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A COMPLETING THE DERIVATIONS

Consider Equation 3.A:
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where gy, (yelt, 2) = OEp(ye|T, @) r=¢.  (10)

p(r|z)dr,

Lightening the notation with a shorthand for the weighted expectations, (-), = jé we(7)(+)p(7|z) dr, it becomes apparent
that we must grapple with the pseudo-moments (1), (7 —t),, and {(7 — t)?).,. Note that ¢ should not be mistaken for a
“mean” value.

Furthermore, we have yet to fully characterize gy (y¢|t, z). Observe that
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The p(y;|x) will be moved to the other side of the equation as needed; by Equation 6,
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Expanding,

Appropriate bounds will be calculated for g2 (y:|t, ) next, utilizing the finding above as their main ingredient. Let
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The second derivative may be calculated in terms of the ignorance quantities y, A:

G2(yelt, ) =0v(|ye, ©)A(T|ye, x)
=y(7lye, ) A(Tlye, ) + 5 (T|ye, ) A(T|ye, )
=(7v* + A)A(T|ys, x).

And finally we address p(y;|z). Carrying over the components of Equation 10 into Equation 3,
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where these expectations E[-] are with respect to the implicit distribution ¢(7|t, ) o< w;(7)p(7|x). The first term in the
denominator, E, [A(7|y:, )], may be approximately bounded by the same Algorithm 1.

B HOW TO CALIBRATE THE WEIGHING SCHEME

We present an argument based on the absolute error of the approximation in Equation 2, specifically for Beta propensities.
The following applies to both Beta and Balanced Beta, 0 < t < 1.

Suppose that the the second derivative employed in the Taylor expansion is (J-Lipschitz, so that |8§p(yt |, :17){ < . Denote
the remainder as p(y;|7, ). By Taylor’s theorem,

|t

lp(ys| 7, )| < Q.

The approximated quantity (part A) in Equation 3 is the following integral, which ends up becoming the numerator in
Equation 4:
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The absolute error of this integral is therefore

1 1
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:=J, which upper-bounds the error.

LetA=a—1+rtand B= -1+ r(1—t), where («, 3) parametrize the nominal propensity and r is the precision of
the Beta trust-weighing scheme. The trust-propensity combination is
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Hence, the error bound reduces to
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where Us (A, B, t) is a cubic polynomial in A, B, and ¢. Notice that even though the quantity is symmetric about (A, B, t) —
(B, A,1 —t), the form does not appear so. We shall focus on the relation of the error bound entirely with A and «, then
justify the analogous conclusion for B and g by the underlying symmetry of the expression.



The Gaussian hypergeometric function in the second term can be expressed as
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by using the definition of the Pochhammer symbol (x); = z(z + 1)...(x 4+ i — 1). In terms of A — oo, the whole second
term in J is O(A~*) due to the fraction of I" functions. The first term in J is

O(Af(B+4)B7(A+4)) . Ug(A, B,t) _ O(AfoleAfl)

by Stirling’s approximation of I'(z) = O(z"~2). Clearly, a small B > 0 might cause the first term in J to explode with
large A due to the O(B~4~1) part. This could occur with high «, low 3, and low r—it is an instance of a high-precision
propensity and low-precision weighing scheme destroying the upper error bound. Hence follows an argument for having r
match the propensity’s precision, to avoid these cases.

As mentioned earlier, the same argument flows for large B and small A, while swapping ¢ — (1 — t).

C CORRECTNESS OF ALGORITHM 1

The algorithm functions by incrementally reallocating mass (relative, in the weights) to the righthand side, from a cursor
beginning on the lefthand side of the “tape”.

Proof. Firstly we characterize the indicator quantity A ;. Differentiate the quantity to be maximized with respect to w;;
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Hence, A; captures the sign of the derivative.

We shall proceed with induction. Begin with the first iteration, j = 1. No weights have been altered since initialization yet.
Therefore we have
=2 =)

Since Vi, fi < f; due to the prior sorting, A, is either negative or zero. If zero, trivially terminate the procedure as all
function values are identical.

Now assume that by the time the algorithm reaches some j > 1, all w; = w,, for 1 < k < j. In other words,

A 7210 — fi) +sz fi)-
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Per the algorithm, we would flip the weight w; <— w; only if A; < 0. In that case,

Z w; —fi) < Z w;(fi where both sides are non-negative.

i<j i>]

Notice that the above is not affected by the current value of w;. This update can only increase the current estimate because
the derivative remains negative and the weight at j is non-increasing. We must verify that the derivatives for the previous



weights, indexed at k£ < j, remain negative. Otherwise, the procedure would need to backtrack to possibly flip some weights

back up.

More generally, with every decision for weight assignment, we seek to ensure that the condition detailed above is not violated

for any weights that have been finalized. That includes the weights before j, and those after j at the point of termination.

Returning from this digression, at £ < j after updating wy;,

Ap = w(fu— fi)+ > Wi(fx — fi)-

1<j

To glean the sign of this, we refer to a quantity that we know.
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negative.

The remaining fact to be demonstrated is that upon termination, when A; > 0, no other pseudo-derivatives A/, j' > j are

negative. This must be the case simply because f;» > f;.

O



D ON THE INTRODUCTORY
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Figure 8. Elaboration on the example in Figure 1. Treat-
ments were exponentially distributed, and the thresholds
displayed in the grid controlled the center of the second
sigmoid in S? due to Taleb [2018]. Two different visible
attributes demonstrate how the hidden bias depends on the
interplay between propensity and outcome, via the hidden
attribute. The blue curve is a little shorter, which allows the
vulnerable subgroup’s threshold change to be revealed in
the data. Estimation minimized the empirical squared error.
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Figure 9. A different example that shows the connection
to Simpson’s paradox more clearly [Yule, 1903, Simpson,
1951]. When a confounder is distorting the assigned treat-
ments in sub-populations, the overall population-level trend
may appear flipped in comparison to each sub-population’s
dose response.

E DETAILS ON THE BENCHMARK

During each trial, 750 train and 250 test instances of (ob-
served/hidden) confounders, treatment, and outcome were
generated. The APO was computed on the test instances.
Coverage of the dose-response curve was assessed on a
treatment grid of 100 evenly spaced points in [0, 1]. The
different violation factors I' that were tested were also from
a 100-sized grid in [0, 2.5].

The data-generating process constructed vectors
V = (visible conf..., treatment, hidden conf...) € RF

where k is the number of confounders plus one, for the treat-
ment. Each of these variables is a projection of the original
data with i.i.d normal coefficients. We upscale the middle
(i.e. treatment) entry by (k — 1) to keep the treatment effect
strong enough. Then, we experiment with two functional
forms of confounded dose-response curves:

* (linear) mixing vector {M;}%_, ~ i.i.d Normal(0, 1).
Pre-activation outcome is u := M - v.

* (quadratic) matrix {M;;} ~ i.i.d Normal(0,1). Pre-
activation outcome is v = vTMw. Unlike a covari-
ance, M is not positive (semi-)definite. The fact that
all entries are i.i.d Gaussian implies that there are cases
where the off-diagonal entries are much larger in mag-
nitude than the on-diagonal entries, in such a way that
cannot occur in a covariance matrix. This induces more
confounding and strengthens our benchmark.

The actual outcome is Bernoulli with probability u* :=
¢((u—m)/s), wherein ¢ is the standard normal CDF, lo-
cation parameter m is the sample median, and scale s is
the sample mean absolute deviation from the median. If u
were normal, s would be expected to be a bit smaller than o,
by a factor of \/2/m. Generally «* is no longer uniformly
distributed (on margin) because we use s, and instead it
gravitates towards zero or one. Since the estimated outcome
models use logistic sigmoid activations, there is already an
intentional measure of model mismatch present in this setup.

See Table 4 for results under all the settings considered.

The linear outcome and propensity predictors were esti-
mated by maximum likelihood using the ADAM gradient-
descent optimizer, with learning rate 101, 4 batches, and
50 epochs throughout. For the outcome, we used a sigmoid
activation stretched horizontally by 10? for smooth training.
For the propensity, similarly, we stretched a sigmoid hori-
zontally and vertically, gating the output in order to yield
Beta parameters within (0, 102).

Data sources. The datasets brain and blood both
came from the UK Biobank, which is described in the case
study of §5. The two datasets are taken from disjoint subsets



of all the available fields, one pertaining to parcelized brain
volumes (via MRI) and the other to blood tests. The pbmc
dataset came from single-cell RNA sequencing, a modality
that is exploding in popularity for bioinformatics. PBMC
data are a commonly used benchmark in the field [Kang
et al., 2018]. Finally, the mft c dataset consisted of BERT
embeddings for morally loaded tweets [Hoover et al., 2020,
Mokhberian et al., 2020].

Dataset ‘ Sample Size Dimension
brain 43,069 148
blood 31,811 42
pbmc 14,039 16
mftc 17,930 768

Table 3. Characteristics of the various datasets employed in
our experiments.

Model mismatch varied with how approximately linear the
true dose responses were. As expected, there was a signif-
icant negative correlation between model likelihood and
divergence cost, so poorer fits had higher costs for coverage.

F DETAILS ON THE BIOBANK STUDY

The application number used to access data from the
UK Biobank will be mentioned in the de-anonymized
manuscript. The measured outcomes were cortical thick-
nesses and subcortical volumes, the latter normalized by
intracranial volume, obtained via structural Magnetic Res-
onance Imaging (MRI). The results in the main text (§5)
focused on the cortical thicknesses, for brevity. Input vari-
ables comprising the covariates and DQS treatments are
listed in Table 5. Inputs were normalized in the unit interval,
and outputs were z-scored.

Training the models. The outcome predictors with 40 in-
puts and 48 outputs were implemented as multilayer percep-
tions with three hidden layers of width 32, and single-skip
connections. They used Swish activation functions and a
unit dropout rate of 0.1. The ADAM optimizer with learn-
ing rate 5 x 10~ was was run for 10* epochs. The data
were split into four non-overlapping test sets, with separate
ensembles of 16 predictors trained for each split. Training
sets were bootstrap-resampled for each estimator in the en-
semble. The propensity was formulated as a linear model
outputting Beta parameters within (0, 64), trained in a simi-
lar fashion. Finally, CAPOs were partially identified using
the set of models from the train-test split for which the data
instance belonged to the test set.

Additional figures. This exploratory study includes plots
of relative effects on the various brain regions, shown in
Figures 10 & 11. We plan on studying the differential effects
of diet on the brain further.
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Figure 10. Normalized effect differences between males and
females for the overall average diet score and stratified by
individual diet components. The lefthand columns depict
individual effects across all cortical thickness parcellations
and the righthand side shows subcortical regional volumes.
Females show generally larger effects across most diet com-
ponents.



Benchmarks \ Scores brain blood pbmc mftc
mean median mean median mean median mean median
linear 2 confounders OMSM 94 71 86 63 105 75 69 59
CMSM 291 253 261 228 288 259 243 204
uniform 116 82 104 71 128 83 78 66
binary MSM 116 90 104 73 127 94 91 73
6 confounders OMSM 63 39 63 33 77 44 47 31
CMSM 177 111 186 117 198 136 167 105
uniform 68 41 68 36 83 47 51 33
binary MSM 177 176 173 163 188 195 168 160
10 confounders OMSM 57 31 61 35 72 31 43 27
CMSM 151 81 146 84 158 84 126 74
uniform 58 32 63 37 73 33 45 28
binary MSM 177 181 182 190 172 170 184 191
quadratic 2 confounders ~ dMSM 170 151 160 139 | 180 160 | 159 144
CMSM 301 275 283 263 299 274 270 248
uniform 198 180 190 166 212 188 190 167
binary MSM 205 186 192 169 217 198 190 173
6 confounders IMSM 138 103 145 120 155 134 140 112
CMSM 216 171 220 193 239 223 222 198
uniform 171 118 181 149 189 158 177 132
binary MSM 217 231 227 257 230 266 224 249
10 confounders dMSM 138 101 141 100 138 104 144 117
CMSM 186 173 188 165 205 178 182 165
uniform 158 116 162 108 157 117 167 140
binary MSM 211 241 213 240 222 258 214 242

Table 4. The full array of experiments. Underlined settings are those shown in Table 2.

G SOURCE-CODE AVAILABILITY

Please visit https://github.com/marmarelis/
TreatmentCurves. jl. Also in the scripts/ subdi-
rectory of the supplementary source, the synthetic. jl
file recreates the semi-synthetic benchmarks, and the
biobank. j1 file sets up the case study.

REFERENCES

J. Hoover, G. Portillo-Wightman, L. Yeh, S. Havaldar,
A. M. Davani, Y. Lin, B. Kennedy, M. Atari, Z. Kamel,
M. Mendlen, et al. Moral foundations twitter corpus:
A collection of 35k tweets annotated for moral senti-

ment. Social Psychological and Personality Science, 11
(8):1057-1071, 2020.

H. M. Kang, M. Subramaniam, S. Targ, M. Nguyen,
L. Maliskova, E. McCarthy, E. Wan, S. Wong, L. Byrnes,
C. M. Lanata, et al. Multiplexed droplet single-cell
rna-sequencing using natural genetic variation. Nature
biotechnology, 36(1):89-94, 2018.

N. Mokhberian, A. Abeliuk, P. Cummings, and K. Lerman.

Moral framing and ideological bias of news. In Social
Informatics: 12th International Conference, Soclnfo 2020,
Pisa, Italy, October 69, 2020, Proceedings 12, pages
206-219. Springer, 2020.

M. A. Said, N. Verweij, and P. van der Harst. Associations

of combined genetic and lifestyle risks with incident car-
diovascular disease and diabetes in the uk biobank study.
JAMA cardiology, 3(8):693-702, 2018.

E. H. Simpson. The interpretation of interaction in contin-

N. N. Taleb.

gency tables. Journal of the Royal Statistical Society:
Series B (Methodological), 13(2):238-241, 1951.

(anti) fragility and convex responses in
medicine. In Unifying Themes in Complex Systems IX:
Proceedings of the Ninth International Conference on
Complex Systems 9, pages 299-325. Springer, 2018.

G. U. Yule. NOTES ON THE THEORY OF ASSOCIA-

TION OF ATTRIBUTES IN STATISTICS. Biometrika,
2(2):121-134, 02 1903. ISSN 0006-3444. doi: 10.
1093/biomet/2.2.121. URL https://doi.org/10.
1093/biomet/2.2.121.


https://github.com/marmarelis/TreatmentCurves.jl
https://github.com/marmarelis/TreatmentCurves.jl
https://doi.org/10.1093/biomet/2.2.121
https://doi.org/10.1093/biomet/2.2.121

D RHRP DR

Vegetables

D B © Dt

Whole Grains

D BHP © P

Fish

D BRP® DR

D BERP DBHP

Vegetable Oil

DB OB

Refined Grains

D @HP © PP
DPRP D ARP

Female Male
-0.10 0 0.10

[

B>6 6=B 6>B

Figure 11. Normalized effect differences comparing the IMSM against a shoehorned binary MSM (“9” vs. “B”) stratified by
sex. Note differences in relative feature importance, where continuous modeling ranks vegetables and whole grains to be the
most important compared to the binary model which emphasizes dairy, vegetable oils, refined grains (primarily for males)
and fish.

P. Zhuang, X. Liu, Y. Li, X. Wan, Y. Wu, F. Wu, Y. Zhang,
and J. Jiao. Effect of diet quality and genetic predispo-
sition on hemoglobin alc and type 2 diabetes risk: gene-

diet interaction analysis of 357,419 individuals. Diabetes
Care, 44(11):2470-2479, 2021.



Variable Features Classifications Data Field ID
Age at scan - 21003
Demographics | Sex Male/Female 31
Townsend Deprivation Index - 189
ApoE4 copies 0,1,2 -
Education College/University Yes/No 6138
Physical American Heart Association (AHA) | Ideal (>150 min/week moderate or >75 min/wk | 884, 904, 894, 914
Activity/ guidelines for weekly physical activ- | vigorous or 150 min/week mixed); Intermediate
Body ity (1-149 min/week moderate or 1-74 min/week
Composition vigorous or 1-149 min/week mixed); Poor (not
performing any moderate or vigorous activity)
Waist to Hip Ratio (WHR) - 48,49
Normal WHR Females: < 0.85; Males < 0.90 48,49
Body Mass Index (BMI) - 23104
Body fat percentage - 23099
Sleep 7-9 Hours a Night - 1160
Sleep Job Involves Night Shift Work Never/Rarely 3426
Daytime Dozing/Sleeping Never/Rarely 1220
DQS 1 - Fruit - 1309, 1319
Diet DQS 2 - Vegetables - 1289, 1299
DQS 3 - Whole Grains - 1438, 1448, 1458, 1468
DQS 4 - Fish - 1329, 1339
DQS 5 - Dairy - 1408, 1418
DQS 6 - Vegetable Oil - 1428, 2654, 1438
DQS 7 - Refined Grains - 1438, 1448, 1458, 1468
DQS 8 - Processed Meats - 1349, 3680
DQS 9 - Unprocessed Meats - 1369, 1379, 1389, 3680
DQS 10 - Sugary Foods/Drinks - 6144
Water intake Glasses/day 1528
Tea intake Cups/day 1488
Coffee intake Cups/day 1498
Fish Oil Supplementation Yes/No 20084
Vitamin/Mineral Supplementation Multivitamin (with iron/ calcium/ multimineral)/ | 20084
Vitamins A, B6, B12, C, D, or E/ Folic acid/
Chromium/ Magnesium/ Selenium/ Calcium/
Iron/ Zinc/ Other vitamin
Variation in diet Never/Rarely; Sometimes; Often 1548
Salt added to food Never/Rarely; Sometimes; Usually; Always 1478
Smoking Smoking status Never; Previous; Current 20116
Alcohol Alcohol Frequency Infrequent (1-3 times a month, special occasions | 1558/ICD
only, or never); Occasional (1-2 a week or 3—4
times a week), Frequent (daily/almost daily and
ICD conditions F10, G312, G621, 1426, K292,
K70, K860, T510)
. Leisure/social activities Sports club/gym; pub/social; social/religious; so- | 6160
Social . . .
Support . . _ c1al./adu1t education; other social group
Frequency of Friends/Family Visits | Twice/week or more 1031
Able to Confide in Someone Almost Daily 2110

Table 5. Variables, features, classifications, and respective data fields use in the models. Diet quality scores (DQS) ranging
from 0-10 for 10 components were computed using the same coding scheme as in Said et al. [2018], Zhuang et al. [2021].
Leisure/social activity classifications served as their own binary variables. Our results omitted DQS #8 & #10 because they
were not even approximately continuous, taking on only a few discrete values.
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