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1 PERMUTATION AMBIGUITY EXAMPLE FOR GRU

In Section 4, we discuss that one can arbitrarily permute the latent representations while keeping a local model fixed.
Here, we give another example – the GRU. Let x = {x1,x2, . . . ,xT } be an input sequence. The embedding function
h = embedding(x) implemented as a GRU reads:

1: function h = GRU({xt}Tt=1)
2: h0 = 0
3: for t = 1, . . . , T do
4: zt = sigmoid(Wzxt +Uzht−1 + bz)
5: rt = sigmoid(Wrxt +Urht−1 + br)
6: nt = tanh(Wnxt +Un(rt � ht−1) + bn)
7: ht = (1− zt)� ht−1 + zt � nt
8: end for
9: return h = hT

10: end function

One can arbitrarily permute the elements of h through manipulating the GRU parameters properly. To achieve h[p] =
embedding(x[p]),

• the gate outputs and bias vectors (zt, rt, nt, ht, bz , br, bn) will need be permuted accordingly (zt[p], rt[p], nt[p], ht[p],
bz[p], br[p], bn[p]);

• the weight matrices attached to the input (Wz , Wr, Wn) will need to have their rows (i.e., output neurons) permuted
(Wz[p, :], Wr[p, :], Wn[p, :]); and

• the weight matrices attached to the hidden states (Uz , Ur, Un) will need to have both their rows and columns permuted
(Uz[p,p], Ur[p,p], Un[p,p]).

2 PROOFS AND ADDITIONAL RESULTS OF THEOREM 1

2.1 DISTRIBUTION OF GUMBEL SOFTMAX

The Gumbel softmax reparameterization trick [Jang et al., 2017, Maddison et al., 2017] works in the following manner.
Let Cat(π) be the categorical distribution with probability vector π and let g, of the same shape as π, be a vector variable
whose elements are i.i.d. ∼ Gumbel(0, 1). Then,

y = softmax

(
1

τ
(logπ + g)

)
, τ > 0 (1)

admits a distribution converging to Cat(π) when τ → 0. Hence, to sample Ber(θ) approximately but differentiably, it
suffices to let π = [θ, 1− θ]> and use y1 as the sample.
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As preliminary, we consider the first entry y1 of the random variable y defined in (1) for the Gumbel softmax parameterization.
Note that for any τ 6= 0, y1 is only approximately binary; the possible values of y1 in fact span the entire interval [0, 1]. We
derive the following CDF for y1. For notational simplicity, θ denotes a scalar rather than a matrix.

Theorem 1. For all τ > 0, θ ∈ (0, 1), and t ∈ [0, 1], we have

Pr(y1 ≤ t) =
tτ (1− θ)

tτ (1− θ) + (1− t)τθ
. (2)

Proof. We first consider the case 0 < t < 1. Through simple algebraic manipulation, we obtain that y1 ≤ t is equivalent to

g1 − g2 ≤ τ log
t

1− t
− log

θ

1− θ
. (3)

Let g1 = − log(− log u) and g2 = − log(− log v), where u and v are independent and ∼ U(0, 1). Then, (3) is equivalent to

v ≥ uM where M =
tτ (1− θ)
(1− t)τθ

.

Therefore, by recalling that u and v are uniform in [0, 1]2, we note that the probability that v ≤ uM happens is the double
integral

Pr(v ≥ uM ) =

∫ 1

0

∫ 1

uM
1 dvdu.

This integral is nothing but

1−
∫ 1

0

uM du =
M

1 +M
,

which completes the proof of (2). The cases of t = 0 or 1 obviously hold by continuity.

2.2 PROOF OF THEOREM 1

We first consider the case when the distribution with CDF F is finitely supported on [a, b]. Through simple algebraic
manipulation, we obtain that z ≤ t is equivalent to s ≥M whereM := F−1(θ)+τ log(t−1−1). If t < sigmoid((F−1(θ)−
b)/τ), we see that M > b and thus such s can never occur. Similarly, if t > sigmoid((F−1(θ)− a)/τ), we see that M < a,
which indicates that s ≥ M always happens. Otherwise, when t is within the two extremes, the probability that s ≥ M
happens is 1− F (M), concluding the proof of Theorem 1.

The statement of the theorem regarding the case when the distribution is not finitely supported is obviously true.

To show that the distribution of z converges to Ber(θ), let us first consider the scenario when the distribution with
CDF F is finitely supported. The CDF of z is always continuous but it has three segments connected by two joints:
t1 = sigmoid((F−1(θ)− b)/τ) and t2 = sigmoid((F−1(θ)− a)/τ). When τ → 0, the joint t1 → 0 and the joint t2 → 1
and thus the middle segment has a wider and wider support converging to [0, 1]. Hence, it suffices to consider only the
middle segment. Further, with an analogous argument for other scenarios, it is also true that it suffices to consider only the
third case of Theorem 1.

In this case, for any fixed t < 1 and when τ → 0, we have τ log(t−1−1)→ 0 and thus Pr(z ≤ t)→ 1−F (F−1(θ)) = 1−θ.
Meanwhile, we cannot push τ → 1 because then the limit of τ log(t−1 − 1) is undefined. However, we know by definition
that Pr(z ≤ 1) = 1. Hence, the continuous distribution of z converges to a degenerate distribution Pr(z < 1) = 1− θ and
Pr(z = 1) = 1. This is the CDF of Ber(θ).

3 TUNING GUIDANCE FOR TEMPERATURE τ

Our tuning guidance for the temperature τ is motivated from an asymptotic convergence comparison between ICDF and
Gumbel reparameterization, which is featured in the theorem below.



Theorem 2. When τ is small,

Bias(y1) =
1

6
τ2π2θ(1− θ)(1− 2θ) + O(τ4), (4)

Bias(z) =
1

6
τ2π2F ′′(F−1(θ)) + O(τ4). (5)

Moreover, when F is the CDF of a normal variable ∼ N(0, σ2),

Bias(z) = − 1

6σ2
τ2π

3
2 erf−1 (2θ − 1) e−(erf

−1(2θ−1))2 + O(τ4). (6)

Its formal proof is detailed later.

Theorem 2 suggests that the ICDF method converges equally fast as does the Gumbel trick – both on the order of O(τ2).
On the other hand, the biases depend on θ. Thus, one cannot set temperatures τ independently of the desired probability θ to
equate the two biases. In practice, τ is a tunable hyper-parameter and a guidance on the tuning range is therefore necessary.

To begin, we use a subscript to distinguish the two temperatures – τg for the Gumbel trick and τi for the ICDF method – and
write, based on (4) and (6) and ignoring the high order terms,

Bias(y1)

Bias(z)
'

τ2g σ
2

τ2i
r(θ) where r(θ) =

√
πθ(1− θ)(2θ − 1)

erf−1(2θ − 1)e−(erf
−1(2θ−1))2

.

Note that r(θ) is symmetric around θ = 1
2 , is concave, attains maximum 1

2 when θ = 1
2 , and attains minimum 0 when

θ = 0, 1. Hence, if τg = τi and σ =
√
2, the bias of the Gumbel trick is (approximately) smaller than that of the ICDF

method. On the other hand, for a σ >
√
2, there exist θ̃1 < θ̃2 such that σ−2 = r(θ̃1) = r(θ̃2) and that Bias(y1) ' Bias(z),

whenever θ ∈ [θ̃1, θ̃2]. For example, when σ ≈ 2.5, on the interval θ ∈ [0.01, 0.99], the bias of the Gumbel trick is
(approximately) greater than that of the ICDF method.

Based on the foregoing, a practical guide is to use the same tuning range of τ for the ICDF method as for the Gumbel trick.
A small change of σ (e.g.,

√
2 versus 2.5) will entirely flip the landscape of the bias comparison between the two methods.

Because the tuning range is much wider than the change of σ, for simplicity it suffices to fix σ = 1.

4 PROOF OF THEOREM 2 AND ADDITIONAL RESULTS

By the definition of bias, we have

Bias(x) = E[x]− θ where E[x] =
∫ 1

0

t dPr(x ≤ t) = 1−
∫ 1

0

Pr(x ≤ t) dt.

Therefore, for Gumbel softmax,

Bias(y1) = 1− θ −
∫ 1

0

tτ (1− θ)
tτ (1− θ) + (1− t)τθ

dt,

and for ICDF with any F ,

Bias(z) =

∫ 1

0

F (F−1(θ) + τ log(t−1 − 1)) dt− θ.

We now prove Theorem 2 in a few parts.

Proof of (5). Let s = F−1(θ) and perform a change of variable m = log(t−1 − 1). Then,

Bias(z) =

∫ 1

0

[F (s+ τm)− F (s)] dt =
∫ ∞
−∞

[F (s+ τm)− F (s)] em

(1 + em)2
dm.

We perform Taylor expansion of F around s and obtain

F (s+ τm)− F (s) =
∞∑
n=1

F (n)(s)

n!
τnmn.



Therefore,

Bias(z) =

∞∑
n=1

F (n)(s)

n!
τn
∫ ∞
−∞

mnem

(1 + em)2
dm

Each integral term is finite and the odd terms vanish because the integrands are odd functions. Thus, for small τ , we are left
with

Bias(z) =
F ′′(s)

2
τ2
∫ ∞
−∞

m2em

(1 + em)2
dm+O(τ4).

The definite integral evaluates to π2

3 ; we therefore conclude the proof.

Proof of (6). Equation (6) is straightforward by substuting

F ′′(s) = − s

σ3
√
2π
e−

s2

2σ2 = −erf−1(2θ − 1)

σ2
√
π

e−(erf
−1(2θ−1))2 .

into (5).

Proof of (4). To simplify notation, let β = θ/(1− θ) and perform a change of variable m = log(t−1 − 1). Then,∫ 1

0

tτ (1− θ)
tτ (1− θ) + (1− t)τθ

dt =

∫ 1

0

dt

1 + βemτ
=

∫ ∞
−∞

1

1 + βemτ
em

(1 + em)2
dm.

Denote h(τ,m) = [1 + βemτ ]−1. Treating h a function of τ and performing Taylor expansion around zero, we obtain

h(τ,m) =

∞∑
n=0

h(n)(0,m)

n!
τn.

Therefore, ∫ 1

0

tτ (1− θ)
tτ (1− θ) + (1− t)τθ

dt =

∞∑
n=0

τn

n!

∫ ∞
−∞

h(n)(0,m)
em

(1 + em)2
dm.

In a moment, we will show that for all n,

h(n)(0,m) = Cnm
n where Cn is independent of m. (7)

Suppose that (7) holds. Then, each integral term is finite and the odd terms vanish, because the integrands are odd functions.
Therefore, for small τ , we are left with∫ 1

0

tτ (1− θ)
tτ (1− θ) + (1− t)τθ

dt = C0

∫ ∞
−∞

em

(1 + em)2
dm+ C2

τ2

2

∫ ∞
−∞

m2em

(1 + em)2
dm+O(τ4).

By calculating

C0 = h(0,m) = [1 + β]−1 = 1− θ, C2 = h′′(0,m) = −θ(1− θ)(1− 2θ),∫ ∞
−∞

em

(1 + em)2
dm = 1,

∫ ∞
−∞

m2em

(1 + em)2
dm =

π2

3
,

we conclude that

Bias(y1) =
τ2π2θ(1− θ)(1− 2θ)

6
+O(τ4).

It remains to prove (7). We suppress the argument on m and write g(τ) = 1+ βemτ and h(τ) = g(τ)−1. By Faà di Bruno’s
formula,

h(n)(0) =

(
1

g(τ)

)(n)
∣∣∣∣∣
τ=0

=

n∑
k=1

(−1)kk!
g(0)k+1

·Bn,k
(
g′(0), g′′(0), . . . , g(n−k+1)(0)

)
,

where Bn,k is the Bell polynomial. Clearly, g(0) = 1 + β and g(r)(0) = βmr for all r > 0. Hence, Bn,k is a multiple of
mn. Therefore, h(n)(0) is a multiple of mn.



4.1 ADDITIONAL RESULT REGARDING THE BIAS

Theorem 2 states results for a small temperature τ . The purpose is to understand the limiting behavior of the bias. Here, we
give an additional result for any τ > 0. It states that the biases of the two sampling approaches have the same sign. This
result is a nontrivial extension of Theorem 2 and requires a different proof technique.

Theorem 3. For any τ > 0,

Bias(y1) > 0 when θ < 1
2 , Bias(y1) = 0 when θ = 1

2 , Bias(y1) < 0 when θ > 1
2 . (8)

Moreover, if F ′(x) (that is, the pdf) is even and is increasing when x < 0, then

Bias(z) > 0 when θ < 1
2 , Bias(z) = 0 when θ = 1

2 , Bias(z) < 0 when θ > 1
2 . (9)

We prove Theorem 3 in two parts.

Proof of (8). Consider

Bias(y1) =

∫ 1

0

g(t, θ) dt where g(t, θ) = 1− θ − tτ (1− θ)
tτ (1− θ) + (1− t)τθ

.

With a brute-force calculation, we have

g(t, θ) + g(1− t, θ) = [(1− t)τ − tτ ]2θ(1− θ)(1− 2θ)

[tτ (1− θ) + (1− t)τθ][(1− t)τ (1− θ) + tτθ]
.

All terms on the right-hand side are positive, except 1− 2θ. Therefore, when θ < 1
2 , g(t, θ) + g(1− t, θ) > 0 and hence

Bias(y1) =

∫ 1

0

g(t, θ) + g(1− t, θ)
2

dt > 0.

The other cases (θ > 1
2 and θ = 1

2 ) are similarly proved.

Proof of (9). Consider

Bias(z) =

∫ 1

0

h(t, θ) dt− θ where h(t, θ) = F (F−1(θ) + τ log(t−1 − 1)).

We have
h(1− t, θ) = F (F−1(θ)− τ log(t−1 − 1)).

To simplify notation, let F−1(θ) = s and τ log(t−1 − 1) = a. Then, h(t, θ) = F (s+ a) and h(1− t, θ) = F (s− a). Let
us first consider the case s < 0 and a > 0. We see that

F (s+ a)− F (s) =
∫ s+a

s

F ′(m) dm and F (s)− F (s− a) =
∫ s

s−a
F ′(m) dm.

For any b > 0, if s + b < 0, then by monotonicity, F ′(s + b) > F ′(s − b). On the other hand, if s + b ≥ 0, then
F ′(s+ b) = F ′(−s− b) > F ′(s− b). In both cases, the right integral is always smaller than the left integral. In other words,

F (s+ a) + F (s− a) > 2F (s).

In fact, the above inequality is also established when s < 0 and a < 0. Therefore, whenever s < 0,∫ 1

0

h(t, θ) dt =

∫ 1

0

h(t, θ) + h(1− t, θ)
2

dt >

∫ 1

0

F (F−1(θ)) dt = θ.

That is, Bias(z) > 0. Other cases (s = F−1(θ) > 0 and s = F−1(θ) = 0) are similarly proved.

4.2 EMPIRICAL COMPARISON BETWEEN GUMBEL AND ICDF REPARAMETERIZATION

Extending the last experiment in Section 7, Table 1 summarizes the time and memory consumption during the training of
global models on the four data sets. The results indicate that our developed ICDF reparameterization is more economic than
the Gumbel-Softmax approach.



Table 1: Time and memory consumption of F3 (five epoches) with respect to ICDF and Gumbel-Softmax reparameterization.
Time is in seconds and memory is in MB.

METR-LA PEMS-BAY PMU-B PMU-C
Time Memory Time Memory Time Memory Time Memory

Gumbel-Softmax 87.89 832.38 270.52 1896.11 42.40 348.39 84.89 1119.13
ICDF 79.69 568.24 157.93 1167.19 30.16 322.59 54.07 894.63

5 DATA SET DESCRIPTION AND PREPROCESSING

METR-LA and PEMS-BAY. These are traffic data sets (MIT licensed) used by Li et al. [2018]. The former was collected
from loop detectors in the highway of Los Angles, CA [Jagadish et al., 2014] and the latter was collected by the California
Transportation Agencies Performance Measure System. Both data sets recorded several months of data at the resolution of
five minutes. The network graphs are available, which were constructed by imposing a radial basis function on the pairwise
distance of sensors at a certain cutoff.

The data sets were originally prepared for forecasting tasks and hence no labeling information exists. We adapt the data for
classification. Specifically, we split the time series on the hour, forming hourly windows. We label each window as whether
or not it corresponds to rush hour. For proof of concept, we specify 07:00–10:00 and 16:00–19:00 as rush hour and the
others non-rush hour. We note that in the original data sets, one of the attributes is time. We remove this attribute to avoid
triviality and retain only the speed attribute.

The specification of rush hours may not be highly accurate, but it is a sensible practice to cope with the nonexistence of
labeling information. Intuitively, the signal of rush hour comes from reduced traffic speed, but not every location of the
network experiences traffic jam. Hence, the diverse traffic patterns inside the same time window under a single label causes
nontrivial challenges for local models to discern. Therefore, the need of a global consensus model is justified and it fits well
the federated feature fusion scenario.

PMU-B and PMU-C. These are proprietary data sets coordinately provided by multiple data owners of the U.S. power grid.
No personally identifiable information is present. The suffixes B and C indicate the interconnects of the grid. The data sets
come with thousands of annotated grid events spanning a period of two years; they form the classification labels. Many
variables (attributes) of the grid condition are recorded; we select only the voltage magnitude and the current magnitude,
because they appear to be the strongest signals for event detection based on domain knowledge, and also because more data
are available for these two variables. The grid topology is not available.

For each event, we select a one-second window from the three-minute window that covers the approximate an-
notated event time, based on the largest z-score. We retain a sampling frequency of 30Hz, even though some
data are 60Hz. Furthermore, a large amount of data are missing in the raw data. We impute the series by us-
ing pandas.DataFrame.interpolate(method = ’linear’, limit_direction = ’both’) from the
Python pandas package. This way, a windowed series is complete if it ever has raw data. Even so, many series are entirely
empty, which corresponds to the scenario illustrated by Figure 1 of the main text. Classes in these two data sets are rather
skewed. For PMU-B, we remove a class that consists of only one data point and for PMU-C, we combine classes that contain
fewer than 24 data points into a single class.

6 EXPERIMENT DETAILS

The experiments are conducted on one x86 node of a computing cluster with one A100 NVIDIA GPU. The compute node
has eight Intel cores and 128GB memory. For each data set, we perform a 70/10/20 random split for training, validation, and
testing, respectively.

For local models, we use LSTM with the same hyperparameters: one hidden layer whose hidden dimension is 16 and the
maximum number of epochs = 200. We pre-train the local models and freeze their parameters afterward. We train each
global model for a maximum of 500 epochs and use early stopping according to the validation loss, with a patience of 50
epochs. For the GNN global model, we use a 2-layer GCN with skip connections. The hidden dimension is set at 8 and we
select the learning rate from {0.01, 0.001}. For missing data, we impute the node features by using zero.



Table 2: Different approaches to feature alignment.

METR-LA PEMS-BAY PMU-B PMU-C
F1 AUC F1 AUC F1 AUC F1 AUC

soft alignment .835 .975 .860 .980 .390 .734 .451 .725
hard alignment .839 .973 .855 .976 .390 .737 .429 .721

7 SOFT AND HARD FEATURE ALIGNMENT

Feature alignment can be achieved in two manners. The first approach is a soft alignment, which treats each Pi a free
parameter matrix to optimize. Such an alignment softens the one-to-one correspondence in the permutation constraint; i.e.,
each feature in the source can have a weighted correspondence to each of the features in the target. That is the way we used
in the main paper.

An alternative approach is a hard alignment, which treats each Pi as a permutation matrix. Learning permutation matrices is
challenging, however, because they correspond to combinatorial structures and are unsuitable for gradient-based training. We
follow Mena et al. [2018], Emami and Ranka [2018] and relax Pi by a doubly stochastic matrix, which can be differentiably
parameterized by the Sinkhorn–Knopp algorithm [Sinkhorn and Knopp, 1967]. Specifically, starting from a nonnegative
square matrix K0 and column vectors r0 = c0 = 1 of matching lengths, define the sequence

cj+1 = 1� (KT
0 rj) and rj+1 = 1� (K0cj), for j = 0, 1, . . . (10)

Then, under a mild condition, Kj := diag(rj)K0 diag(cj) converges to a doubly stochastic matrix. We truncate the
sequence at the T th step and treat KT as an approximation of Pi.

Despite the advocation by Mena et al. [2018], Emami and Ranka [2018], we obtain the following convergence result of
Sinkhorn–Knopp, which reveals no free lunch.

Theorem 4 (informal). Under a condition of K0, there exists a positive integer J and a constant CJ such that for all j ≥ J ,∥∥∥∥[KT
j 1

Kj1

]
−
[
1
1

]∥∥∥∥ ≤ CJ(1 + σ2
2)σ

2(j−J)
2 ,

where σ2 ≤ 1 is the second largest singular value of the limit of Kj .

Since this is not the focus of this paper, we omit the rigorous analysis of this theorem. The result suggests that for a desirable
limit being a permutation matrix, whose σ2 = 1, the error O(σ2j

2 ) does not drop. In practice, to expect for an approximate
permutation matrix, σ2 ≈ 1 and the convergence is exceedingly slow. The practical usefulness of (10) depends on the
learned quality of K0.

The soft and hard alignment approaches have pros and cons. The hard approach maintains the correspondence of each
feature dimension of the latent vectors while the soft approach does not. Maintaining the dimension correspondence is an
advantage, especially for local models that produce disentangled latent representations [Higgins et al., 2018], because each
feature dimension is equipped with a semantic meaning that controls a certain aspect of the data. On the other hand, the soft
approach is more straightforward and the hard approach is based on an algorithm that barely converges. In practice, we
observe that two approaches deliver similar performance. We list the results for both approaches in Table 2, and we visualize
the hard alignment matrix learned on each dataset Figure 1, to help readers understand the feature alignment.
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