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Appendix

A BASIC FACTS
A.1 ELEMENTARY INEQUALITIES

Proposition 1. For all a,b € R? and t > 0 the following inequalities hold

lal? | tlo)?
b) <
(a8) < 1o+ T
la+ b1 < 2lial + 2Bl m

1
3 llall® = 11b1* < lla + bl|*.

A.2 CONVEXITY AND SMOOTHNESS

Proposition 2. Let f : R — R be continuously differentiable and let L > 0. Then the following statements are equivalent:

e fis L-smooth,
* 2D¢(z,y) < L||z — yl|* for all z,y € RY,
o (Vf(x) = Vfy),z—y) < L||z—y|?forall z,y € RY.

Proposition 3. Let f : R? — R be continuously differentiable and let ;v > 0. Then the following statements are equivalent:

o fis p-strongly convex,
* 2D¢(z,y) > pllz —y|? forall z,y € RY,
« (Vf(@) =V f(y),z—y) > plz -yl forall z,y € R™.

Note that the © = 0 case reduces to convexity.
Proposition 4. Let f : R — R be continuously differentiable and L > 0. Then the following statements are equivalent:
e fis convex and L-smooth
* 0 <2Dy(z,y) < L|jz — y||? forall z,y € RY,
* 1VI(@) = VIW)I? < 2Dy (x,y) forall ,y € RY,
« 2IVF@) = VWP < (Vf(2) = Vf(y),z —y) forall z,y € RY.

Proposition 5 (Jensen’s inequality). Let f : R? — R be a convex function, x1,...,x,, € R and \y,...,\,, be
nonnegative real numbers adding up to 1. Then

A.3 FROM CONVERGENCE RATE TO ITERATION COMPLEXITY

We implicitly use the following standard result to derive iteration complexity results in our theorems. We include the
statement and proof, for completeness.

Lemma 1. Consider a randomized algorithm producing a sequence of random iterates {x }+>o. Let Sy be some nonnegative
function of vy (example: Sy = ||x; — x.||?). Assume that there exists q € (0, 1) such that the following inequality holds for
allt > 0:

E[Sy] < (1—q)" So. )



Fix any € > 0. Then as long as
1 1
T>-In <) ,
q €

E [ST] < ES().

we have

Proof. Since e? > 1+ gforall g € R, we have e=? > 1 — ¢ for all ¢ € (0, 1). Since logarithm is an increasing over R, it
follows that —g > In(1 — ¢) for all ¢ € (0, 1). Therefore, the inequality

—tg>tln(l—q)

holds for all t > 0 and all ¢ € (0,1). Now if we have 7' > 11n (7) , which is equivalent to —T" - ¢ < In(e), we obtain
Tln (1 — gq) < In(e). Taking exponential on both sides, we get

0<(1—¢)f <e. A3)

Finally, we have

E [S7] %b (1—q)" S, ‘%’sso.

O

Lemma 2. Consider a randomized algorithm producing a sequence of random iterates x;. Let S; be some nonnegative
function of xy (example: Sy = ||xy — . H2 ). Assume that there exists q € (0, 1) such that the following inequality holds for
allt > 0:

E[S:] < (1 — )" So.

1 1
TZM”@

E [ST] S E.

Fix any € > 0. Then as long as

we have

Proof. :Since e? > 1+ gforall ¢ € R, wehave e”? > 1 — g forall ¢ € (0,1). Since logarithm is an increasing function
over R, it follows that —g > In(1 — ¢) for all ¢ € (0, 1). Therefore, the inequality —S3tq > St 1n(1 — ¢) holds for all ¢t > 0
and all ¢ € (0,1). Now, if we have 7" > - In (£ ), which is equivalent to —7'3 - ¢ < In(e), we obtain S7'In(1 — g) < In(e).
Taking exponential on both sides, we get

0<(1—q)fT <e.

Finally, we have
E[Ur] < (1 —¢q)T¥y < Wy,



B PROOF OF PROPOSITION 1

Assume that each f; is u-strongly convex (resp. convex) and L-smooth. Then the function

1 n
K :£fo>
i=1

and
fzt(x) = f1($)+<a§,$>, 4

are pu-strongly convex (resp. convex) and L-smooth.
Proof. Let us compute Bregman divergence with respect to the new function f}(z) :
Dye(w,y) = fi(z) = fi(y) = (Vi ), 2 —y).
Note that V f!(y) = V fi(y) + al. Now we have
Dyi(x,y) = fi(z) = fi(y) — <Vf<t( ) —y)

= fi(x) + (af,z) — ( +(a},y)) — (Vfily) +a},z —y)

= fi(x) + (aj,x) — <a’i»y> (Vfily),z —y) — (af,z —y)

= fi(z) + (aj,z) - —(al,y) = (Vfi(y),x —y) — (af, ) + (af, v)
= fi(z) — fily) — <sz( ), T —Y)

= Dy, (z,y).

Since the Bregman divergence is not changed, the new function f/(z) has the same properties (u-strong convexity or
convexity and L-smoothness) as the initial function f;(x). O



C PROOF OF LEMMA 1

Proof. We start from definition of (ai)2 and a’:
(@) = LS @l = 2 S 194 ) = VA )+ Y )l
i=1 i=1
Using the fact that V f (z.) = 0 we have
(01)* = % En: IV fi () = Vfi (ye) + Vf () = VI (2]
i=1

Applying Young’s inequality (12) we obtain
2 1
(01)" < =37 (2194 () = Vi @IP +21VF () = VF @)])

i=1

Now we apply Proposition 5 for the squared norms of gradient differences:
(O’t)2 < 1 iélLDf. (yr, zs) + 1 illLDf (yt, z4) -

YoTn i=1 1 i
We need to use the fact that 2 Y% | Dy, (ys, .) = Dy (ys, x.). Itis true since f(z) = L 37" | fi(z). So,

2

(61)> <4LD; (4, 2.) + ALD; (3, ) = SLD; (3, .).

Finally, we apply the L-smoothness property from Proposition [2}

(01)* <4L? |y — ).



D ANALYSIS OF RAND-SHUFFLE AND RAND-RESHUFFLE

D.1 PROOF OF THEOREMS 1 AND 2

Proof. We start from Lemma 3 in paper of Mishchenko et al.| [2020].

Lemma 3. Assume that functions f1,..., f, are convex and that Assumption 1 is satisfied. If Random Reshuffling or
Shuffle-Once is run with a stepsize satisfying v < ﬁ, then

3Ln?0?
E|lloes = 2l < E[llo = 2.]*] = 29mE[f (o) = fla)] + 5=
The proof of the analogous inequality from Mishchenko et al.[[2020] but with condition expectation is identical with very
minor changes. We provide such proof below:

We denote by F; the o-algebra generated by the collection of (X x ))-valued random variables (xo, %o) , - - - , (T, yz), for
every ¢t > 0. In this work, we consider unbiased random estimates: for every ¢ > 0. If the method does not depend on y., we
can still use such notation because of the independence property for conditional expectations. We denote by F; the o-algebra
generated by the collection of (X x ))-valued random variables (xg, %), - - -, (Z¢, y), for every t > 0. In this work, we
consider unbiased random estimates: for every ¢ > 0. We define the forward per-epoch deviation over the ¢-th epoch V; as

n—1 ) 5
V= 3 ot =z
=0

Lemma 2. Consider the iterates of Random Reshuffling or Shuffle-Once. If the functions fi,..., f,, are convex and
Assumption 1 is satisfied, then

n—1
EWV. | F] < 4°0°L Y E [Dy, (¢o,2f) | F] + g2Pn%?
1=0

where V; is defined above, and o is the variance at the optimum given by 02 = L 3" ||V f; () |* We will follow the
steps from Mishchenko et al. [2020].

Proof. For any fixed k € 0,...,n — 1, by definition of 2 and x;,; (According to Algorithm 1 or 2 in Mishchenko et al.
[2020]) we get the decomposition

n—1 n—1 n—1
xt — T4l —Vzvfm xt = Z me xt ~Vfr, (33*)) +72me (x*)
i=k i=k i=k
Applying Young’s inequality to the sums above yields
_ 2 ne1 2
ot —@e|” < 292 Z Vo (@1) = Vir (@)|| +29 Y Vir, (@2)
i=k i=k
Using Jensen’s inequality we have
5 n—1 ‘ 5 n—1 2
fo - xt+1|| < 272712 ||me (:U;) —Vin (x*)H + 272 Z V fri (24)
i=k i=k
Using L-smoothness property from Proposition 3 we have
5 n—1 . n—1 2
fo —xt_HH < 472LnZDfM (x*,xi) + 272 Zme (z4)
i=k i=k




Further, we have
2

n—1 n—1
fo - a:tHHQ < 4~%Ln Z Dy, (24, 2}) + 297 Z V fr, (x4)
i=0 i=k
Summing up and taking conditional expectations leads to
n—1 5 n—1 ‘ n—1 n—1 2
Y E [||xf — x| }‘t] < 4y°Ln® Y E Dy, (we,2)) | B + 22 Y E|||SVin, (@)| |7
k=0 i=0 k=0 i=k

Since Zz;é E [HZ?_;} V fri (24)

2
‘ | ]—'t} does not depend on F; but only on permutations we have

2

n—1 n—1
S B|llef — w1 Fi| <4920 Y E[Dy,, (@aad) | ] +2722E ()
= =0 k=0

We now bound the second term in the right-hand side. First, using Lemma 1 from Mishchenko et al. [2020], we get
2 2
. [HZ?:; V fr, (22) \ ] = (n—k)°E [ i i Vi () \ } = (n — k) Gy o? = Me502. Next, by

summing this for k from 0 to n — 1, we obtain

n—1 n—1 n—1
kn—k) 5 1 5 _ n2o?
E (1, = — loi=— 1 <
Z Zme(a:) Z " 6n(n—|— Joi < 1
k=0 i=k k=0
where in the last step we also used n > 2. The result follows. O

Let us provide analogue for Lemma 3 from [Mishchenko et al.[[2020]].

Lemma 3*. Assume that functions f1,..., f,, are convex and that Assumption 1 is satisfied. If Random Reshuffling
(Algorithm 1) or Shuffle-Once (Algorithm 2 ) is run with a stepsize satisfying v < \/ian’ then
3In20?
E|leees — @’ | 7| < o =l = 29mE [f (@er) - £ | F) + 252

Proof. Define the sum of gradients used in the ¢-th epoch as g; = EZL 01 V fr, (xt) We will use g; to relate the iterates x;
and ;4. By definition of z;, 1, we can write

zt-‘rl_‘rt —1‘? 1_’vaﬂ'n 1( ¢ 1)::m2_72vf7TL (l‘zlf)

Further, since x? = x;, we see that z;4; = x4 — g, which leads to

2 2 2 2
2 — 2| = lZea1 + 79t — 2u|” = |31 — 2ll” + 27 (g6, w11 — @) + 77 [l 9¢|

Since 72 ||g¢[|* > 0 we have

n—1

o = 2all® > Nwess — 2all® + 29 (g6 wer1 — 2) = [wen — 2l + 27> (Vi (21) 2041 — 22)
=0

Observe that for any 7, we have the following decomposition

(Vir (@) 241 — @) = (fr, (@e41) = fr, (@) + Dy, (24, 34) — Dy, (w041, 27)
Summing the first quantity over ¢ from 0 to n — 1 gives

n—1

Y i (@es1) = i (@) = 0 (f (2011) = fo)

=0



Now, we can bound the third term in the decomposition (33) using L-smoothness as follows:

Dfﬂ-i (It-‘,—l,xi) S 5 ||:Ct+1 _ IQHQ

By summing the right-hand side over ¢ from 0 to n — 1 we get the forward deviation over an epoch V;, which we bound by
analogue of Lemma 2 to get

n—1 n—1

. L . 2L 2 2
> E[Dy,, (wi1,9) | F] < SEWV | Fi) € 29°Ln Y E Dy, (a-,01) | Fi] + TN Z T
=0 1=0

Therefore, we can lower-bound the sum of the second and the third term as

n—1

n—1
Z]E I:-Df‘rn (w*,x;) - Dfn (‘rt+17xztl) | ft:l 2 Z]E I:Df""i (.’E*,xz) | Ft]
Pt =0
n—1 2 2
— 212 Y E (D, (sa) | 7 - L
=0

Proof. We start from analogue of Lemma 3 in paper of Mishchenko et al. [2020], which we proved above.

v In?o?
2

Now we can apply this inequality to the reformulated problem (2). Using strong convexity, we obtain

E[lzes = @l | ] < o0 = 2] = 29nE [f (@041) = f (@) | Fi] +

¥*Ln? (o1)’
2

VL2 (o)’

2

E 21 = 2al* | o] < lloe = 2)* = 29nE[f (@e41) = f (&) | Fi) +
2 2 2
E [z — 2l | 7] < lla = 2] = gl [Jloss - 2. | 7] +
Since we update y; = x; after each epoch, this leads to

3In2 (Ot)Q

E[ _*2 }< _*2 TEN NG
leesr = | F _Hwn e

VPLn? - AL ||y, — x*|2>

lze — .| +

E ||z — 2. | Fi

_1+wm 2

E [[lzess — a.l? | 7o (o = 2. +29°02 L2 |l — 2. )

1+'yun

r 7 1
E — P | B < ——— (1 + 2+°n%L3 — 2. |]?
_Hﬂft+1 T ||” | t| _1+'y;m( +29°n?L?) ||z — 2. ||

We can use the tower property of conditional expectation to obtain

1+2y3L%n?
E (e — o] <~ [l — ]
+yun

Since v < gfL VE,n>1and p < L we have

1 1 p jp 1
i P«
4n 4\fL L™ 2



From this inequality we obtain

1+2y3L3n?
E [z — 2] < =522 (o - o.7]
1+ yun

1 /
Since v < %,nzlandungehave

2v2Ln
1 1 p fp 1
i 2 <«
4dn + 4/2L\N L~ 2
From this inequality we obtain 2 - 75— - £L3n + 2\/%Ln\/%. "‘2‘2 <t
1 1L p[p P
_ =z /2, <=
TR FA TN A
We continue to derive inequalities:
2
9~23 e B
YRR ST
2
223 < B i
2 2
2rs 2 _ i ynPp’
2v°L°n” < 5 "5

ynp yPnp
2

1+2930%n% <1+ 5

Finally, we obtain
373,2
1+ 2v°L°n <1_*ynu

1+ ~yun

3r3,2 . .
Plugging this inequality into E {Hxﬂ_l — T4 ||2} < %E [||zt — T4 ||2} , we unroll the recursion and obtain the final
result:

n T
E[ller — 7] < (1= 5 llwo — 2.l

D.2 PROOF OF THEOREM 3

We start from conditional analogue of Theorem 1 in [Mishchenko et al.l[2020] (similarly to Section [D.IJ), which states that

n—1
2 n 2 2
E [[wir — o | Fe] < (0= 90" 2 = 207 + 272 0ume <§j<1w>>.

i=0

Using Proposition 1 from [Mishchenko et al.l |2020]], which says that

we get

2 2 73Ln 2 p i
Elflzerr — 2" [ Fe| < (1 —y)" [|we — zaf|” + ol | Y (=)

2
VLn ,
O.*
2p

2
< (L =)™ [Jog — 2™ +



Now we can apply Lemma 1 and Reformulation. Using y; = x; we have the following inequality:

272 L3n

B |lloees — @l 2] < (0= 90)" e — . ]* + e - a.?

27v2L3n
< ((1 " + ”ﬂ) e — .2

Applying the tower property, we get

2v2L3n

E [l = o] < (0" + 220V [l - 7.

and after unrolling this recursion, we get

22L3
E[erx*n ( ”M ) E [[|zo — z.|]

T
w 2L3n 9
(1-— ——— | E — T4
( TH) +L22 L u ) [HZ‘O z H}

(1= 7)" +8%) " E [[lzo — 2. ]?]

IN

where we used the stepsize restriction v < %1 /5t . In order for this to lead to convergence, we need to assume that
(1 — ypu)™ + 62 < 1. This is satisfied, for example, if n is large enough. In particular, this holds when

N

Finally, using the additional assumption 6% < (1 —yu)2 (1 — (1 —yp)?), we get

8+ (1= )" < (1—yp)?.

Now we can apply Theorem 3 and get
nT
E [[lor — 2] < (1 —yp) 2 [lzo — >

Finally, we apply Lemmawith v = %\ /b7 and get iteration complexity T' = O (Ii\/g log (%)) .

D.3 PROOF OF THEOREM 4

Suppose the functlons fi, fay. .., frare convex and Assumption 1 holds. Then for Rand-Reshuffle or with
stepsize v < f , the average iterate Tr == Zt 1 ¥4 satisfies

3 [lwo — z.||*

E[f (r) £ (n.)] € S5

Proof. We start with conditional analogue of Lemma 3 from [Mishchenko et al| [2020] (similarly to Section[D.T), which
says that

'y?’anUf

Ellzes — 2l | ] < oo = 2> = 29mE [f (@e41) — f (@) | Fi) + 15

Apply this inequality to the reformulated problem, we get

Y Ln? (at)®

5 (5)

29nE [f (w041) = f (@) | Fil < oo = 2l* = B [Joen = 2.l” | ] +



Using Lemma 1 and the fact that y; = z; and f = f?, we get
2
(02)" < 8LDy(xy, ) = 8LD (w4, x.) = 8L(f (1) — f(z4)), (6)
where the last identity follows from Proposition 1.
Plugging (6) into (3), we obtain

3 Tl2
VL SL(f(er) — f(22),

29mE [f (z41) = f (@) | ] < e = 2l = B [llzegs = 2l® | 7] +
which after using the tower property turns into
29nE [f (@141) = £ (@)] S B [llo = )] = E [lzi1 = 2.l?] + 4 Ln?E [f(21) = f(2.)].

Now we subtract from both sides:
29nE [f (041) = f (@)] = 4 LB [f (2141) = f (@] S E [lo0 = 2P] = E [Jlzi1 - . ]
+ 4P L2 [f (1) — f(2.)]
— 4 LB [f (2e11) — [ (2.)]
(29m = 4’20 E[f (@es1) — £ (@)] B [llz — 2P| = E [Jlzes1 — ]
+49°L202 (B[f (1) — f(2)] — E[f (2141) — f (2.)])
29m (1= 292L*0) E1f (241) — £ (@)] < E [J20 = 2 °] = E |21 - . ]
+49° L2 (B[f (1) — f(@)] —E[f (z141) — f (@.)]).

Summing these inequalities for t = 0,1,...,7 — 1 gives
T-1 T-1

2y (1= 292L%n) Y E[f (ze41) = f @) € Y (E [llee = 2. *] = E [Jzer —2-]])
t=0 t=0

ﬂ
L

+49°Ln? Y (B [f(ze) = f(@)] = E[f (2eg1) = [ (2)])

=E[llzo - @.)*] ~ E [llor - z.]
+ 4 LB (0) — f (2.)] = 9°L*n°E[f (o) - f (a.)]
<E [Jleo — P + 42 L*02E [f (w0) — f (2.)

I
=3

<E [leo = o] + 200 [Jy .
= (1+29°L*n))E [ oo — ],
and dividing both sides by 2yn (1 — 272L2n) T, we get

T-1 . 2
1 1+ 2730302 ||zg — 2|
— E — «)] < .

Using the convexity of f, the average iterate Zp &t % Zthl x, satisfies
T 2
. 1 142930302 ||zg — 24|
E - D <=>» E — ] < .
For) = Fle) S 7 LB @) = J )l < 7ol oy g
Let us show that
1+ 2y3L3n?

1—2+2L2%n —



Applying v < \/gan we have
1+2——2 L2 1+4+-L

2v/2L3n3 _ 2n
1-2-4-50%n  1-1 <3
2L2n2 n

This leads to 4n > 6 + /2 and since n € N : n > 1, this inequality holds. Finally, we have

3 |lzo — .|

E(f (br) - f ()] < 15—



D.4 PROOF OF THEOREM 5 AND THEOREM 6

We provide analysis for non-convex settings.

Let us remind you our reformulation:

:%Z.ﬁ( %Z atax> Zfz
1=1

i=1
where f!(z) := fi(x) + (aj,x) and }_" | ai = 0. Note that

Vii(z) = Vfi(z)+af.

In particular, we choose
ap ==V fr, (ye) + VI (ye)-

Finally, we have
Vir (@) =V fr(x) = Vr, (y) + VI (yr) -

Now we need to establish an analogue of Lemma 1 for gradient variance. Let us define
1 n 5
==Y IVfilw) = V@)
i=1

Lemma 4. If we apply the linear perturbation reformulation, then the gradient variance of the reformulated problem (Ut2 )
is equal to zero.

Proof.

= LS|V ) - V@) an 20) = Vfi () + VF () = VS @)
=1

In Algorithm ?? (Rand-Reshuffle) we set x; = y;, and hence we have

7)== SNV ()~ Vi) + Y (@)~ VF @) =0,
=1

O

Suppose that Assumption 1 holds. Then for Algorithm Rand-Reshuffle run for 1" epochs with a stepsize v < 57— Ln we have
4 x «
2 LI E IV (@) < Mt

Choose 7 = 5. Then the mean of gradient norms satisfies - Z NV f (a:t)||2} < &2 provided the number of
iterations satisfies T' = O (S‘i%L ) .

V@)

we have

Suppose that Assumption ?? holds and f satisfies the Polyak-t.ojasiewicz inequality with © > 0, i.e.,
2u(f(x) — f.) for any € R%. Then for Algorithm Rand-Reshuffle run for T epochs with a stepsize

2Ln

E[f(er) — £.] < (1= 22) (f(2) — fu),

then the relative error satisfies W < ¢ provided the number of iterations satisfies T' = O(k log %)



Proof. We start from conditional analogues of Lemmas 4 and 5 from |[Mishchenko et al.|[2020] (similarly to Section

m vL?
E[f(@e)lF] < f(an) = S0 IVF @Ol + T (120* [V (@)l* +2*n?o?(z))
This lemma works for the reformulated problem. Since we do not change initial function f(x) the gradient V f(z;) remains

the same. The only thing that changes is the variance of the gradient. According to the lemma proved above, this variance is
equal to zero. Now we have the following inequality:

B (@)l < Se0) — 219 @)l + 2oy |9 )
< fla) = 5 (1=72L%2) VS (@)l
Let 6; = f(x¢) — f«. Adding — f to both sides,
E [61+1F] < 6 - % (1= 7L?n?) [V £ (a2)]*
Taking unconditional expectations and using that v < 57— we have 1 — v2L?n? > %, we get

E o] S E[6] - LB [V @)]f] -

It leads to

1 1=t , 4
T2E 195 @olF] < -5 > (Elbun] ~El8) < 5

If we have PL condition, then we start from
E o] SE[6] - LE[IVF @))]
Applying 5[V ()| > u(f(x) — f.) leads to
E[br1] SE[5] - 7B (@) — £.].

Unrolling this recursion, we get
T
E[57] < (1 - %) 5o.

Suppose that Assumption 1 holds. Choose the stepsize ~y as 2 7 - Then the mean of gradient norms satisfies

1 T-1
= S E[IVf @l’] <&
t=0

provided the number of iterations satisfies

If f satisfies the Polyak-t.ojasiewicz inequality, then the relative error satisfies

E [.f (xT) - f*]
o) —f) —°

T:O(ﬁlog1>.
€

provided the number of iterations satisfies



E ANALYSIS OF DET-SHUFFLE

E.1 PROOF OF THEOREM 7
We start from Lemma 8 in Mishchenko et al.| [2020]

|41 = 2l < e = 2al* = 290 (f (w141) = £ (22)) + 7 LnPo?, @)
Now we can apply to the reformulated problem (??). Using strong convexity we obtain

2
41 = 2al* < [loe — 2al|* = 290 (f (@e41) — f(22)) + 77 Lo (of)
2
<l = 2l = Ampe (e = 2.]*) +9°Ln* (o)

Since we update y; = x; after each epoch, this leads to

1 2
2 2
Hl’t+1 — il'*” < m (H.’Et — LE*H +’y?’Ln3 (O’i) )
2
< HW (ko = wall® + 97 Ln® - 422y, — 2.2)
S (o = 2. + 49°0* L2 — .2
1
= m (1 + 4’73’)13L3) ||y — x*HQ
We obtain
2 < 1 —|—4")/3L37’l3 2
[we1 = 2| € ———[lzs — 2"

1+~yun
Since we have ;1 < L we obtain

= o
=
IA
NE ONTE N

1 K3 2 1
2. Er R
6022 LV Tam\ LD 2 S

Now as 7 < 4L \/% we have

2
UN2L3n2 Ynp <ﬁ
¥ n+72 =5
2
A~2T3 2 o H_OnH
TR =57
U233 < T P’
n oE
7 =7 2
2,2, 2
1+473L3n3<1+% 7”2”.

Let us simplify it:

1+ 4~3L3n3 <1 Y
1+~yun — 2

‘We can unroll the recursion and obtain

n T
E [lor —a.)?] < (1= 5E) " flzo — .2



E.2 PROOF OF THEOREM 8

Suppose the functions f1, fs, ..., f, are convex and Assumption 1 holds. Then for Algorithm 1 (Det-Shuffle) with a stepsize

1 i S_aT
Y3 NoTT% the average iterate 7 = = Ej:l z; satisfies

20—l

f@r) = f(z.) <

We start with Lemma 8 from Mishchenko et al.| [2020]:

ynT

o1 = @l|* < llze = 2a|* = 29m (f (2040) = f (22)) +7° Lno?

2yn (f (@e1) = f () < 20 = 2 |” = Jwpsr — @al|” +7°Lno?.
Using Lemma ?? and considering y; = x;, we have

(01)2 < 8LD i (4, xy).
Applying Proposition ?? we get
2
(00)" < 8LDg(xe, ) = 8L(f(xe) — f(x)).
Next, we utilize the inner product reformulation and get
29n (f (@e41) = f () < [l = 2| = Jwesr — @al|* +7°Ln® - 8L(f(we) = f(x2)).

Using tower property we have

29n (f (141) = £ (@) < o0 — 2] = lzepr — 2| + 877 L0 ((f(20) — f(22)))-
Now we subtract from both sides:
29n (f (2141) = f (2)) = 89°L20* (f (2241) = f (@) < (llz = 2.) = 21 —

+8y°L2n® ((f (1) — f(x.)))
=8V L?n® (f (we41) — [ (24))

(2yn = 8y°L%n%) (f (w131) — [ (22)) < l|wr — 2| = [Jwrgr — 2

+ 87 L20® ((f(21) = f(x.) = (f (1) — f (22)))
2yn (1= 49°Ln°) (f (wi41) — f (@) < [loe = 2al* = Jzen — 2.
82 L2 ((f(20) = f(4)) = (f (wes1) = [ (24))) -

Summing these inequalities for¢ = 0,1,...,T — 1 gives
T—1 T—1
2y (1= 47Ln%) 3 (F (@) = F (@) < 3 (e = 2] = lween =)
t=0 t=0
T—1
+8° L0 Y ((f(e) — f () = (f (w41) = [ ()
t=0

= oo — 2| = l|lor — o
+87°L?n® (f (x0) — f (2.)) = 89°L?n® (f (x1) — f (2.))
< lwo — @) * + 8°L*n® (f (w0) — f (.))
< oo — @.||* + 49° LPn® |lwg — .||
= (1+49°L%0%) [lwo — z.||?,

and dividing both sides by 2yn (1 — 4y*L?n?) T, we get

!
-

14430303 ||z — $*||2
_ ) < .
(f (@e1) = [ (z0)) < 1— 492022 2ynT

Nl
o
Il
<



. . . . def .
Using the convexity of f, the average iterate i = % 2:{:1 x, satisfies

1 1+ 430303 ||z — .|

T
(f (@7) = f (7)) < T Z (f (z) = [ (z4)) < 1 — 492022 2ynT

t=1

Let us show that

1+ 4~3L3n3
1—4~2L%n2 —
: 1
Applying v < 72 We have 1 1
3,3
1+416\/§L3n3L n B 1+m <4
1 - 1
1-— 4WL2,”2 1-— 5

Finally, we have

This ends the proof.



F ONE MORE ALGORITHM: RR-VR

F.1 NEW ALGORITHM: RR-VR

Algorithm 1 Random Reshuffling with Variance Reduction

1: Input: Stepsize v > 0, probability p, zo = 23 € R?, yy € R?, number of epochs 7.
2: fort=0,1,...T —1 do

3:  Choose a random permutation {7q, ..., 7,1} of {1,...,n}
4: x? = X
5 fori=0,....,n—1 do
6: 9¢(80 ye) =V (2) = Vi (v2) + VI (02)
7: w = a) — iz}, ve)
8:  end for
9: Ti41 = JJ?
yp  with probability 1 — p
100 Y1 = . .
x; with probability p
11: end for

In this section we formulate convergence results for a generalized version of SVRG under random reshuffling. Analysis of
RR-VR (Algorithm T)) is more complicated.

F.2 CONVERGENCE THEORY

To analyze this method, we introduce Lyapunov functions.

Suppose that each f; is convex, f is u-strongly convex, and Assumption 1 holds. Then provided the parameters satisfy

n > kK, % <p<landy < Mﬁ’ the final iterate generated by RR-VR (Algorithm satisfies Vr < max (qq, qg)T Vo,

whereqy =1—- 242 (1-5), o =1—-p+ %72L3n, and the Lyapunov function is defined via

m:Emm—@wy+(4)”Em%—mﬁ}

ypn
This means that the iteration complexity of Algorithmis T =0 (klog(1)).

Note that the probability p should not be too small. We obtain the same complexity as that of of Rand-Reshuffle.

Suppose that the functions f1, ..., f, are u-strongly convex, and that Assumption ?? holds. Then for RR-VR (Algorithm [T}
with parameters that satisfy v < 5-/55-, 2 < § < ==, 0 < p < 1, and for a sufficiently large number of functions,

\/57

-1
n > log (ﬁ) . (log (1—1w)> , the iterates generated by the RR-VR algorithm satisfy V7 < max (¢1,¢2)” Vo, where

273
q1=(1—w)”+52,q2=1—p(1—QWM(stn),and

Vi s = aul] + S [l - 2. 7].

This means that the iteration complexity of Algorithmis T=0 (max (n\/7E %) log (%)) .

1’ 2log

We get almost the same rate as the rate of Rand-Reshuffle, but there is one difference. Complexity depends on § term.
However, the first term dominates in most cases.

F.3 PROOF OF THEOREM 9

Suppose that each f; is convex, f is p-strongly convex, and Assumption 1 holds. Then provided the parameters satisfy

n>gk, - <p<landy< m, the final iterate generated by RR-VR (Algorithm | satisfies

Vi <max (q1,q2)" Vo,



where

n
C]1=1—M(1—g

8
)7 (I2:1_p+*’)’2L3n7
4 Iz

and the Lyapunov function is defined via

V=B [l =] + B [l — ).

Proof. For the problem 1 3™ | ff(x) we will use an inequality from Mishchenko et al.| [2020]:

1 3Ln2o?
E [thﬂ — 2| | mt} S T (”mt -z + 7)

14+ yun 2
1 I ”2 n 1 ~3Ln%02
= — ||z — z.
1+ ~yun k 14+ ~vyun 2
n 3Ln20?
< (1= 287) o — el + 525

Now we apply inequality

37,22
n Ln“o
B [l =l ] < (1= 257) e

n
< (1= 25 oy — > 4 297 L0 g —

Using tower property we have

E|loess = 2.l*] = E [Elleess — 2. | e, ]|

< (1 - %) E [||a:t - a:*HQ} + 273 L*n?E [|lye — 2] -

Now we look at

| y+ with probability 1 — p
Y1 = 2, with probability p

We get

E[llyerr = all® | 2 9] = (1= p)llye — all® + pllae — 2>
Using tower property
E [lyes1 — 2ll?] = E [E [lyesr — 2zl | ze, 1] ]
= (1= D)E [y — z:ll*] +pE [z — .]?] .
Finally, we have

YN
Eloess = @ull’] + ME [lyesr —2.017] < (1= 222) llow = @ull® + 24 Ln%E [l — 2. ]?]

+ (1= p)ME|y;, — 2.]* + pME|ze — 2.,
Denote V; = E [th - :c*||2] + ME [||lys — 2|?] . Using this we obtain
n
Virr < (1= 225 E [lae — 2] +29°L*n%E [Jlye — .1
+ (1= p)ME [[ly: — 2.[1°] + pME [J|z; — =[]



Thus,

n 1 .
Vil < (1 — % +pM) E {th - x*ﬂ + (1 —p+ M273L3n2> ME [||y: — z.]12] .

To have contraction we use

We have the final rate
Vi1 < max <1 el (17 g) 1 —p+ 872L3n) A
I

T
VT<max<1—’y'Zn(1—p),1—p—|—872L3n) Vo.
I

F4 PROOF OF THEOREM 10

Suppose that the functions f1, ..., f, are u-strongly convex, and that Assumption 1 holds. Then for RR-VR (Algorithm|[T)
1

with parameters that satisfy v < i\ / ﬁ, % << VoL 0 < p < 1, and for a sufficiently large number of functions,

-1
n > log (ﬁ) . (log (l—lw>> , the iterates generated by the RR-VR algorithm satisfy

Vi < max (q1,q2)" Vo,

where

2v2L3n
=(1—yp)" +6° =1-p(1-
q1 ( ’7/’6) + ) q2 p ( Iu(;z ) 3

and

Vi s = aul] + S [l - 2. 7].

Proof. For the problem % i, fE(z) we will use two inequalities from Mishchenko et al.| [2020]:

n—1
2 2 ;
E {[[zi41 — 2" | xt} < (=) e = 2”4 29?0 Ghutne (Z(l - “YM)Z>
i=0
vLn ,

2
OsShuffle 4 O

IN

Using this result, we have

—1

2 2 1 S :

E ||zt — 2™ | @, yt} < (=" e = 2" + 57 Lnoy > (1—p)
1=0

. 1
< (U= 9)" e =l 20 EnLe =
Using tower property

E (|41 — fc*ﬂ =E [E [||33t+1 — . |* | xt,ytH

n 1
< (1= )" E [l = al*] + - 29° LnL’E [l — . ]



Now we look at

| y+ with probability 1 — p
Y1 = 2, with probability p

Thus, E [[[ys+1 — 2l1” | 26, 9:] = (1 = p)llys — 2|1 + pllae — 2.]|*. Using tower property

E [llyer1 — #lI’] = E [E [llyer1 — @l” | 2, 5] ]
= (1= p)E [[lys — z.[I] 4 pE [|lze — 2] -

Denote V; = E [th — :c*||2] + ME [|ly; — x.||?] and we have

Vier = E [Joes = @.l’] + ME [Jyesa — 2.2

. 2
<(1—yp)"E {let - w*llg} + EWQL?’HE [lye = z<|?] + (1 = p)ME [|ly: — 2« [|*] +pME [l — . |*]

2 3n
< (=" + o) [ — ] + (-9 + 220

< max (((1 — )" +pM), ((1 —-p)+ 27;]@371)) Vi.

) ME [z~ 1]

Unrolling the recusrion we have

Vr < max (((1 —'y,u)”—l—pM),(l —p+ %))T%.

Applying M = %2 and v < ﬁ\/% we get
Vr < max ((1 — )" 4631 —p (1 - 27:;;”)>T%.
O
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