

ℎ𝑗,𝑛
2

Figure 3: The effect of τ2 and h2j,n. The larger the τ2 is, or similarly, the smaller the h2j,n is, the fewer test samples will be
classified as unknown samples.

samples being classified as unknown samples. Figure 2 and Figure 3 explain this concept. Bayesian optimization then
optimizes τ1 and τ2 for maximizing harmonic score H in main paper’s Equation 5.

B ADDITIONAL EXPERIMENTAL DETAILS

We fine-tuned the MobileNetV3 large model pre-trained on ImageNet [Deng et al., 2009] using PyTorch and trained the
defect and component classifiers.

The default hyperparameters were as follows: The number of training epochs was 30. The initial learning rate was 0.05. We
used linear warm-up for the first 5 epochs and decay the learning rate with the cosine annealing scheduler; For the gradient
descent optimization algorithm, stochastic gradient descent (SGD) was used; the momentum and weight decay were set at
0.9 and 0.0001. The input image was 224 × 224 color images.

In addition, the early stop technique was applied to prevent overfitting. We applied random horizontal flip, random vertical
flip, color jitter, and random grayscale to the data loader of the training set. We did not apply any image augmentation to the
validation and test set. A single NVIDIA Tesla V100 GPU was used for all experiments.

C ADDITIONAL SIMULATION RESULTS FOR ABLATION STUDY

We investigated the effects of (a) not including the good new compoent samples in the training data and (b) not using the
combiner.

Comparisons between not including and including good new component samples in the training data. Table 1 shows
the effects of including and not including good new component samples in the training data for all test samples, i.e. both old
and new componet test samples. Table 2 and Table 3 show the performances for the old and new component test samples,
respectively. The (·)− symbol indicates training without including good new component samples.

Observing all the three tables, we notice that Expert 1 shows a lower overkill rate with including good new component
samples in the training data, suggesting that the good new component samples help improve performance. Expert 2’s leakage
rates are greatly reduced when good new component samples are available during training. For the Hybrid Expert, if there
are no good new component samples during the training period, the shared fully connected network fθ2 may not be able to
form proper clusters for these new components. As a result, the GMM model will not be able to correctly classify the new
component samples, resulting in a higher unknown rate. However, both the overkill rates and the leakage rates still remains
low. This implies that even if good new component samples are not available during training, the Hybrid Expert remains
trustworthy.

Comparisions between not using and using the prediction combiner Table 4 shows the performance of ŷ1def , ŷ2def , and
ŷdef . The results show that ŷ1def produces a high leakage rate with a high standard deviation, and ŷ2def achieves 0.691% ±
0.974% in terms of leakage rate, but also produces a high overkill rate. The prediction combiner combines ŷ1def and ŷ2def ,
achieving an overkill rate of 0.108% ± 0.033% and a leakage rate of 0.063% ± 0.075%, with an unknown rate of 3.706% ±
2.270%.

Table 1: Comparisons between not including (·)− and including (·) good new compoent samples as additional training data.
The test performances for all test samlpes, i.e. both old and new component test samples.

Overkill rate (%) Leakage rate (%) Unknown rate (%)

Expert 1− 1.773 ± 1.459 0.327 ± 0.463 -

Expert 1 0.015 ± 0.008 1.827 ± 3.063 -

Expert 2− 3.650 ± 2.902 11.419 ± 19.321 0.000 ± 0.000

Expert 2 1.954 ± 0.724 1.942 ± 1.337 0.000 ± 0.000

Hybrid Expert− 0.189 ± 0.266 0.074 ± 0.114 26.089 ± 40.843

Hybrid Expert 0.108 ± 0.033 0.063 ± 0.075 3.706 ± 2.270

Table 2: Comparisons between not including (·)− and including (·) good new compoent samples as additional training data.
The test performances for old component test samples.

Overkill rate (%) Leakage rate (%) Unknown rate (%)

Expert 1− 0.097 ± 0.146 0.028 ± 0.018 -

Expert 1 0.017 ± 0.007 0.021 ± 0.011 -

Expert 2− 3.293 ± 5.306 9.268 ± 15.373 0.000 ± 0.000

Expert 2 1.282 ± 0.192 2.257 ± 1.495 0.000 ± 0.000

Hybrid Expert− 0.007 ± 0.010 0.042 ± 0.055 18.695 ± 31.605

Hybrid Expert 0.129 ± 0.110 0.019 ± 0.013 3.529 ± 3.002

Table 5 and Table 6 show the performance of ŷ1def , ŷ2def , and ŷdef for the old component test set and new component test
set, respectively. For the old component settings, ŷdef yields the best overkill and leakage rate performance. For the new
component setting, ŷdef achieves 0.063% ± 0.075% in terms of leakage rate, indicating excellent performance for detecting
new component defects.

D ALGORITHMS

Training procedure: The detailed training procedure of Figure 3 is described in Algorithm 1.

Inference procedure: The Hybrid Expert inference procedure is described in Algorithm 2.

References

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

Table 3: Comparisions between not including (·)− and including (·) good new component samples as additional training
data. The test performances for new component test samples.

Overkill rate (%) Leakage rate (%) Unknown rate (%)

Expert 1− 4.591 ± 3.687 0.611 ± 0.824 -

Expert 1 0.010 ± 0.010 3.380 ± 5.540 -

Expert 2− 3.368 ± 3.112 17.666 ± 30.599 0.000 ± 0.000

Expert 2 3.739 ± 2.459 0.989 ± 1.713 0.000 ± 0.000

Hybrid Expert− 0.713 ± 1.033 0.096 ± 0.167 35.055 ± 46.395

Hybrid Expert 0.126 ± 0.062 0.090 ± 0.156 3.324 ± 1.553

Table 4: Performance of ŷ1def , ŷ2def , and ŷdef for all test samples, i.e. both old and new component test samples

Overkill rate (%) Leakage rate (%) Unknown rate (%)

ŷ1def 0.390 ± 0.320 0.681 ± 1.114 -

ŷ2def 2.287 ± 1.424 0.691 ± 0.974 0.000 ± 0.000

ŷdef 0.108 ± 0.033 0.063 ± 0.075 3.706 ± 2.270

Table 5: Performance of ŷ1def , ŷ2def , and ŷdef for old component test samples.

Overkill rate (%) Leakage rate (%) Unknown rate (%)

ŷ1def 0.671 ± 0.794 0.034 ± 0.032 -

ŷ2def 2.227 ± 1.768 0.891 ± 1.343 0.000 ± 0.000

ŷdef 0.129 ± 0.110 0.019 ± 0.013 3.529 ± 3.002

Table 6: Performance of ŷ1def , ŷ2def , and ŷdef for new component test samlpes.

Overkill rate (%) Leakage rate (%) Unknown rate (%)

ŷ1def 0.150 ± 0.073 1.202 ± 2.064 -

ŷ2def 2.315 ± 0.592 0.090 ± 0.156 0.000 ± 0.000

ŷdef 0.126 ± 0.062 0.090 ± 0.156 3.324 ± 1.553

Algorithm 1 Learning algorithm of the proposed method

1: Input: A mini batch of defect training samples (xdef , ydef), and component training samples (xcom, ycom) ∈ Dtrain,
A mini batch of validation samples (xval, y′def , y

′
com) ∈ Dval, Max number of training epochs E

2: Output: Feature extractor fθ1, Encoder network fθ2, Defect classifier ψ, Projection network ϕ, Gaussian mixture model
γj where j ∈ {1, 2, . . . , 23}.

3: Initialize fθ1, fθ2, ψ, ϕ, model selection loss ℓω =∞
4: for e← 1 to E do
5: ℓdef ← CrossEntropy(ψ(fθ2(fθ1(xdef))), ydef) // Train the upper branch, i.e. fθ1, fθ2, and Classifier ψ.
6: Update ψ, fθ2, fθ1 using ℓdef
7: ℓcom ←MultiSimilarity(ϕ(fθ2(fθ1(xcom))), ycom) // Train the lower branch, i.e. fθ1, fθ2, and Projector ϕ.
8: Update ϕ, fθ2, fθ1 using ℓcom
9: ℓdef ′ ← CrossEntropy(ψ(fθ2(fθ1(xval))), y′def) // Evaluate the upper branch

10: ℓcom′ ←MultiSimilarity(ϕ(fθ2(fθ1(xval))), y′com) // Evaluate the lower branch
11: ℓeval ← ℓdef ′ + ℓcom′ // Procedure for model selection
12: if ℓω > ℓeval then
13: ℓω ← ℓeval
14: saveModel(fθ1, fθ2, ψ, ϕ)
15: end if;
16: end for;
17: for j ← 1 to 23 do
18: γj ← γj(fθ2(fθ1(xcom,j), ycom) // Gaussian mixture model fitting on fθ2(fθ1(xcom,j) guided by ycom.
19: end for

Algorithm 2 Inference Procedure of the Proposed Method

1: Input: A mini batch of test samples xtest ∈ Dtest

2: Output: Defect prediction ŷdef
3: Require Feature extractor fθ1, Shared fully connected network fθ2, Defect classifier ψ, Gaussian mixture model γj

where j ∈ {1, 2, . . . , 23}, and prediction converter Λ;
4: ŷ1def ← ψ(fθ2(fθ1(xtest))) // Defect classification.
5: for j ← 1 to 23 do
6: P (·|ycom = j)← γj(fθ2(fθ1(xtest))) // Probabilistic component type prediction.
7: end for
8: ŷ2def ← Λ(ŷj=1,2,...,23) // Prediction convertion.
9: if ŷ1def == ŷ2def then

10: ŷdef ← ŷ1def , ŷ2def // If the predictions match, ŷdef will be the same as ŷ1def and ŷ2def .
11: else
12: ŷdef ← unknown // If the predictions do not match, ŷdef is unknown.
13: end if
14: return ŷdef

	Visual Explanation of the Prediction Converter
	Additional Experimental Details
	Additional Simulation Results for Ablation Study
	Algorithms

