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Abstract

Inferring causal effects of continuous-valued treat-
ments from observational data is a crucial task
promising to better inform policy- and decision-
makers. A critical assumption needed to identify
these effects is that all confounding variables—
causal parents of both the treatment and the
outcome—are included as covariates. Unfortu-
nately, given observational data alone, we cannot
know with certainty that this criterion is satisfied.
Sensitivity analyses provide principled ways to
give bounds on causal estimates when confound-
ing variables are hidden. While much attention
is focused on sensitivity analyses for discrete-
valued treatments, much less is paid to continuous-
valued treatments. We present novel methodology
to bound both average and conditional average
continuous-valued treatment-effect estimates when
they cannot be point identified due to hidden con-
founding. A semi-synthetic benchmark on multiple
datasets shows our method giving tighter coverage
of the true dose-response curve than a recently pro-
posed continuous sensitivity model and baselines.
Finally, we apply our method to a real-world ob-
servational case study to demonstrate the value of
identifying dose-dependent causal effects.

1 INTRODUCTION

Causal inference on observational studies [Hill, 2011, Athey
et al., 2019] attempts to predict conclusions of alternate
versions of those studies, as if they were actually properly
randomized experiments. The causal aspect is unique among
inference tasks in that the goal is not prediction per se, as
causal inference deals with counterfactuals, the problem of
predicting unobservables: for example, what would have
been a particular patient’s health outcome had she taken

some medication, versus not, while keeping all else equal
(ceteris paribus)? There is quite often no way to validate
the results without bringing in additional domain knowl-
edge. A set of putative treatments 7, often binary with a
treated/untreated dichotomy, induces potential outcomes
YieT. These can depend on covariates X as with heteroge-
neous treatment effects E[Y; — Yj | X] in the binary case.
Only one outcome is ever observed: that at the assigned
treatment 7". Potential biases arise from the incomplete ob-
servation. This problem is exacerbated with more than two
treatment values, especially when there are infinite possi-
bilities, like in a continuum, e.g. 7 = [0, 1]. Unfortunately,
many consequential decisions in life involve this kind of
treatment: What dose of drug should I take? How much of
__should I eat/drink? How much exercise do I really need?

In an observational study, the direct causal link between
assigned treatment 7' and observed outcome Y (also de-
noted as Yr) can be influenced by indirect links modulated
by confounding variables. For instance, wealth is often a
confounder in an individual’s health outcome from diet,
medication, or exercise. Wealth affects access to each of
these “treatments,” and it also affects health through numer-
ous other paths. Including the confounders as covariates in
X allows estimators to condition on them and disentangle
the influences [Yao et al., 2021].

It can be challenging to collect sufficient data, in terms of
quality and quantity, on confounders in order to adjust a
causal estimation to them. Case in point, noisy observations
of e.g. lifestyle confounders lead researchers to vacillate on
the health implications of coffee [Atroszko, 2019], alcohol
[Ystrom et al., 2022], and cheese [Godos et al., 2020].

For consequential real-world causal inference, it is only
prudent to allow margins for some amount of hidden con-
founding. A major impediment to such analysis is that it
is impossible to know how a hidden confounder would
bias the causal effect. The role of any causal sensitivity
model [Cornfield et al., 1959, Rosenbaum and Rubin, 1983]
is to make reasonable structural assumptions [Manski, 2003]
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about different levels of hidden confounding. Most sensi-
tivity analyses to hidden confounding require the treatment
categories to be binary or at least discrete. This weakens
empirical studies that are better specified by dose-response
curves [Calabrese and Baldwin, 2001, Bonvini and Kennedy,
2022] from a continuous treatment variable. Estimated dose-
response functions are indeed vulnerable in the presence
of hidden confounders. Figure 1 highlights the danger of
skewed observational studies that lead to biased estimates
of personal toxic thresholds of treatment dosages.

Biased Dose Responses from Observational Study

A hidden attribute in the population...
a) lowers personal thresholds for toxicity
b) leads people to take smaller dosages on average

The hidden attribute affects a) the response [outcomes],
and b) the observed dosage [treatment assignments], so it
is a hidden confounder.

One that dangerously biases the apparent dose response!
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Figure 1. Dose-respone curves in medicine [e.g. Taleb,
2018] can be viewed as expected potential outcomes from
continuous treatments. In this simulation (with details in
§D,) there is one unobserved confounder. The empirical
estimate of the population-level dose responses massively
overshoots the maximum effective dosage, and would sug-
gest treatments that were actually toxic to the population.
This phenomenon persists even when the vulnerable hidden
subgroup occurs more often in the population.

1.1 RELATED WORKS

There is growing interest in causal methodology for con-
tinuous treatments (or exposures, interventions), especially
in the fields of econometrics [e.g. Huang et al., 2021, Tiib-
bicke, 2022], health sciences [Vegetabile et al., 2021], and
machine learning [Chernozhukov et al., 2021, Ghassami
et al., 2021, Colangelo and Lee, 2021, Kallus and Santacat-
terina, 2019]. So far, most scrutiny on partial identification
of potential outcomes has focused on the case of discrete
treatments [e.g. Rosenbaum and Rubin, 1983, Louizos et al.,
2017, Lim et al., 2021]. A number of creative approaches
recently made strides in the discrete setting. Most rely on a
sensitivity model for assessing the susceptibility of causal
estimands to hidden-confounding bias. A sensitivity model
allows hidden confounders but restricts their possible influ-
ence on the data, with an adjustable parameter that controls

the overall tightness of that restriction.

The common discrete-treatment sensitivity models are in-
compatible with continuous treatments, which are needed
for estimating dose-response curves. Still, some recent at-
tempts have been made to handle hidden confounding un-
der more general treatment domains [Chernozhukov et al.,
2021]. Padh et al. [2022], Hu et al. [2021] optimize genera-
tive models to reflect bounds on the treatment effect due to
ignorance, inducing an implicit sensitivity model through
functional constraints. Instrumental variables are also help-
ful when they are available [Kilbertus et al., 2020]. The
CMSM [Jesson et al., 2022] was developed in parallel to
this work, and now serves as a baseline.

For binary treatments, the Marginal Sensitivity Model
(MSM) due to Tan [2006] has found widespread usage [Zhao
etal., 2019, Veitch and Zaveri, 2020, Yin et al., 2021, Kallus
et al., 2019, Jesson et al., 2021]. Variations thereof include
Rosenbaum’s earlier sensitivity model [2002] that enjoys
ties to regression coefficients [ Yadlowsky et al., 2020]. Al-
ternatives to sensitivity models leverage generative mod-
eling [Meresht et al., 2022] and robust optimization [Guo
et al., 2022]. Other perspectives require additional structure
to the data-generating (observed outcome, treatment, co-
variates) process. Proximal causal learning [Tchetgen et al.,
2020, Mastouri et al., 2021] requires observation of proxy
variables. Chen et al. [2022] rely on a large number of back-
ground variables to help filter out hidden confounding from
apparent causal influences.

1.2 CONTRIBUTIONS

We propose a novel sensitivity model for continuous treat-
ments in §2. Next, we derive general formulas (§2.1) and
solve closed forms for three versions (§2.3) of partially
identified dose responses—for Beta, Gamma, and Gaus-
sian treatment variables. We devise an efficient sampling
algorithm (§3), and validate our results empirically using a
semi-synthetic benchmark (§4) and realistic case study (§5).

1.3 PROBLEM STATEMENT

Our goal is the partial identification of causal dose responses
under a bounded level of possible hidden confounding.
We consider any setup that grants access to two predic-
tors [Chernozhukov et al., 2017] that can be learned empiri-
cally and are assumed to output correct conditional distribu-
tions. These are (1) a predictor of outcomes conditioned on
covariates and the assigned treatment, and (2) a predictor of
the propensity of treatment assignments, taking the form of
a probability density, conditioned on the covariates. The lat-
ter measures (non-)uniformity in treatment assignment for
different parts of the population. The observed data come
from a joint distribution of outcome, continuous treatment,
and covariates that include any observed confounders.
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Potential outcomes. Causal inference is often cast in the
nomenclature of potential outcomes, due to Rubin [1974].
Our first assumption, common to Rubin’s framework, is that
observation tuples of outcome, assigned treatment, and co-
variates, {(y®,t® 2(")}"_ are i.i.d draws from a single
joint distribution. This subsumes the Stable Unit Treatment
Value Assumption (SUTVA), where units/individuals can-
not depend on one another, since they are i.i.d. The second
assumption is overlap/positivity, that all treatments have
a chance of assignment for every individual in the data:

prix(t | z) > 0forevery (t,z) € T x X.

The third and most challenging fundamental assumption
is that of ignorability/sufficiency: {(Y:)ier 1L T} | X.
Clearly the outcome should depend on the assigned treat-
ment, but potential outcomes ought not to be affected by the
assignment, after blocking out paths through covariates.

Our study focuses on dealing with limited violations
to ignorability. The situation is expressed formally as
{(Yp)ter U T} | X, but more specifically, we shall intro-
duce a sensitivity model that governs the shape and extent
of that violation.

Let p(y:|z) denote the probability density function of po-
tential outcome Y; = y; from a treatment ¢ € T, given
covariates X = z. This is what we seek to infer, while
observing realized outcomes that allow us to learn the den-
sity p(y¢| «, T = t). If the ignorability condition held, then
p(yt| x, T = t) = p(y:|x) due to the conditional indepen-
dence. However, without ignorability, one has to marginal-
ize over treatment assignment, requiring p(y:| z, T # )
because

p(yelz) = /T plyel 7, 2)p(r|z) dr, 0

where p(y;|T, z) is the distribution of potential outcomes
conditioned on actual treatment 7' = 7 € T that may differ
from the potential outcome’s index ¢. The density p(7|z) is
termed the nominal propensity, defining the distribution of
treatment assignments for different covariate values.

On notation. Throughout this study, ¥, will indicate the
value of the potential outcome at treatment ¢, and to disam-
biguate with assigned treatment 7 will be used for events
where T = 7. For instance, we may care about the coun-
terfactual of a smoker’s (7 = 1) health outcome had they
not smoked (y;—q), where T' = 0 signifies no smoking and
T = 1is “full” smoking. We will use the shorthand p(- - -)
with lowercase variables whenever working with probability
densities of the corresponding variables in uppercase:

p(y¢|T,x) means gP[Yt <ulT=r1 X ==z
u

U=Y¢.

Quantities of interest. We attempt to impart intuition on
the conditional probability densities that may be confusing.

* p(y¢| ) [conditional potential outcome]. A person’s
outcome from a treatment, disentangled from the selec-
tion bias of treatment assignment in the population. We
seek to characterize this in order to (partially) identify
the Conditional Average Potential Outcome (CAPO)
and the Average Potential Outcome (APO):

CAPO(t,z) = E[Y; | X = z]; APO(t) = E[Y}].

* p(y¢| 7,2) [counterfactual]. What is the potential out-
come of a person in the population characterized by x
and assigned treatment 7? The answer changes with 7
only when z is inadequate to block all backdoor paths
through confounders. We can estimate this for £ = 7.

* p(7|ys,x) [complete propensity] is related to the
above by Bayes’ rule. We distinguish it from the nom-
inal propensity p(7|z) because the unobservable y;
possibly confers more information about the individ-
ual, again if = is inadequate. The complete propensity
cannot be estimated, even for t = T; hence, this is the
target of our sensitivity model.

Z Figure 2. In this example,
Z encompasses all hidden
T confounders. Counterfac-
X tual p(y;| 7, x) diverges from
Yt  p(y| @) because of the red path
from 7" to Y; through Z.

A backdoor path between potential outcomes and treatment
can manifest in several ways. Figure 2 shows the barebones
setting for hidden confounding to take place. Simply noisy
observations of the confounders could leak a backdoor path.
It is important to understand the ontology [Sarvet and Sten-
srud, 2022] of the problem in order to ascribe hidden con-
founding to the stochasticity inherent to a potential outcome.

Sensitivity. Explored by Tan [2006] followed by Kallus
et al. [2019], Jesson et al. [2021], among many others, the
Marginal Sensitivity Model (MSM) serves to bound the ex-
tent of (putative) hidden confounding in the regime of binary
treatments 7" € {0, 1}. The MSM limits the discrepancy
between the odds of treatment under the nominal propensity
and the odds of treatment under the complete propensity.

Definition 1 (The Marginal Sensitivity Model). For binary
treatment ¢’ € {0, 1} and violation factor I" > 1, the follow-
ing ratio is bounded:

The confines of a binary treatment afford a number of con-
veniences. For instance, one probability value is sufficient
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to describe the whole propensity landscape on a set of con-
ditions, p(1 — t'|---) =1 — p(¥'|---). As we transfer to
the separate context of treatment continua, we must contend
with infinite treatments and infinite potential outcomes.

2 CONTINUOUS SENSITIVITY MODEL

The counterfactuals required for Equation 1 are almost en-
tirely unobservable. We look to the Radon-Nikodym deriva-
tive ws of a counterfactual with respect to another [Tan,
2006], quantifying their divergence between nearby treat-
ment assignments: (assuming mutual continuity)

(Bayes’ rule)

w&(yt|7—7x) — p(yt|7—+57$) _ p(T+§|yt7x)p(T‘$)

p(yel 7, 2) (7| ye, ©)p(T + dl2)
_ {p(ﬂsm} - {p(7+6|yt,x>}
p(7|x) p(7]yt, )
As with the MSM, we encounter a ratio of odds, here con-

trasting 7 versus 7 + ¢ in the assigned-treatment continuum.
Assuming the densities are at least once differentiable,

lim 6~ logws (ye| 7, 2) = - [log p(7| ys, x) ~log p(7|)].
By constraining ws to be close to unit, via bounds above
and below, we tie the logarithmic derivatives of the nominal-

and complete-propensity densities.

Definition 2 (The Infinitesimal Marginal Sensitivity Model).
For treatments t € 7 C R, where T is connected, and
violation-of-ignorability factor I" > 1, the {MSM requires

0 . ply)
~Jog m 2
or p(7|x)

everywhere, for all 7, t, and  combinations. This differs

from the CMSM due to Jesson et al. [2022] that considers
only ¢t = 7, and which bounds the density ratios directly.

<logT

2.1 THE COMPLETE FRAMEWORK

Assumption 1 (Bounded Hidden Confounding). Invoking
Definition 2, the violation of ignorability is constrained by
a OMSM with some I" > 1.

Assumption 2 (Anchor Point). A special treatment value
designated as zero is not informed by potential outcomes:
p(r=0]y,z) =p(r =0] z) for all z, ¢, and y;.

At this point we state the core sensitivity assumptions. In
addition to the SMSM, we require an anchor point at 7' = 0,
which may be considered a lack of treatment. Strictly, we as-
sume that hidden confounding does not affect the propensity
density precisely at the anchor point. A broader interpreta-
tion is that the strength of causal effect, hence vulnerability

to hidden confounders, roughly increases with |T°|. Assump-
tion 2 is necessary to make closed-form solutions feasible.
We discuss ramifications and a relaxation in §2.3.

The unobservability of almost all counterfactuals is unique
to the case of continuous treatments, since the discrete anal-
ogy would be a discrete sum with an observable term. Fig-
ure 3 explains our approach to solving Equation 1.

a) Confounded Outcomes for Binary Treatments

PV T=t] x P[T = 1
+ PIY§ T=1-t]x P[T =1-1]

counterfactual

PlYt =

b) Confounded Outcomes for Continuous Treatments

completely
unknown

observable P[Y{| T=1]
counterfactuals

(infinitesimal suppon‘)

'I‘
,7- partially

approximable
counterfactuals

PIYt =

possible treatment assignments T

Figure 3. In the binary case, the red part is unobservable,
but the MSM condition helps to bound that quantity. In the
continuous case the integrand (Equation 1) is unobservable
almost everywhere in the space of assigned treatments, ex-
cept for the infinitesimal point 7" = ¢. In order to divide the
integral into two parts (observable and unobservable) like
with the binary sum, we must draw an approximation where
assigned treatment and potential-outcome index are close
enough. We use a soft window (yellow) to mark the validity
of the approximation. Our continuous version of the MSM,
the SMSM, allows us to bound the red part as well as reason
about the yellow part. Covariates X are omitted for brevity.

2.2 A PARTIAL APPROXIMATION

We expand p(y;|7,x) around 7 = t, where p(y:|t,z) =
p(y|t, x) is learnable from data. Suppose that p(y:|7, x) is
twice differentiable in 7. Construct a Taylor expansion

p(ye|T, ) = p(yelt, ) + (7 — ) 0rp(Ye|T, T) |7 =1

(1 —1)?

502wl @)= + O(r = 1) @)

_l’_
Denote with p(y:|7, ) an approximation of second order as
laid out above. One could have stopped at lower orders but
the difference in complexity is not that large. The intractable
derivatives like 0, p(y; |7, ©)|-=¢ will be bounded using the
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OMSM machinery. Let us quantify the reliability of this ap-
proximation by a trust-weighing scheme 0 < wy(7) < 1,
where typically w;(¢) = 1. This corresponds to the yellow
part in Figure 3. We argue that w;(7) should be narrower
with lower-entropy (narrower) propensities (§B). The possi-
ble forms of w;(7) are elaborated in §2.3.

Splitting Equation 1 along the trusted regime marked by
wy(7), and then applying the approximation of Equation 2,

() = [ wimplulr op(rle) dr
T “observable” (Fig. 3)

+ [ L= bt i) ar

“unobservable” (Fig. 3)

N / wi(1)i (|7, 2)p(]) dr
;

(A) the approximated quantity

+/ [1 — wi(7)]p(7]ye, 2)p(ye|z) dT .
T (B) by Bayes’ rule

3

The intuition behind separating the integral into two parts is
the following. By choosing the weights w;(7) so that they
are close to one in the range where approximation Equa-
tion 2 is valid (yellow region in Figure 3) and zero outside
of this range, we can evaluate the first integral through the
approximated counterfactuals. The second integral, which is
effectively over the red region in Figure 3 and cannot be eval-
uated due to unobserved counterfactuals, will be bounded
using the IMSM. Simplifying the second integral first,

/T 11— we(M)lp(r| yer 2)plye|) dr
= p(y¢|x) [1 —[rwt(T)p(ﬂyt,x) dr|.

By algebraic manipulation, we witness already that p(y;|z)
shall take the form of

L@ () dr
plufe) ~ Jrwi(m)p(r|yr, ) dr

“

Reflecting on Assumptions 1 & 2, the divergence between
(7] y¢, ) and p(7|x) is bounded, allowing characterization
of the denominator in terms of the learnable p(7|z). Simi-
larly the derivatives in Equation 2 can be bounded. These
results would be sufficient to partially identify the numerator.
Without loss of generality, consider the unknown quantity
that can be a function of 7, y;, and x, such that

9- log p(7lys, x) = 9- log p(7|x) + ¥(7|ye, ),
where |y(7|yt, )| < logT using the SIMSM.  (5)

We may attempt to integrate both sides;
/ Or log p(7| ys, ) dr :/ 0r logp(t|z) dr
0 0

+/ Y(7lys, x)dr .
0
——————

=A(s|y,x)
s logp(r = s|yr, ) — logp(T = 0] vz, )
= logp(T = s|z)—logp(1 = 0| z) + A(s|ys, z),
~logp(r|yr, x) = log p(7|x) + A(7|ye, ).
(by Assumption 2)

p(7lye, x) = p(r]x)A(Tlye, ©), A= exp{A}. (6)

One finds that |A(7 |y, )| < |7|logT because ) integrates
v, bounded by +log I', over a support with length 7. Sub-
sequently, A is bounded by I'*l7I. These are the requisite
tools for bounding p(y;|x)—or an approximation thereof,
erring on ignorance via the trusted regime marked by w; (7).
The derivation is completed in §A by framing the unknown
quantities in terms of v and A, culminating in Equation 7.

Predicting potential outcomes. The recovery of a fully
normalized probability density p(y:|x) via Equation 4 is
laid out below. It may be approximated with Monte Carlo
or solved in closed form with specific formulations for the
weights and propensity. Concretely, it takes on the form

P(ye|x) = d(t|ys, z) " *p(y|t, ), where

d(tlye, ©) = E[A(7|ys, 2)] = VA (tlye, 2) B [T — 1]
L.

- 5[(7 + WQ)A](”ytv x) ]ET[(T - t)QL (N
and said expectations, [E; [-], are with respect to the implicit
distribution ¢(7|t,x) o w¢(7)p(7|x). The notation 7 de-
notes a derivative in the first argument of v(¢|y;, x).

Assumption 3 (Second-order Simplification). The quantity
4(7|ys, ) cannot be characterized as-is. Granting that ~2
dominates over the former, and consequently

|(% +¥*)A] < [v*A| + ¢ for small e > 0.
To make use of the formula in Equation 7, one first obtains
the set of admissible d(t|y,,z) € [d(t|y:, ), d(t|y:, z) ]
that violate ignorability up to a factor I' according to the

OMSM. With the negative side of the + corresponding to d
and the positive side to d, the bounds are expressible as

X :/TFiqu(T|t7x)dT L [A(rlye )]

+ (£log )Tl

/ (r —t)q(lt,z)dr
-

+1(0, 1og2r)r\tl /(T—t)Qq(T|t7x)dT. (8)
2 T

1372



Parametrization ~Support (7) Params. Precision (r) Bounds for E. [A(7T]yy, )]
Beta [0,1] o, a+pB-2 1Fila+1; a+B8+2; +logT)
wherea =a+a—2, B:=5+p—2
Balanced Beta [0,1] a, a+p-2 t - (the Beta above) + (1 — t) - (Beta, mirrored)
Gamma 040) @B o/ [1 - (+logT)/] =
wherea =a+a—1, 8:=5+8
TEM[] + exf(UEe loal))
Gaussian (—00, +00) W, o 1/o exp{o?(logI')?/2} +
IFe[1 — erf(iﬂ;gfgr)]
where p = “gzigf, 2= 7;217;2

Table 1. Candidates for propensity and trust-weighing combinations. Each row specifies the distribution—beta, beta, gamma,
and Gaussian respectively—of the propensity model p(7|z). The last column lists solutions for the first term of Equation 7 /8.
This is a convolution of the propensity and weighing scheme, which have similar forms (see Bromiley [2003] for the
Gaussian case.) We distinguish the replicated parameters between propensity and weight by placing a bar over the propensity
parameters. So if the propensity is x — (@, (3), then the weighing scheme has ¢ + («, 3). The bold parameters are of the

compound density, with respect to which the first and second moments are computed in Equation 7 / 8.

The T'*I7! in the first integral, as well as the alternating sign
of the other two terms taken together, reveal that d < 1 < d
with equality at I' = 1. This is noteworthy because it im-
plies that p(y|t, z) is admissible for the partially identified
P(y¢|x). We cannot describe p(y;|x) once d crosses zero.

Ensembles. To quantify empirical uncertainties [Jesson
et al., 2020] alongside our sensitivity, the predictors could be
learned as ensembles, with p(y;|x) computed as (bootstrap
resampled [Lo, 1987]) expectations over them.

2.3 PROPENSITY-TRUST COMBINATIONS

In addition to developing the general framework above,
we derive analytical forms for a myriad of paramametriza-
tions that span the relevant supports 7 for continuous treat-
ments: the unit interval [0, 1], the nonnegative reals [0, +00),
and the real number line (—o0, +00). For some nominal
propensity distributions p(7|z), we propose trust-weighing
schemes w; (7) with shared form so that the expectations in
Equation 8 are solvable.

For instance, consider the parametrization (7' | X = z) ~
Beta(a(z), B(x)). We select a Beta-like weighing scheme,
rescaled and translated, w?@(7) = ¢;7% (1 — 7)% L
Two constraints are imposed on every w;(7) studied herein:

* (the mode) that w(7) peaks at 7 = ¢, and w,(t) = 1.
* (the precision) that some r > (0 defines a narrowness

of the form, and can be set a priori.

For the beta version we chose a; + by = r + 2. These

constraints imply that a; == rt + 1, b; .= (1 —t) + 1, and
el i=tt (1 — ),

P B

Figure 4. Beta parametrizations for w;(7) in the unit square,
plotted for t = 0.125,0.25, 0.5. Trust declines with 7.

r =064

The choices. We present solutions for propensity-trust
combinations in Table 1. Balanced Beta stands out by not
strictly obeying Assumption 2. Rather, it adheres to a sym-
metrified mixture that is more versatile to realistic situations.

Balanced Beta. Formally, for all ¢, y;, and x, we balance
the Beta parametrization by replacing Assumption 2 with

{ p(r=0|ynz)=p(1=0|z) wp. ¢,

p(r=1]y,z)=p(r=1[z) wp. 1-t

This special parametrization deserves further justifying. The
premise is that distant treatments are decoupled; treatment
assignment 7 shares less information with a distal potential
outcome ¥, than a proximal one. If that were the case, then
the above linear interpolation favors the less informative
anchor points for a given ¢. This is helpful because the sensi-
tivity analysis is vulnerable to the anchor points. Stratifying
the anchor points eventually leads to an arithmetic mixture
of d(t|y:, «) in Equation 7 with its mirrored version about
t—1—t and (o, B) — (B, @).
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Controlling trust. The absolute error of the approxima-
tion in Equation 3.A is bounded above by a form that
could grow with narrower propensities (see §B), in the Beta
parametrization. Intuitively the error also depends on the
smoothness of the complete propensity (Taylor residual.)
For that reason we used the heuristic of setting the trust-
weighing precision 7 to the nominal propensity precision.

3 ESTIMATING THE INTERVALS

We seek to bound partially identified expectations with re-
spect to the true potential-outcome densities, which are
constrained according to Equation 7 / 8. The quantities
of interest are the Average Potential Outcome (APO),
E[f(Y2)], and Conditional Average Potential Outcome
(CAPO), E[f(Y:)| X = ], for any task-specific f(y). We
use Monte Carlo over m realizations y; drawn from proposal
density g(y), and covariates from a subsample of instances:

E[f(V;) | X € {29} je,] =
Sy Y e W) Blys = yi | 29) /g(yi)
Sy Y e By = yi [ 9)/g(ys)

where J C {1...n} indexes a subset of the finite instances.
|J| = 1 recovers the formula for the CAPO, and |J| = n
for the APO. The partially identified p(y;|z) really encom-
passes a set of probability densities that includes p(y|t, )
and smooth deviations from it. Our importance sampler en-
sures normalization [Tokdar and Kass, 2010], but is overly
conservative [Dorn and Guo, 2022]. For current purposes,
a greedy algorithm may be deployed to maximize (or mini-
mize) Equation 9 by optimizing the weights w; attached to
each f(y;), within the range

®

_ _plyilte) o pQltz)
d(tlys, z)g(ys)’ S d(tlyi, w)g(yi)

Our Algorithm 1 adapts the method of Jesson et al. [2021],
Kallus et al. [2019] to heterogeneous weight bounds [w,, ;)
per draw ¢. View a proof of correctness in §C.

Others have framed the APO as the averaged CAPOs, and
left the min/max optimizations on the CAPO level [Jesson
et al., 2022]. We optimize the APO directly, but have not
studied the impact of one choice versus the other.

X

4 A SEMI-SYNTHETIC BENCHMARK

It is common practice to test causal methods, especially
under novel settings, with real datasets but synthetic out-
comes [Curth et al., 2021, Cristali and Veitch, 2022]. We
adopted four exceedingly diverse datasets spanning health,
bioinformatics, and social-science sources. Our variable-
generating process preserved the statistical idiosyncracies
of each dataset. Confounders and treatment were random

Algorithm 1: The expectation maximizer, with O(n)
runtime if intermediate A results are memoized.

Input :{(w;,w;, f;)}, ordered by ascending f;.
Output : max,, E[f(X)] estimated by importance
sampling with n draws.
Initialize w; < w; foralli =1,2,...n;
forj=1,2,...ndo
Compute A; == Y""_ w;(fj — fi)s
if A; < 0 then
0y
else
| break;
end

end

Return ) . w; f;/ >, w;

projections of the data, which were quantile-normalized for
uniform marginals in the unit interval. Half the confounders
were observed as covariates and the other half were hidden.
The outcome was Bernoulli with random linear or quadratic
forms mixing the variables before passing through a normal
CDF activation function. Outcome and propensity models
were linear and estimated by maximum likelihood. See §E.

Selecting the baselines. The {MSM with Balanced Beta
was benchmarked against three relevant baselines.

¢ (CMSM) Use the recent lnodel by Jesson et al. [2022],
where d .= I'"!p(7|x), d :=THp(r|z).

* (uniform) Suppose d := I'"!, d := T't!, as if the
propensity were uniform and constant.

* (binary MSM) Shoehorn the propensity into the clas-
sic MSM [Tan, 2006] by considering the treatment as
binary with indicator I[T" > 0.5].

Note that the CMSM becomes equivalent to the “uniform”
baseline above when CAPOs are concerned (Equation 9
with m = 1), which are not studied in this benchmark.

Scoring the coverages. A reasonable goal would be to
achieve a certain amount of coverage [McCandless et al.,
2007] of the true APOs, like having 90% of the curve be
contained in the ignorance intervals. Since violation factor I"
is not entirely interpretable, nor commensurable across sen-
sitivity models, we measure the size of an ignorance interval
via a cost incurred in terms of actionable inference. For each
point ¢ of the dose-response curve, we integrated the KL di-
vergence of the actual APO (which defines the Y; Bernoulli
parameter) against the predicted APO uniformly between
the bounds. This way, each additional unit of ignorance in-
terval is weighed by its information-theoretic approximation
cost. This score is a divergence cost of a target coverage.
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Benchmarks brain blood pbmc mftc ratio
mean (std.) mean (std.)) mean (std.) mean (std.) | % best to best
OMSM (ours) | 138 (120) | 141 (129) | 138 (121) | 144 (124) 78.4 1.03(0.08)
CMSM 186 (153) | 188  (156) | 205  (169) | 182  (145) 7.8 1.81(2.15)
uniform 158  (137) | 162  (146) | 157 (136) | 167  (141) 4.8 1.20 (0.10)
binary MSM 211 (128) | 213 (131) | 222 (127) | 214 (127) 9.0 2.57(2.34)

Table 2. Semi-synthetic benchmark: divergence costs of 90% coverage of the Average Potential Outcome (APO), multiplied
by 1000. The four datasets are listed on top. We report averages over 500 trials per experiment. A paired ¢-test and sign
test, roughly corresponding to the mean and median, showed significant improvement by the MSM over the others with
all P < 1075. “% best” counts the proportion of trials that each method outperformed the rest, and “ratio to best” is the
average cost ratio to the best method’s in each trial—closer to one is better.

Divergence Costs Visualized
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= 2
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Treatment ¢

Figure 5. Divergence cost measures the size of the ignorance
intervals (blue), weighted by the badness of each estimate
(red). The black line is the true APO. Coverage is the portion
of treatments contained in the blue shaded region, between
A and B in this example. We target 90% of the unit interval
in our benchmark with Beta-distributed treatments.

Analysis. The main results are displayed in Table 2. There
were ten confounders and the true dose-response curve was
a random quadratic form in the treatment and confounders.
Other settings are shown in Supplementary Table 4. Each
trial exhibited completely new projections and outcome
function. There were different levels and types of confound-
ing as well as varying model fits. Still, clear patterns are
evident in Table 2, like the rate at which the IMSM provided
the lowest divergence cost against the baselines.

dMSM for High Coverage

% Best

70 80
% Coverage

Figure 6. Performance for different coverages. Black line:
rate of IMSM achieving lowest divergence cost compared
to baselines. Dashed line: expected rate if the chance of any
one method outperforming another were identical.

S A REAL-WORLD EXEMPLAR

The UK Biobank [Bycroft et al., 2018] is a large, densely
phenotyped epidemiological study with brain imaging. We
preprocessed 40 attributes, eight of which were continuous
diet quality scores (DQSs) [Said et al., 2018, Zhuang et al.,
2021] valued 0-10 and serving as treatments, on 42,032
people. The outcome was thicknesses of 34 cortical brain
regions. A poor DQS could translate to noticeable atrophy
in the brain of some older individuals, depending on their
attributes [Gu et al., 2015, Melo Van Lent et al., 2022].

Continuous treatments enable the (Conditional) Average
Causal Derivative, (C)ACD := 0 E[Y;|X] / 0t. The CACD
informs investigators on the incremental change in outcome
due to a small change in an individual’s given treatment. For
instance, it may be useful to identify the individuals who
would benefit the most from an incremental improvement
in diet. We plotted the age distributions of the top 1% indi-
viduals by CACD (diet — cortical thickness) in Figure 7.

Top 1% CACDs Before/After tMSM

Empirical CDF

60
Age (years)

70

Figure 7. When we apply the SMSM (I" > 1) for partial
identification, the individuals with the top 1% causal deriva-
tives of cortical thickness with respect to DQSs skew even
older. This is expected logically because older people have
more years during which they could have revised their diets.
Red dotted line corresponds to the entire population.

We also compared the MSM to an equivalent binary MSM
where CACDs are computed in the latter case by threshold-
ing the binary propensity at ¢. Each model’s violation factor
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I" was set for an equivalent amount (~30%) of nonzero
CACDs. Under the dMSM, the DQSs with strongest aver-
age marginal benefit ranked as vegetables, whole grains, and
then meat, for both females and males. They differed under
the binary MSM, with meat, then whole grains as the top for
females and dairy, then refined grains as the top for males.

6 DISCUSSION

Sensitivity analyses for hidden confounders can help to
guard against erroneous conclusions from observational
studies. We generalized the practice to causal dose-response
curves, thereby increasing its practical applicability. How-
ever, there is no replacement for an actual interventional
study, and researchers must be careful to maintain a healthy
degree of skepticism towards observational results even after
properly calibrating the partially identified effects.

Specifically for Average Potential Outcomes (APOs) via
the sample-based algorithm, we demonstrated widespread
applicability of the IMSM in §4 by showing that it pro-
vided tighter ignorance intervals than the recent CMSM and
other models for 78% of all trials, notwithstanding the wide
variation in scenarios tested. Ablating the approximation in
Equation 2 and dropping the quadratic term, that percentage
falls slightly to 74%. Even further, keeping just the constant
term results in a large drop to 7%. This result suggests that
the proposed Taylor expansion (Equation 2) is useful, and
that terms of higher order would not give additional value.

We showcased sensical behaviors of the IMSM in a real
observational case study (§5), e.g. how older people would
be more impacted by (retroactive) changes to their reported
diets. Additionally, the top effectual DQSs appeared more
consistent with the MSM rather than the binary MSM.

Contrasting the CMSM. Another recently proposed
sensitivity model for continuous-valued treatments is the
CMSM [Jesson et al., 2022], which was included in our
benchmark, §4. Unlike the MSM, the CMSM does not
always guarantee d < 1 < d and therefore p(y|t, z) need
not be admissible for p(y;|x). For partial identification of
the CAPO with importance sampling, the propensity density
factors out and does not affect outcome sensitivity under the
CMSM. For that implementation it happens that p(y|¢, x) is
indeed admissible. However, we believe that the nominal
propensity should play a role in the CAPO’s sensitivity to
hidden confounders, as both the CMSM and the SMSM cou-
ple the hidden confounding (via the complete propensity) to
the nominal propensity. Equations 7 & 8 make it clear that
the propensity plays a key role in outcome sensitivity under
the SMSM for both CAPO and APO. We remind the reader
of the original MSM that bounds a ratio of complete and
nominal propensity odds. The MSM takes that structure to
the infinitesimal limit and maintains the original desirable
property of p(ylt, x) admissibility for p(y:|z).

Looking ahead. Alternatives to sampling-based Algo-
rithm 1 deserve further investigation for computing igno-
rance intervals on expectations—but not only. Our analytical
solutions bound the density function p(y;|z) of conditional
potential outcomes, which can generate other quantities of
interest [Kallus, 2022] or play a role in larger pipelines.
Further, an open challenge with the {MSM would be to
find a pragmatic solution to sharp partial identification. Re-
cent works have introduced sharpness to binary-treatment
sensitivity analysis [Oprescu et al., 2023].

7 CONCLUSION

We recommend the novel MSM for causal sensitivity anal-
yses with continuous-valued treatments. The simple and
practical Monte Carlo estimator for the APO and CAPO
(Algorithm 1) gives tighter ignorance intervals with the
OMSM than alternatives. We believe that the partial identifi-
cation of the potential-outcome density shown in Equation 8,
in conjunction with the parametric formulas of Table 1, is
of general applicability for causal inference in real-world
problems. The variety of settings presented in that table
allow a domain-informed selection of realistic sensitivity
assumptions. For instance, when estimating the effect of
a real-valued variable’s deviations from some base value,
like a region’s current temperature compared to its histori-
cal average, the Gaussian scheme could be used. Gamma
is ideal for one-sided or unidirectional deviations. Finally,
Balanced Beta is recommended for measurements in an
interval where neither of the endpoints is special.

Acknowledgements

This work was funded in part by Defense Advanced Re-
search Projects Agency (DARPA) and Army Research Of-
fice (ARO) under Contract No. W91 1NF-21-C-0002.

REFERENCES

S. Athey, J. Tibshirani, and S. Wager. Generalized random
forests. The Annals of Statistics, 47(2):1148-1178, 2019.

P. A. Atroszko. Is a high workload an unaccounted con-
founding factor in the relation between heavy coffee con-
sumption and cardiovascular disease risk? The American
Journal of Clinical Nutrition, 110(5):1257-1258, 2019.

M. Bonvini and E. H. Kennedy.
rates for dose-response estimation.
arXiv:2207.11825, 2022.

Fast convergence
arXiv preprint

P. Bromiley. Products and convolutions of gaussian proba-
bility density functions. Tina-Vision Memo, 3(4):1, 2003.

C. Bycroft, C. Freeman, D. Petkova, G. Band, L. T. El-
liott, K. Sharp, A. Motyer, D. Vukcevic, O. Delaneau,

1376



J. O’Connell, et al. The uk biobank resource with deep
phenotyping and genomic data. Nature, 562(7726):203—
209, 2018.

E. J. Calabrese and L. A. Baldwin. U-shaped dose-
responses in biology, toxicology, and public health. An-
nual Review of Public Health, 22(1):15-33, 2001. doi:
10.1146/annurev.publhealth.22.1.15. PMID: 11274508.

Y.-L. Chen, L. Minorics, and D. Janzing. Correcting con-
founding via random selection of background variables.
arXiv preprint arXiv:2202.02150, 2022.

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo,
C. Hansen, W. Newey, J. Robins, et al. Double/debiased
machine learning for treatment and causal parameters.
Technical report, 2017.

V. Chernozhukov, C. Cinelli, W. Newey, A. Sharma,
and V. Syrgkanis. Long story short: Omitted vari-
able bias in causal machine learning. arXiv preprint
arXiv:2112.13398, 2021.

K. Colangelo and Y.-Y. Lee. Double debiased machine learn-
ing nonparametric inference with continuous treatments.
arXiv preprint arXiv:2004.03036, 2021.

J. Cornfield, W. Haenszel, E. C. Hammond, A. M. Lilien-
feld, M. B. Shimkin, and E. L. Wynder. Smoking and
lung cancer: recent evidence and a discussion of some

questions. Journal of the National Cancer institute, 22
(1):173-203, 1959.

I. Cristali and V. Veitch. Using embeddings for causal esti-
mation of peer influence in social networks. In A. H. Oh,
A. Agarwal, D. Belgrave, and K. Cho, editors, Advances
in Neural Information Processing Systems, 2022.

A. Curth, D. Svensson, J. Weatherall, and M. van der Schaar.
Really doing great at estimating CATE? a critical look
at ML benchmarking practices in treatment effect esti-
mation. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks Track
(Round 2), 2021.

J. Dorn and K. Guo. Sharp sensitivity analysis for inverse
propensity weighting via quantile balancing. Journal of
the American Statistical Association, pages 1-13, 2022.

A. Ghassami, N. Sani, Y. Xu, and I. Shpitser. Multiply robust
causal mediation analysis with continuous treatments.
arXiv preprint arXiv:2105.09254, 2021.

J. Godos, M. Tieri, F. Ghelfi, L. Titta, S. Marventano,
A. Lafranconi, A. Gambera, E. Alonzo, S. Sciacca,
S. Buscemi, et al. Dairy foods and health: an umbrella
review of observational studies. International Journal of
Food Sciences and Nutrition, 71(2):138-151, 2020.

Y. Gu, A. M. Brickman, Y. Stern, C. G. Habeck, Q. R. Raz-
lighi, J. A. Luchsinger, J. J. Manly, N. Schupf, R. Mayeux,
and N. Scarmeas. Mediterranean diet and brain structure
in a multiethnic elderly cohort. Neurology, 85(20):1744—
1751, 2015.

W. Guo, M. Yin, Y. Wang, and M. Jordan. Partial iden-
tification with noisy covariates: A robust optimization
approach. In Conference on Causal Learning and Rea-
soning, pages 318-335. PMLR, 2022.

J. L. Hill. Bayesian nonparametric modeling for causal infer-
ence. Journal of Computational and Graphical Statistics,
20(1):217-240, 2011.

Y. Hu, Y. Wu, L. Zhang, and X. Wu. A generative adver-
sarial framework for bounding confounded causal effects.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 35, pages 12104-12112, 2021.

W. Huang, O. Linton, and Z. Zhang. A unified framework
for specification tests of continuous treatment effect mod-
els. Journal of Business & Economic Statistics, 0(0):1-14,
2021. doi: 10.1080/07350015.2021.1981915.

A. Jesson, S. Mindermann, U. Shalit, and Y. Gal. Identify-
ing causal-effect inference failure with uncertainty-aware
models. Advances in Neural Information Processing Sys-

tems, 33:11637-11649, 2020.

A. Jesson, S. Mindermann, Y. Gal, and U. Shalit. Quantify-
ing ignorance in individual-level causal-effect estimates
under hidden confounding. ICML, 2021.

A. Jesson, A. R. Douglas, P. Manshausen, M. Solal, N. Mein-
shausen, P. Stier, Y. Gal, and U. Shalit. Scalable sensitiv-
ity and uncertainty analyses for causal-effect estimates of
continuous-valued interventions. In A. H. Oh, A. Agar-
wal, D. Belgrave, and K. Cho, editors, Advances in Neu-
ral Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=PzI4ow094E.

N. Kallus. Treatment effect risk: Bounds and inference. In
2022 ACM Conference on Fairness, Accountability, and
Transparency, pages 213-213, 2022.

N. Kallus and M. Santacatterina. Kernel optimal orthog-
onality weighting: A balancing approach to estimat-
ing effects of continuous treatments. arXiv preprint
arXiv:1910.11972, 2019.

N. Kallus, X. Mao, and A. Zhou. Interval estimation of
individual-level causal effects under unobserved con-
founding. In The 22nd international conference on artifi-
cial intelligence and statistics, pages 2281-2290. PMLR,
2019.

N. Kilbertus, M. J. Kusner, and R. Silva. A class of al-
gorithms for general instrumental variable models. Ad-
vances in Neural Information Processing Systems, 33:
20108-20119, 2020.

1377


https://openreview.net/forum?id=PzI4ow094E
https://openreview.net/forum?id=PzI4ow094E

J. Lim, C. X. Ji, M. Oberst, S. Blecker, L. Horwitz, and
D. Sontag. Finding regions of heterogeneity in decision-
making via expected conditional covariance. Advances

in Neural Information Processing Systems, 34:15328—
15343, 2021.

A.Y. Lo. A large sample study of the bayesian bootstrap.
The Annals of Statistics, 15(1):360-375, 1987.

C. Louizos, U. Shalit, J. M. Mooij, D. Sontag, R. Zemel,
and M. Welling. Causal effect inference with deep latent-
variable models. Advances in neural information process-
ing systems, 30, 2017.

C. F. Manski. Partial identification of probability distribu-
tions, volume 5. Springer, 2003.

A. Mastouri, Y. Zhu, L. Gultchin, A. Korba, R. Silva,
M. Kusner, A. Gretton, and K. Muandet. Proximal causal
learning with kernels: Two-stage estimation and moment
restriction. In International Conference on Machine
Learning, pages 7512-7523. PMLR, 2021.

L. C. McCandless, P. Gustafson, and A. Levy. Bayesian
sensitivity analysis for unmeasured confounding in obser-
vational studies. Statist Med, 26:2331-2347, 2007.

D. Melo Van Lent, H. Gokingco, M. I. Short, C. Yuan, P. F.
Jacques, J. R. Romero, C. S. DeCarli, A. S. Beiser, S. Se-
shadri, J. J. Himali, et al. Higher dietary inflammatory
index scores are associated with brain mri markers of
brain aging: Results from the framingham heart study
offspring cohort. Alzheimer’s & Dementia, 2022.

V. B. Meresht, V. Syrgkanis, and R. G. Krishnan. Partial
identification of treatment effects with implicit genera-
tive models. In A. H. Oh, A. Agarwal, D. Belgrave, and
K. Cho, editors, Advances in Neural Information Pro-
cessing Systems, 2022. URL https://openreview.
net/forum?id=8cUGfg-zUnh.

M. Oprescu, J. Dorn, M. Ghoummaid, A. Jesson, N. Kallus,
and U. Shalit. B-learner: Quasi-oracle bounds on hetero-
geneous causal effects under hidden confounding. arXiv
preprint arXiv:2304.10577, 2023.

K. Padh, J. Zeitler, D. Watson, M. Kusner, R. Silva, and
N. Kilbertus. Stochastic causal programming for bound-
ing treatment effects. arXiv preprint arXiv:2202.10806,
2022.

P. R. Rosenbaum. Observational Studies. Springer, 2002.

P. R. Rosenbaum and D. B. Rubin. Assessing sensitivity to
an unobserved binary covariate in an observational study
with binary outcome. Journal of the Royal Statistical
Society: Series B (Methodological), 45(2):212-218, 1983.

D. B. Rubin. Estimating causal effects of treatments in
randomized and nonrandomized studies. Journal of Edu-
cational Psychology, 66(5):688, 1974.

M. A. Said, N. Verweij, and P. van der Harst. Associations
of combined genetic and lifestyle risks with incident car-
diovascular disease and diabetes in the uk biobank study.
JAMA cardiology, 3(8):693-702, 2018.

A. L. Sarvet and M. J. Stensrud. Without commitment to an
ontology, there could be no causal inference. Epidemiol-
ogy, 33(3):372-378, 2022.

N. N. Taleb. (anti) fragility and convex responses in
medicine. In Unifying Themes in Complex Systems IX:
Proceedings of the Ninth International Conference on
Complex Systems 9, pages 299-325. Springer, 2018.

Z. Tan. A distributional approach for causal inference using
propensity scores. Journal of the American Statistical
Association, 101(476):1619-1637, 2006.

E. J. T. Tchetgen, A. Ying, Y. Cui, X. Shi, and W. Miao. An
introduction to proximal causal learning. arXiv preprint
arXiv:2009.10982, 2020.

S. T. Tokdar and R. E. Kass. Importance sampling: A review.
WIREs Computational Statistics, 2(1):54-60, 2010.

S. Tiibbicke. Entropy balancing for continuous treatments.
J Econ Methods, 11(1):71-89, 2022.

B. G. Vegetabile, B. A. Griffin, D. L. Coffman, M. Cefalu,
M. W. Robbins, and D. F. McCaffrey. Nonparametric
estimation of population average dose-response curves us-
ing entropy balancing weights for continuous exposures.
Health Services and Outcomes Research Methodology,
21(1):69-110, 2021.

V. Veitch and A. Zaveri. Sense and sensitivity analysis:
Simple post-hoc analysis of bias due to unobserved con-
founding. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Informa-
tion Processing Systems, volume 33, pages 10999-11009.
Curran Associates, Inc., 2020.

S. Yadlowsky, H. Namkoong, S. Basu, J. Duchi, and L. Tian.
Bounds on the conditional and average treatment effect

with unobserved confounding factors. arXiv preprint
arXiv:1808.09521, 2020.

L. Yao, Z. Chu, S. Li, Y. Li, J. Gao, and A. Zhang. A survey
on causal inference. ACM Transactions on Knowledge
Discovery from Data (TKDD), 15(5):1-46, 2021.

M. Yin, C. Shi, Y. Wang, and D. M. Blei. Conformal sen-
sitivity analysis for individual treatment effects. arXiv
preprint arXiv:2112.03493v2, 2021.

E. Ystrom, E. Degerud, M. Tesli, A. Hgye, T. Reichborn-
Kjennerud, and @. Ness. Alcohol consumption and lower
risk of cardiovascular and all-cause mortality: the impact

of accounting for familial factors in twins. Psychological
Medicine, pages 1-9, 2022.

1378


https://openreview.net/forum?id=8cUGfg-zUnh
https://openreview.net/forum?id=8cUGfg-zUnh

Q. Zhao, D. S. Small, and B. B. Bhattacharya. Sensitivity
analysis for inverse probability weighting estimators via
the percentile bootstrap. Journal of the Royal Statistical
Society (Series B), 81(4):735-761, 2019.

P. Zhuang, X. Liu, Y. Li, X. Wan, Y. Wu, F. Wu, Y. Zhang,
and J. Jiao. Effect of diet quality and genetic predispo-
sition on hemoglobin alc and type 2 diabetes risk: gene-
diet interaction analysis of 357,419 individuals. Diabetes
Care, 44(11):2470-2479, 2021.

1379



	Introduction
	Related works
	Contributions
	Problem Statement

	Continuous Sensitivity Model
	The Complete Framework
	A Partial Approximation
	Propensity-Trust Combinations

	Estimating The Intervals
	A Semi-synthetic Benchmark
	A Real-world Exemplar
	Discussion
	Conclusion

