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In appendix A, we provide further details on FG-VI when
the covariance matrix has constant off-diagonal terms. Next
appendix B provides an algorithm to efficiently compute
bounds on the shrinkage and delinkage terms, using tech-
niques developped in section 4. In appendix C, we show how
to derive bounds on the trace of the shrinkage matrix. In ap-
pendix D, we obtain an upper bound on the KL divergence—
equivalently the entropy gap—between q and p.

A FG-VI FOR COVARIANCE WITH
CONSTANT OFF-DIAGONAL TERMS

Let p be a multivariate Gaussian distribution over Rn with
mean µ and covariance matrix Σ. The elements of the cor-
relation matrix are related to those of the covariance matrix
by

Cij =
Σij√
ΣiiΣjj

. (1)

In this section we assume that the correlation matrix has
constant off-diagonal terms, and we use ε ∈ [0, 1) to denote
the value of these terms. Note that we require ε ≥ 0 since
three or more random variables cannot all be mutually anti-
correlated. Also we require ε < 1 since otherwise C (and
hence Σ) would not be positive-definite.

A.1 SOLUTION FOR FACTORIZED GAUSSIAN
VARIATIONAL INFERENCE

Let q be the solution of FG-VI with diagonal covariance
matrix Ψ, where

Ψii =
1

Σ−1
ii

(2)

as in eq. (4).

We now prove Theorem 3.5, broken up into a statement
about the estimated variance (Proposition A.1) and a state-
ment about the entropy gap (Proposition A.2).

Proposition A.1. If the correlation matrix in eq. (1) has
constant off-diagonal terms, then the solution for FG-VI in
eq. (2) obeys the following limits:

lim
n→∞

Ψii = (1−ε)Σii (3)

lim
ε→1

Ψii = 0 (4)

lim
n→∞

1

n
trace(S) =

1

1− ε
(5)

where ε ∈ [0, 1) denotes the value of Cij for i ̸= j.

Proof. Let 1 ∈ Rn denote the vector of all ones. Then the
correlation matrix can be written as

C = (1− ε)I+ ε11⊤. (6)

One can verify by direct substitution that the inverse corre-
lation matrix has elements

C−1 = 1
1−ε

[
I− ε

1+(n−1)ε11
⊤
]
. (7)

Recall from eq. (15) that Ψii = Σii/C
−1
ii . With some alge-

bra, it follows from eq. (7) that

Ψii =

[
(1− ε)(1 + (n−1)ε)

1 + (n−2)ε

]
Σii. (8)

It is straightforward to take the limits of eq. (8) as n→∞ or
ε→ 1, and these limits yield the results of the proposition.

Finally, recalling that trace(S) =
∑n

i=1 Σii/Ψii, we imme-
diately get

lim
n→∞

1

n
trace(S) =

1

1− ε
. (9)

Proposition A.2. If the correlation matrix in eq. (1) has
constant off-diagonal terms, then the per-component entropy
gap from FG-VI vanishes in the limit n→∞; that is,

lim
n→∞

1

n
[H(p)−H(q)] = 0. (10)
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Proof. Recall from Theorem 3.2 of the main paper that the
entropy gap for FG-VI is given by

H(p)−H(q) = 1
2 log |S|+

1
2 log |C|, (11)

where S is the diagonal shrinkage matrix with elements
Sii = Σii/Ψii. We consider each term on the right side of
this equation in turn. It follows at once from eq. (8) that

log |S| = n

[
log

1 + (n−2)ε
(1−ε)(1 + (n−1)ε)

]
, (12)

where ε>0 denotes the amount of off-diagonal correlation.
Next we show how to evaluate log |C|. From eq. (6), we
rewrite the correlation matrix as

C = (1−ε)I+ nε
(

1√
n
1
)(

1√
n
1
)T

. (13)

Note that the second term on the right side of eq. (13) is
a rank-one matrix whose one nonzero eigenvalue is equal
to nε. By adding the first term—which is a multiple of the
identity matrix—we obtain a new matrix whose eigenvalues
are shifted by a uniform amount. It follows that this new
matrix (namely, C) has n−1 eigenvalues at 1−ε and one
eigenvalue at 1 + (n−1)ε, so that

log |C| = (n−1) log(1−ε) + log(1 + (n−1)ε). (14)

The entropy gap is related to the sum of log |S| and log |C|
by eq. (11). Adding the results in eq. (12) and eq. (14), we
find that

log |S|+ log |C| = − log(1−ε) + log(1 + (n−1)ε)

+ n log
[
1+(n−2)ε
1+(n−1)ε

]
. (15)

Note that the first term on the right side is O(1), the second
term is O(log n), and the third term can be written as

n log
[
1+(n−2)ε
1+(n−1)ε

]
= n log

[
1− ε

1+(n−1)ε

]
. (16)

For large n, the log term in this equation isO( 1n ) so that the
entire expression is O(1). From eq.(15), it therefore follows
that the entropy gap in eq. (11) is O(log n). Dividing by n,
we see that the per-component entropy gap vanishes in the
limit n→∞, thereby completing the proof.

From (15), we also see that the entropy gap becomes infinite
as ε→ 1 (for fixed n). Additional limits can be considered
with respect to both ε and n, but we do not pursue those
here.

A.2 SOLUTION WHEN MINIMIZING THE
REVERSE KL-DIVERGENCE

A factorized approximation cannot both match the marginal
variances and the entropy of the target distribution. In the

example at hand, minimizing KL(p||q) leads to good esti-
mates of the entropy but not of the marginal variances. We
now show that when minimizing the reverse KL-divergence,
KL(p||q), the opposite behavior occurs.

We first state the solution obtained when minimizing the
reverse KL-divergence. The following is the counterpart to
Proposition 2.1 in the main body of the paper.

Proposition A.3. Let q(z) be multivariate Gaussian with
mean ν̃ and diagonal covariance Ψ̃. Then the variational
parameters minimizing the reverse KL-divergence, KL(p||q)
are given by ν̃ = µ and

Ψ̃ii = Σii. (17)

Proof. The variational parameters ν̃ and Ψ̃ are estimated
by minimizing the reverse KL-divergence

KL(p||q) = Ep[log p(z)]− Ep[log q(z)], (18)

where each expectation is taken with respect to the mea-
sure p. The first term on the R.H.S does not depend on the
variational parameters. The second term is

−Ep[log q(z)] =
1

2
log |Ψ̃|+ 1

2
Ep(z− ν̃)T Ψ̃

−1
(z− ν̃)

=
1

2

n∑
i=1

log Ψ̃ii +
1

Ψ̃ii

(
Σii + (µi − ν̃i)

2
)
.

This expression is minimized by setting ν̃i = µi and more-
over ν̃ = µ. Differentiating with respect to Ψ̃ii and solving
at a stationary point, we then have Ψ̃ii = Σii.

This next theorem, obtained when minimizing the reverse
KL-divergence, is the counterpart to Theorem 3.6.

Theorem A.4. Suppose C has constant off-diagonal terms,
ε ∈ [0, 1). When minimizing the reverse KL-divergence, the
entropy gap goes to a constant factor in the limit n → ∞,
whereas the variance is correctly estimated, that is

lim
n→∞

1
n (H(p)−H(q)) = log(1− ε), (19)

Ψ̃ii = Σii. (20)

Proof. The second equality is already stated in Proposi-
tion A.3. Note that this result does not depend on the
specifics of the example at hand and applies to any covari-
ance matrix.

To obtain the first equality, we start with the shrinkage-
delinkage decomposition,

H(p)−H(q) = 1

2
log |S|+ 1

2
log |C|. (21)

Since there is no shrinkage, log |S| = 0. Next, recall from
(14) the expression for log |C|. Dividing log |C| by n and
taking the limit in n, we obtain the desired result.



Naturally, the entropy gap can be arbitrarily large, with q
having a larger entropy than p, notably as ε goes to 1.

For problems where the marginal variances are of inter-
est, rather than the entropy, we would ideally minimize the
reverse KL-divergence. Unfortunately, there is usually no
efficient way to optimize KL(p||q), due to the difficulty in
evaluating expectation values with respect to p.

B SOLUTIONS FOR THE BOUNDS ON
THE SHRINKAGE AND DELINKAGE
TERMS

By exploiting the symmetries that we proved in Section 4.2,
we can efficiently compute bounds on the terms log |S| and
log |C|; these are the terms that arise, respectively, from the
effects of shrinkage and delinkage.

B.1 UPPER BOUND ON log |S|

First we show how to compute the upper bound on log |S|.
Recall that to do so, we must solve the optimization problem

max
λ∈ΛR

n∑
i=1

λ−1
i . (22)

From Lemma 4.2, we know that all the elements of the
solution assume the edge values of λ1 or λn save for at
most one which we denote λk. At a high level, we solve
the optimization by exhaustively computing the optimal
solution for each candidate value of k ∈ {1, . . . , n}, then
choosing the particular value of k whose solution maximizes
the overall objective function.

It remains only to show how to compute the solution for a
particular candidate value of k. Recall the constraints that∑n

i=1 λi = n and λ1 = Rλn. It follows that

λk = n− [(k − 1)R+ n− k]λn. (23)

Using the constraints to eliminate λ1 and λk, we can write
the objective function entirely in terms of λn. In this way
we find
n∑

i=1

λ−1
i =

1

n− [R(k − 1) + n− k]λn
+
(k − 1)

Rλn
+
n− k

λn
.

(24)
Crucially, we also need to enforce the boundary conditions
λn ≤ λk ≤ λ1, or equivalently

n

Rk + n− k
≤ λn ≤

n

R(k − 1) + n− k + 1
. (25)

Note that the simplified objective in (24) for fixed k is con-
vex in λn; hence the maximizer must lie at one of the bound-
ary values in (25). By computing the objective for each
boundary value of λk, we find the optimal solution for this

candidate value of k. Finally, we obtain the overall solution
to eq. (22) by considering all n candidate values of k and
choosing the best one.

B.2 UPPER BOUND ON log |C|

Next we show how to compute the upper bound on log |C|.
Recall that to do so, we must solve the optimization problem

max
λ∈ΛR

[
n∑

i=1

log λi

]
. (26)

From Lemma 4.3, we know that all eigenvalues other than λ1

and λn must have the same value; we denote this value
by λk. From the constraint

∑n
i=1 λi = n, it follows that

λk =
n− (1 +R)λn

n− 2
. (27)

Again, using the constraints to eliminate λ1 and λk, we can
write the objective function entirely in terms of λn. In this
way we find

n∑
i=1

log λi = (n−2) log n− (1 +R)λn

n− 2
+logRλn+log λn.

(28)
This objective is concave in λn, so we can locate the max-
imum by setting its derivative with respect to λn equal to
zero. Some straightforward algebra shows that this deriva-
tive vanishes when

λn =
2

1 +R
. (29)

Finally we need to check that this solution does not violate
the boundary conditions of the problem; in particular, we
require that λn ≥ λk ≥ Rλn, or equivalently that

n

1 +R(n− 1)
≤ λn ≤

n

n− 1 +R
. (30)

These conditions are always satisfied for n ≥ 3. Hence we
obtain an analytical solution for the upper bound on log |C|.
Finally, note that while the solution for λn does not depend
on n, the optimized objective function does depend on n
through eq. (28).

Algorithm 1 provides an implementation of the above-
described method.

C BOUNDS ON THE AVERAGE
VARIANCE SHRINKAGE

We can also derive bounds on the average shrinkage in com-
ponentwise variance in terms of the problem dimensionality,
n, and the condition number, R, of the correlation matrix.
The average in this case is performed over the different



components of z. Recall that the shrinkage in each compo-
nentwise variance is given by Sii = Σii/Ψii. Hence we can
also express this bound in terms of the trace of the shrinkage
matrix, trace(S).

Proposition C.1. Suppose that the correlation matrix C
has condition number R. Then the solution for FG-VI in
section 2 satisfies

min
λ∈ΛR

n∑
i=1

λ−1
i ≤ trace(S) ≤ max

λ∈ΛR

n∑
i=1

λ−1
i , (31)

where ΛR is the set defined in section 4.

Proof. We showed in the proof of Theorem 3.1 that

Sii =
Σii

Ψii
= C−1

ii . (32)

It follows that trace(S) = trace(C−1) =
∑

i λ
−1
i , where

λ1, . . . , λn are the eigenvalues of C. The bound then fol-
lows from the relaxtion from the set CR to the set ΛR in
section 4.

C.1 LOWER BOUND ON trace(S)

The optimization implied by eq. (31) is convex, since both
the set ΛR and the objective function

∑
i λ

−1
i are convex.

In fact, this bound can be evaluated in closed form by using
similar methods as in section 4.2.

Lemma C.2. Let λ ∈ ΛR be the solution that minimizes the
left side of eq. (31). Then λi=λj whenever 1<i<j<n.

Algorithm 1: Upper bounds on log |S| and log |C|
1 Input: R,n
2

3 Function ObjF(λn, k):
4 return

(
n− k + k−1

R

)
1
λn

+ 1
n−[R(k−1)+n−k]λn

5

6 for k in {2, · · · , n− 1} do
7 λa ← n

Rk+n−k

8 λb ← n
R(k−1)+n−k+1

9 Fk ← max(ObjF (λa),ObjF(λb))
10 if (k = 1) F ← Fk

11 else F ← max(F, Fk)

12 end
13 Us ← n log(F/n)
14

15 λn ← 2
1+R

16 Uc ← log 1
λn

+ log 1
Rλn

+ (n−2) log n−2
n−(1+R)λn

17

18 Return: Us, Uc

Proof. This proof follows the same argument as the proof
(by contradiction) for Lemma 4.3. Suppose there exists a
solution with intermediate elements λi and λj that satisfy
λ1≥λi >λj ≥λn. Consider the effect on this solution of
a perturbation that adds some small amount δ > 0 to λj

and subtracts the same amount from λi. For sufficiently
small δ, this perturbation will not leave the set ΛR; however,
it will diminish the separation of λi from λj . As a result the
objective

∑
k(1/λk) experiences a change

g(δ) =
1

λi − δ
− 1

λi
+

1

λj + δ
− 1

λj
. (33)

Evaluating the derivative, we find g′(0) = λ−2
i −λ

−2
j < 0,

so that the objective function is decreased for some δ > 0.
As before this yields a contradiction, because any solution
must be maximal, and hence stationary (i.e., g′(0)=0), with
respect to small perturbations.

With the above lemma, the n-dimensional optimization over
ΛR can be reduced to a one-dimensional optimization that
can be solved in closed form. The methods are identical to
those in the previous appendix.

First we rewrite the constraint, λn ≤ λk ≤ Rλn, as
n

R(n− 1) + 1
≤ λn ≤

n

R+ n− 1
. (34)

Since the minimization problem is convex, a minima can be
found at a stationary point of the objective function

n∑
i=1

1

λi
=

(n− 2)2

n− (1 +R)λn
+

1

λn
+

1

Rλn
, (35)

which now only depends on λn. Differentiating and setting
to 0, we obtain the root-finding problem,[
R(n− 2)2 − (1 +R)2

]
λ2
n + 2n(1 +R)λn − n2 = 0,

(36)
which can be solved exactly. It remains to check whether
the roots violate the constraints in (34), and pick the non-
offending root which maximizes the objective in (35). If
both roots violate the constraints then, by convexity of the
problem, the solution must lie at one of the boundary terms
in (34).

C.2 UPPER BOUND ON TRACE(S)

A similar approach gives us an upper bound on trace(S). In
fact, we have already solved the problem of maximizing the
right side of (31) when upper-bounding log |S|. It remains
to apply the same strategy.

D TIGHTER UPPER BOUND ON
ENTROPY GAP

In Proposition 4.1 we derived separate upper bounds on the
individual terms log |S| and log |C|. One upper bound on



the entropy gap (or equivalently, on KL(q, p)) is obtained
simply by adding these separate bounds. However, a tighter
upper bound is obtained by replacing the separate optimiza-
tions in Proposition 4.1 by a single joint optimization:

KL(q, p) ≤ 1

2
max
λ∈ΛR

[
n log

1

n

n∑
i=1

λ−1
i +

n∑
i=1

log λi

]
.

(37)
In this appendix we sketch how to solve this optimization
and evaluate this bound in closed form. The first step is to
make the change of variables,

ωi =
λ−1
i∑n

j=1 λ
−1
j

, (38)

and to translate the domain of optimization accordingly.
Under this change of variables, the original domain ΛR in
section 4 is mapped onto the set

ΩR =

{
ω ∈ Rn

+ |ωn ≥ . . . ≥ ω1 =
1

R
ωn,

n∑
i=1

ωi = 1

}
.

(39)
Likewise, a little algebra shows that the optimization in
eq. (37) is equivalent to the following:

KL(q, p) ≤ 1

2
max
ω∈ΩR

[
n∑

i=1

log
1

ωi
− n log n

]
. (40)

Now we can make a similar argument as in the proof of
Lemma 4.2 to simplify this optimization.

Lemma D.1. Let ω ∈ ΩR be the solution that maximizes
the right side of eq. (40). Then at most one ωi is not equal
to either ω1 or ωn.

Proof. We prove the lemma by contradiction. Suppose there
exists a solution with intermediate elements ωi and ωj that
satisfy ωn > ωi > ωj > ω1. Consider the effect on this
solution of a perturbation that adds some small amount
δ > 0 to ωi and subtracts the same amount from ωj . Note
that for sufficiently small δ, this perturbation will not leave
the set ΩR; however, it will expand the separation of ωi

from ωj . As a result the objective in eq. (40) changes by an
amount

f(δ) =
1

2

[
log

1

ωi+δ
− log

1

ωi
+ log

1

ωj−δ
− log

1

ωj

]
.

(41)
Next we evaluate the derivative f ′(δ) at δ = 0; doing so
we find f ′(0) = ω−1

j −ω−1
i > 0, so that the objective is

increased for some δ > 0. But this yields a contradiction,
because any solution must be maximal, and hence stationary
(i.e., f ′(0)=0), with respect to small perturbations.

With the above lemma, we can reduce the n-dimensional
optimization over ΩR to a one-dimensional optimization

that can be solved in closed form; the methods are identical
to those in the previous appendix.

In details, let ωk be the one variable which (potentially)
does not go to ω1 or ωn. Given

∑n
i=1 ωi = 1,

ωk = 1− (k − 1 +R(n− k))ω1. (42)

The objective is then

n∑
i=1

log
1

ωi
= −(k − 1) logω1 − (n− k) logRω1

− log(1− [k − 1 +R(n− k)ω1]). (43)

Since we are trying to maximize a convex function, the so-
lution does not lie at a stationary point, rather at a boundary
set by the constraint, ω1 ≤ ωk ≤ ωn, or equivalently

1

k − 1 +R(n− k + 1
≤ ω1 ≤

1

k +R(n− k)
. (44)

It remains to test each candidate boundary for each choice
of k to obtain a maximizer.
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