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Abstract

We present a novel approach for detecting solder-
ing defects in Printed Circuit Boards (PCBs) com-
posed mainly of Surface Mount Technology (SMT)
components, using advanced computer vision and
deep learning techniques. The main challenge ad-
dressed is the detection of soldering defects in new
components for which only samples of good sol-
dering are available at the model training phase. To
address this, we design a system composed of gen-
erative and discriminative models to leverage the
knowledge gained from the soldering samples of
old components to detect the soldering defects of
new components. To meet industrial quality stan-
dards, we keep the leakage rate (i.e., miss detec-
tion rate) low by making the system "unknown-
aware" with a low unknown rate. We evaluated the
method on a real-world dataset from an electronics
company. It significantly reduces the leakage rate
from 1.827% ± 3.063% and 1.942% ± 1.337%
to 0.063% ± 0.075% with an unknown rate of
3.706% ± 2.270% compared to the discriminative
and generative approaches, respectively.

1 INTRODUCTION

Deep learning has made significant advancements in
academia and industries thanks to the abundance of data
and the enhancement of computational power. Industries
such as manufacturing, medicine, and transportation can
cut costs using neural network predictions. Deep learning-
based image classification techniques for identifying defects
in printed circuit boards are becoming increasingly preva-
lent in the electronics manufacturing sector. This success is
generally through implementing advanced machine vision
imaging systems and acquiring abundant training examples
that closely resemble the testing examples. However, this

requirement can limit the use of deep learning in real-world
situations where the testing examples may be new, novel,
and dissimilar to the training examples.

Let us consider a scenario where the assembly line includes
both old and new components. We train the deep learning
model on available examples, including the good and de-
fective soldering samples of old components and only good
soldering samples of new components. It is then applied
directly to detect defective soldering in new components.
This approach is limited as it needs to consider that the
defective soldering of new components may be dissimilar
to the training samples, which can negatively impact the
model’s performance. Hence, we should consider advanced
techniques such as transfer learning, domain adaptation,
and meta-learning to improve performance and adapt the
model to detect defective soldering in new components. Ad-
ditionally, to meet the manufacturing standard in real-world
industrial applications, it is reasonable to make the model
unknown-aware and balance the accuracy and unknown rate.
The unknown cases can then be further examined at the next
station of the assembly line.

We aim to achieve knowledge transfer and unknown aware-
ness in these situations simultaneously. In [Raina et al.,
2003, Fujino et al., 2005, Bosch et al., 2008, Ouyang et al.,
2011, Kuleshov and Ermon, 2017, Roth et al., 2018, Grcić
et al., 2022, Loh et al., 2022, Cao and Zhang, 2022], two
kinds of models, the discriminative and generative models,
were combined. Raina et al. [2003] mainly addresses text
categorization tasks. It describes a hybrid model in which a
high-dimensional subset of the parameters is trained to max-
imize the generative likelihood, and another subset of param-
eters is discriminatively trained to maximize the conditional
likelihood. Instead, we seek to use deep neural networks
to combine discriminative and generative models for our
goals. The combined model exchanges knowledge between
these two distinct models, forming a shared embedding z.
The knowledge exchange process shapes the embedding z
in a manner that enables the model to effectively detect new
and defective samples that were not encountered during the
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Figure 1: DeepGD3: The unknown-aware deep Generative/Discriminative hybrid Defect Detector. By using the prediction
converter Λ(·), two heterogeneous predictoions ŷ1def and P (z|ycom) are transformed into two homogeneous predictions
ŷ1def and ŷ2def , allowing for easy combination to produce the final prediction ŷdef .

training phase. Additionally, the inclusion of a generative
model enables accurate uncertainty estimation, allowing the
model to be aware of and handle unknown cases effectively.

The proposed deep neural network architecture consists
of two branches that share a common feature extractor, as
illustrated in Figure 1. The upper branch serves as the dis-
criminative defect detector, determining whether the input
sample x is good or defective, denoted as ŷ1def . The lower
branch, on the other hand, acts as the generative defect de-
tector, producing the likelihood P (z|ycom) indicating the
probability of the input sample belonging to a specific com-
ponent type. These two predictions, ŷ1def and P (z|ycom),
are considered heterogeneous predictions.

To ensure homogeneous predictions, we transform the like-
lihood P (z|ycom) into the second defectiveness prediction,
denoted as ŷ2def . Consequently, we obtain two predictions,
ŷ1def and ŷ2def , both in a homogeneous format. These two
homogeneous predictions are then merged using a predic-
tion combiner, resulting in the final prediction ŷdef . This
final prediction can be categorized as "good," "bad," or "un-
known." By combining the predictions from both branches,
the final prediction becomes more reliable and robust com-
pared to relying solely on one branch.

The task we addressed here can be seen as a sub-task of
zero-shot learning [Xian et al., 2018]. It is similar to com-
positional zero-shot learning (CZSL) [Mancini et al., 2022]
but not the same. The final prediction of our task is the
soldering status only, not the composition of soldering sta-
tus and component types. This setting comes from the fact
that we know the component types in advance in real-world
applications. An algorithm targeting this setting should per-
form better than those targeting the setting of CZSL. Our
method considers these facts and considerations, converting
and combining two predictions into one prediction, resulting
in superior performance. Unknown awareness also makes
our setting more practical and different from CZSL.

According to experiments, the proposed method solves the
task mentioned above much better than using only the dis-
criminative or generative models. We summarize our contri-
butions as follows:

• Introduction of a new task for the electronic assembly
line, which involves not only detecting soldering de-
fects in old components but also in new components
that visually differ from the old ones, while maintain-
ing a low leakage rate.

• Addressing the challenge of zero-shot learning, where
samples of defective soldering for new components are
not available during the training phase.

• Proposal of a hybrid model that incorporates both
discriminative and generative models for detecting
soldering defects in both old and new components.
This ensures the low leakage rate requirement through
knowledge exchange and consideration of unknown-
awareness.

• Proposal of the prediction converter Λ(·), which
transforms two heterogeneous predictions ŷ1def and
P (z|ycom) into two homogeneous predictions ŷ1def
and ŷ2def . This enables easy combination to produce
the final prediction ŷdef .

• Experimental results on a real-world dataset demon-
strating the superiority of the proposed method com-
pared to baseline methods that use only discriminative
or generative models.

We organize this paper as follows; In Section 2, we dis-
cuss related work in existing PCB soldering defect detection
methods, unknown awareness in defect detection, composi-
tional zero-shot learning, hybrid generative/discriminative
models, and deep metric learning. In section 3, we introduce
the proposed model architecture. In section 4, we describe
the dataset, evaluation metrics, experiment setup, and ex-
perimental results. Finally, in section 5, we summarize our
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Figure 2: Examples of the input images. ’Good’ refers to
good soldering. ’Bad’ refers to defective soldering. ’Miss-
ing,’ ’Shift,’ ’Stand,’ ’Broken,’ and ’Short’ refers to the
defective soldering types.

work and discuss future works.

2 RELATED WORK

Model Input and Output: In the field of PCB soldering
defect detection using deep learning models, there are two
common types of inputs to the model: 1) an image of a
PCB board that contains multiple electronic components,
and 2) a soldering image of a single electronic component.
Our focus in this work is on the latter input type. As shown
in Fig. 2, examples of the input images to the model are
provided. The output of the model in this work is either
"Good," "Bad," or "Unknown." While some related works
also classify the different types of defects, we concentrate
on reducing the leakage and overkill rates without additional
efforts in categorizing the defect types. In this section, we
provide a review of related work.

2.1 EXISTING PCB SOLDERING DEFECT
DETECTION METHODS

Wu et al. [2022] proposed a lightweight CNN model called
PCBNet capable of locating and classifying the type and
defect of an electronic component with low computation
complexity while maintaining high accuracy. Liao et al.
[2022] proposed ConvNeXt-YOLOX model for solder joint
defect detection with high accuracy and speed. Bhattacharya
and Cloutier [2022] combined the merits of both transformer
[Vaswani et al., 2017] and convolutional networks. All of
them focused on balancing speed and accuracy. None of
them address the issues encountered in new components.

Ulger et al. [2021] propose a beta-Variational Autoencoders
(beta-VAE) architecture for anomaly detection in unre-
stricted domains with no special lighting and without the
existence of error-free reference boards. Instead, we con-
sider where error reference examples of old components are

available.

Dai et al. [2020] used a generic deep learning method for
both defect localization and classification tasks. For the
classification part, an active learning method reduces the la-
beling workload when an extensive labeled training database
is not easily available. On the other hand, our work depends
on balancing "knowledge exchange" and "unknown aware-
ness" to achieve the goals – low leakage and overkill rates
for new components.

2.2 UNKNOWN AWARENESS IN DEFECT
DETECTION

Predictions with low confidence should be considered as
unknown. Cheon et al. [2019] applied unknown detection to
wafer defect detection tasks in the semiconductor industry.
It uses a modified version of K-nearest neighbors (KNN)
to determine whether the input belongs to a specific type
of defect. When the model cannot determine which type
an input belongs to with sufficient confidence, the model
claims it to be unknown. The modified KNN, however, is a
non-parametric model for which the model should keep the
training data in memory.

Habibpour et al. [2021] applied transfer learning methods
and uncertainty quantification (UQ) techniques to the cast-
ing defect detection task. They believe an uncertainty-aware
automatic defect detection solution will reinforce casting
production’s quality assurance. However, they did not dis-
cuss when to say unknown.

Zhou et al. [2021] used a variational autoencoder (VAE)
and a Gaussian mixture model (GMM) for the fabric defect
detection task. They utilized VAE for feature extraction and
image reconstruction and GMM for density estimation. They
fitted the GMM with normal data only, which means that the
GMM can learn the probability distribution of normal data.
Therefore, abnormal samples tend to have a lower proba-
bility density than normal samples. A threshold can then
be determined to distinguish normal and abnormal samples.
We also use GMM density estimation in this work. However,
we do not set thresholds for normal and abnormal samples.
Instead, we set thresholds for defective, non-defective, and
unknown samples. Our approach acknowledges the fact that
abnormal samples are not necessarily defective samples.

2.3 COMPOSITIONAL ZERO-SHOT LEARNING

A task similar to ours is compositional zero-shot learning
(CZSL), which involves the recognition of the unseen com-
position of objects (components) and states (defectiveness).
In particular, CZSL aims to recognize compositions com-
posed of a set of states and objects. (e.g., red apple, where
red is the state and apple is the object). Instead, we focus
on recognizing the state of an object, where the object is
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known in advance or less critical and not interested.

Some CZSL methods [Misra et al., 2017, Purushwalkam
et al., 2019, Li et al., 2020, 2022] train two classifiers for
state and object, respectively. It is similar to our proposed
hybrid classifier, while in our task, the goal is to classify
the defectiveness of both old and new components with
unknown awareness. The task we address here differs from
CZSL in the following aspects.

1. We focus on predicting states only since predicting ob-
jects is generally not critical. With this goal in mind,
we can convert a component prediction of the genera-
tive model to a defectiveness prediction and do other
things, e.g., unknown awareness.

2. We allow the model not to make any prediction; when
it does make one, the accuracy must approach 100%,
thus achieving trustable predictions for real-world ap-
plications.

3. The states in our task are only ’good,’ ’bad,’ and ’un-
known.’ It enables us to effectively share/exchange
knowledge between the discriminative and the gen-
erative models.

2.4 HYBRID GENERATIVE AND
DISCRIMINATIVE MODELS

Recently, reliable machine learning models have attracted
the attention of researchers. A line of research addresses this
goal by combining the generative and discriminative models.
Grcić et al. [2022], Loh et al. [2022], and Cao and Zhang
[2022] applied this idea for anomaly detection, uncertainty
capturing, and out-of-distribution detection, respectively.
Their successes come from the combination of the strength
of these two models. The discriminative models often attain
higher predictive accuracy, while the generative ones can
deliver reliable predictions.

As in Figure 1, we use GMM models for density (or likeli-
hood) estimation in the generative model. As in Figure 3,
we use deep metric learning, Section 2.5, to make the em-
bedding z suitable for GMM modeling.

2.5 DEEP METRIC LEARNING

Deep metric learning is often applied to face recognition,
person re-identification, and fine-grained image recognition.
It enables the model to pull samples of the same class in the
embedded space closer and push samples of different classes
apart. Its loss functions involve two types: Proxy-based and
pair-based.

Proxy-based loss leverages the concept of prototypes so that
samples belonging to the same class aggregate in their re-
spective proxy. On the contrary, samples of different classes

form separate and independent proxies due to their low sim-
ilarity, as in [Movshovitz-Attias et al., 2017] [Qian et al.,
2019].

Pair-based loss calculates the distances of the paired sam-
ples in each mini-batch. The paired samples require more
sampling at the training stage [Hadsell et al., 2006, Schroff
et al., 2015]. That needs more computation resources than
the proxy-based method.

Multi-similarity Loss [Wang et al., 2019] handles the sam-
pling problem by using hard sample mining, which relaxes
the sampling problem in the pair-based loss. Furthermore, it
penalizes the loss differently by comparing the relationship
of anchor, positive and negative, and leads to a performance
boost.

We use the multi-similarity loss to train the embedding z
of our hybrid architecture, making it suitable for GMM
modeling.

3 METHODOLOGY

We train the hybrid defect detector of Figure 1 by procedures
depicted in Figure 3. In stage 1, we alternatively train the up-
per branch for detecting defectiveness and the lower branch
for learning cluster embedding zcom. In stage 2, we use
GMM models to fit zcom to realize probabilistic component-
type predictions P (z|ycom). We then convert P (z|ycom) to
the second defectiveness predictions ŷ2def . The conversion
is optimized with thresholding parameters τ0, τ1, and τ2
using Bayesian optimization. Finally, we combine these two
defectiveness predictions to make the unknown-aware final
predictions ŷdef .

3.1 MODEL ARCHITECTURE

We elabrate on the blocks in Figure 1 and Figure 3 as fol-
lows:

1. Pre-trained Feature Extractor fθ1(·). We use the
backbone of MobileNetV3 Large pre-trained on Im-
agenet and remove the original MobileNetV3 Large
classification head. Then we adopt the backbone as the
feature extractor. fθ1(·) maps x to a vector x′, x′ =
fθ1(x) ∈ RDθ1 . Dθ1 = 960.

2. Shared Encoder fθ2(·). fθ2(·) is composed of a fully
connected layer. The input dimension of the layer is
960, and the output dimension is 512. fθ2(·) maps the
extracted features x′ to embedding vector z for both the
discriminative and the generative models. z = fθ2(x′)
∈ RDθ2 , Dθ2 = 512.

3. Discriminative Model ψ(·). ψ(·) is a single fully con-
nected layer FC1 that predicts the defectiveness of
a sample. ψ(·) maps z to defectiveness prediction
ŷ1def = ψ(z) ∈ RDψ , Dψ = 2.
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Figure 3: Training procedure of deepGD3 (Hybrid Expert). We train the defect classifier ψ, the component classifier φ, fθ1
and fθ2 in stage 1. We then fit the Gaussian mixture models γ in stage 2.

4. Generative Model γ(·). γ(·) is a Gaussian mix-
ture model (GMM) that predicts whether the em-
bedding features z belong to any known com-
ponent types. The output of the Gaussian mix-
ture model processes is the likelihood of a sam-
ple being a specific component type, P (z|ycom) ∈
{GMM1(z), GMM2(z), ...GMMT (z)}. It will be
converted to the second defectiveness prediction ŷ2def
later. There are 23 component types in our dataset, so
T = 23.

5. Prediction Converter Λ(·). Λ(·) converts the likeli-
hood P (z|ycom) to the second defectiveness prediction
ŷ2def ∈ RDψ , Dψ = 3. If P (z|ycom) is larger than a
threshold h1·,·, it is classified as a good sample. If it is
smaller than another threshold h2·,·, it is an unknown
sample. If it falls between these two thresholds, this
sample is a bad sample. There is also a parameter τ0
for adjusting P (z|ycom). A detailed discussion can be
found in 3.2.

6. Prediction Combiner G(·, ·). If ŷ1def and ŷ2def do not
match or ŷ2def is unknown, we consider the correspond-
ing sample to be unknown. Otherwise, we consider
that ŷ1def , which is equal to ŷ2def , is the final prediction
ŷdef .

7. Projection Head φ(·). φ(·), in Figure 3, is a fully
connected layer FC2 that uses the multi-similarity
loss [Wang et al., 2019] to pull features of good sam-
ples with the same component type closer and push
features of good samples with different component
types away. During stage 1 of the training process, φ(·)
maps z to z′ = φ(z) ∈ RDφ . Dφ = 512. At the end

of the training, we discard φ(·) as Khosla et al. [2020],
Chen et al. [2020a,b] did in constrastive learning set-
tings.

3.2 PREDICTION CONVERTER Λ(·)

There may exist many methods for converting P (z|ycom) to
ŷ2def . We introduce a method we found efficient to do that
and is stable. The input of our prediction converter Λ are
the 23 GMM models GMM(µ,Σ), the embedding z, an
adjusting parameter τ0, and two thresholding paramters τ1
and τ2. These three parameters apply to all GMM models
and are optimized by Bayesian optimization.

The parameter τ0 adjusts the covariance matrices of all
Gaussians of all GMM models by Equation 1.

Pj,n(zi) = GMMj(zi;µj,n, (τ0)2 · Σj,n), (1)

where j ∈ {1, 2, . . . , 23} is the number of the component
types, n is the number of Gaussians in each GMM model,
and i is the sample index. By adjusting the these covariance
matrices, the Bayesian optimization find the thresholding
parameters τ1 and τ2 relatively quickly and resulting better
prediction performance.

The two thresholds for all Gaussians of all GMM models
are h1j,n and h2j,n shown in Equation 2.

h1j,n := P 1
j (µj,n) = GMMj(µj,n;µj,n, (τ1)2 · Σj,n)

h2j,n := P 2
j,n(µj,n) = GMMj(µj,n;µj,n, (τ2)2 · Σj,n)

(2)
where µj,n indcates the center of a Gaussian. We can there-
fore adjust all thresholds by adjusting τ1, and τ2.
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With the adjusted GMM models Pj,n(zi) and these thresh-
olds, the predictoin converters are defined as Eq. 3.

ŷ2j,n :=


good, Pj,n(zi) ≥ h1j,n
bad, h1j,n > Pj,n(zi) ≥ h2j,n
unknown, h2j,n > Pj,n(xi)

ŷ2def,j :=


good, if one of ŷ2j,n = good,
bad, else if one of ŷ2j,n = bad,
unknown, else.

ŷ2def :=


good, if one of ŷ2def,j = good,
bad, else if one of ŷ2def,j = bad,
unknown, else.

(3)

Visual explanations of the effect of τ0, τ1 and τ2 are avail-
able in the supplementary material. Bayesian optimization
then optimizes τ0, τ1 and τ2 to maximize harmonic score H
in Equation 5.

3.3 TRAINING PROCEDURE

Figure 3 shows the training procedure of the hybrid gen-
erative/discriminative defect detector in Figure 1. We use
class-balanced sampling in each mini-batch to deal with
the data imbalance issue. The early stop technique is also
applied to prevent overfitting.

Our solution trains the upper branch with the defect clas-
sifier ψ and the lower branch with the project head φ in
stage 1. We use the defect type label ydef to train the up-
per branch and the component type label ycom to train the
lower branch. Cross-entropy loss `def is first computed to
update ψ, fθ2, and fθ1. Then, the lower branch is trained
with multi-similarity loss `com to update φ, fθ2, and fθ1,
enabling knowledge exchange between both branches.

We evaluate the trained models ψ, φ, fθ2, and fθ1 in the
validation set after each epoch. The final model is selected
based on the lowest model selection loss, defined as `ω =
`com + `def . After training, Gaussian mixture models are
fitted using zcom and ycom as shown in stage 2 of Figure 3.

A more detailed description of the training procedure, pre-
sented as an algorithm, can be found in the supplementary
material.

3.4 DETERMINE THE THRESHOLDS BY
BAYESIAN OPTIMIZATION

We perform Bayesian optimization using the
bayes_opt [Nogueira, 2014–] package on the train-
ing and validation sets, with the expected improvement as
the acquisition function. The bounds for τ0, τ1, τ2 are given

as follows

{τ0|0 ≤ τ0 ≤ 1.0}
{τ1|0 ≤ τ1 ≤ 1.0}
{τ1|0 ≤ τ1 ≤ 1.0}

(4)

To improve convergence, we shrink the domain around the
current optimum using the domain reduction technique. The
steps for random exploration are 15 and 25 for Bayesian
optimization. We use a harmonic score H to balance the
overkill, leakage, and unknown rates, and choose the best
combination using Equation 5. The overkill rate is defined as
the ratio of good samples mistakenly classified as defective
samples to the total number of test samples. The leakage
rate and unknown rate are similarly defined. A higher har-
monic score indicates better overall performance. Users
have the flexibility to adjust H according to their specific
requirements.

H =
1

3× exp(Overkill rate)
+

1

3× exp(leakage rate)

+
1

3× exp(Unknown rate)
(5)

Finally, the optimal values of τ0, τ1, and τ2, obtained
through Bayesian optimization, are applied to the prediction
converter in 3.2, making the proposed hybrid defect detec-
tor in Figure 1 fully operational. The complete inference
algorithm is included in the supplementary material.

4 EXPERIMENTS AND RESULTS

The proposed method was tested on a dataset from an elec-
tronics manufacturing company. The results of the experi-
ment are presented in this section.

4.1 EXPERIMENTAL CONFIGURATION

A subset of 388,702 images was selected from the original
dataset, taking into account both data imbalance and sim-
ulation speed. There were 23 different component types,
and the soldering defect types included missing, shift, stand,
broken, and short (as shown in Figure 2). These defect types
were consolidated into a single "bad" type. Thus, each sam-
ple was annotated with two labels: component type and
defect type. The characteristics of the resulting dataset are
summarized in Table 1.

Selection of new and old components: We divided the im-
ages into two groups: old components and new components.
In the training and validation stage, old components have
two labels: component type and defect type, represented as
(x, ycom, ydef ). New components only have one label, com-
ponent type, represented as (x, ycom). During the testing
stage, both old and new components are used, and the goal
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Table 1: Summary for the dataset in use.

Number of images 388,702

Component types 23 types

Defect types good, bad

Image labels 1 component type, 1 defect type

is to detect their defectiveness, even though defective new
components were not seen in the training and validation
stage.

Comparison of different approaches/experts: We com-
pared three approaches: Expert 1 uses a discriminative
model and disables the lower branch of Figure.1 in all train-
ing/validation/test stages; Expert 2 uses a generative model
and a prediction converter and disables the upper branch of
Figure.1 in all training/validation/test stages; and the Hybrid
Expert uses both branches.

We made 2-D visualizations using t-SNE [Van der Maaten
and Hinton, 2008] of the feature embedding z for all
three experts. We overlaid the test samples on top of the
Good,Missing,Stand training samples to see if good and
bad samples are separable under GMM modeling. If a sam-
ple is inside the GMM models of good samples, it is consid-
ered a good sample. If a sample is inside the GMM models
of Missing,Stand samples, it is considered a bad sample. If
a sample is on the boundary of the GMM models of good
samples, it may be a bad or unknown sample. If a sample
is far from any GMM models, it is considered an unknown
sample. Figures 4 (a) and (b) show that, for both Expert 1
and Expert 2, good and bad samples are mixed. However,
the Hybrid Expert successfully pushes bad samples to the
boundary of the GMM models.

4.2 QUANTITATIVE RESULTS

Evaluation Metrics: Our experimentation evaluations uti-
lize overkill, leakage, and unknown rates as our measure-
ment standards due to their direct relevance to the assembly
line needs. These rates are expressed as ratios to the overall
number of test samples, as defined in Section 3.4.

Experiment Results Our results are presented for 1) the
entire test samples, including old and new components, 2)
the test samples of old components, and 3) the test samples
of new components.

Table 2 displays the average overkill and leakage rates for
all test samples. The leakage rate of Expert 1 is not up to
par. Expert 2 also shows subpar results. Allowing Expert 2
to classify samples as unknown does not improve its per-
formance. Figure 4 (b) shows why this is the case because
the bad samples are not on the boundary of GMM models.
Nevertheless, the Hybrid Expert performs the best with a

low unknown rate of 3.7%.

Table 3 showcases the average overkill and leakage rates
for the old component test samples. Expert 1 performs as
expected with a favorable leakage rate. Expert 2, however,
falls short in comparison. The Hybrid Expert’s leakage rate
is slightly better than Expert 1.

Table 4 presents the average overkill and leakage rates for
the new component test samples. Expert 1 shows a disap-
pointing leakage rate. Expert 2 also fails to meet expecta-
tions with a subpar overkill rate. On the other hand, the
Hybrid Expert demonstrates the best performance overall.

Table 2: Comparison of Expert 1, Expert 2, and Hybrid
Expert for all test samples.

Method Overkill (%) Leakage (%) Unknown (%)

Expert 1 0.015 ± 0.008 1.827 ± 3.063 -

Expert 2 1.954 ± 0.724 1.942 ± 1.337 0.0 ± 0.0

Hybrid Expert 0.108 ± 0.033 0.063 ± 0.075 3.7 ± 2.3

Table 3: Comparison of Expert 1, Expert 2, Hybrid Expert
for old component test samples.

Method Overkill (%) Leakage (%) Unknown (%)

Expert 1 0.017 ± 0.007 0.021 ± 0.011 -

Expert 2 1.282 ± 0.192 2.257 ± 1.495 0.0 ± 0.0

Hybrid Expert 0.129 ± 0.110 0.019 ± 0.013 3.5 ± 3.0

Table 4: Comparison of Expert 1, Expert 2, Hybrid Expert
for new component test samples.

Method Overkill (%) Leakage (%) Unknown (%)

Expert 1 0.010 ± 0.010 3.380 ± 5.540 -

Expert 2 3.739 ± 2.459 0.989 ± 1.713 0.0 ± 0.0

Hybrid Expert 0.126 ± 0.062 0.090 ± 0.156 3.3 ± 1.6

4.3 ABLATION STUDY

In our studies, we also conducted ablation experiments and
found that when ’good’ new component samples were not
included in the training set, Expert 2 suffered a decline in
performance. In contrast, the Hybrid Expert still maintained
its overkill and leakage rates, although with a somewhat
higher unknown rate. We also examined the effect of the
prediction combiner, and these results are available in the
supplementary material.

5 CONCLUSION

By leveraging the strengths of a discriminative model (Ex-
pert 1) and a generative model (Expert 2), the proposed
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(a) Test data on top of train data with Expert 1.
(Discriminative model).
Good test samples and bad test samples are mixed.

Missing

Stand
missing

stand

Good test sample

Bad test sample

(b) Test data on top of train data with Expert 2.
(Generative model).
Good test samples and bad test samples are mixed.

Missing

Stand

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

missing

stand

Good test sample

Bad test sample

(c) Test data on top of train data with Hybrid Expert. (Hybrid model). Good test samples and bad test
samples are separable.

Figure 4: 2D visualization of training and test set features. Left: (a) Expert 1, Right: (b) Expert 2, Bottom: (c) Hybrid Expert.
In the foreground, red circles indicate good samples in the test set, and green crosses indicate the bad samples of the test set.
In the background, each color dot represents a component cluster from the training set.

hybrid defect detector (Hybrid Expert) effectively address
the issue of performance degradation when the test samples
come from new components for which no defective sample
is available during the model training phase.

The hybrid architecture enables the shared encoder network
to form a better feature embedding z. The discriminative
model makes the first defect prediction ŷ1def . The generative
model makes probabilistic component prediction P (z|ycom)
by Gaussian mixture models, which determines whether a
sample belongs to any known component. The prediction
converter converts the probabilistic component prediction

to the second defect prediction ŷ2def . Finally, a prediction
combiner combines the first and second defect predictions
to make the final defection prediction ŷdef . Additionally, the
proposed architecture offers the option to output "unknown".

Compared to Expert 1 and Expert 2, the Hybrid Expert re-
duces the average leakage rate from 1.827% ± 3.063% and
1.942% ± 1.337% to 0.063% ± 0.075% with an unknown
rate of 3.706% ± 2.270%. Our method strikes a balance
between overkill, leakage, and unknown rate. The proposed
method significantly improves the performance of the new
component defect detection task.
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The success of our hybrid expert is attributed to three key
factors. Firstly, it leverages the knowledge gained from the
detection of defects in old components to improve the de-
tection of defects in new components. Secondly, it utilizes
a prediction converter to maximize the utilization of the
acquired knowledge. Finally, it has the capability to indicate
"unknown" when the model’s confidence in its predictions
is low. These factors contribute to the effectiveness of our
hybrid generative/discriminative defect detector and provide
a new avenue for further research.

The proposed approach has significant practical value for
detecting soldering defects in new components, which is
crucial for ensuring the quality and reliability of Printed Cir-
cuit Board assemblies. Its potential for application in other
scenarios motivates us to continue exploring its capabilities.

Code and data availabiltiy

Please refer to https://github.com/machingwen/DeepGD3,
where an alternative fruit dataset serves as a reliable bench-
mark for evaluating the proposed model’s generalization
and robustness.
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