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Abstract

Cutset networks (CNs) are interpretable probabilis-
tic representations that combine probability trees
and tree Bayesian networks, to model and reason
about large multi-dimensional probability distri-
butions. Motivated by high-stakes applications in
domains such as healthcare where (a) rich domain
knowledge in the form of qualitative influences is
readily available and (b) use of interpretable mod-
els that the user can efficiently probe and infer over
is often necessary, we focus on learning CNs in
the presence of qualitative influences. We propose
a penalized objective function that uses the influ-
ences as constraints, and develop a gradient-based
learning algorithm, KICN. We show that because
CNs are tractable, KICN is guaranteed to converge
to a local maximum of the penalized objective func-
tion. Our experiments on several benchmark data
sets show that our new algorithm is superior to the
state-of-the-art, especially when the data is scarce
or noisy.

1 INTRODUCTION

Recently, there has been a growing interest in learning
tractable probabilistic models (TPMs) or probabilistic cir-
cuits [Choi et al., 2020] from data. The key advantage of
these models is that they admit tractable, and in most cases,
linear time exact probabilistic inference as opposed to tradi-
tional probabilistic graphical models such as Bayesian and
Markov networks (BNs and MNs) which require the use of
approximate inference methods. We consider a restricted
class of TPMs called cutset networks [Rahman et al., 2014]
that are inspired from Pearl’s cutset conditioning [Pearl,
1988, Bidyuk and Dechter, 2004]. These are essentially a
combination of OR trees and tree BNs where the leaves of
the OR tree are tree BNs. Cutset networks are tractable in

that many reasoning queries such as computing the marginal
probability over a subset of variables given observations and
finding the most likely explanation for evidence can be
solved in time that scales linearly in the size of the network.
Another key virtue of cutset networks is that, unlike state-of-
the-art TPMs such as arithmetic circuits [Darwiche, 2003]
and sum-product networks [Poon and Domingos, 2011],
they are also interpretable [Rahman et al., 2019]—another
key property that is necessary for models used in high-stakes
applications.

Currently, state-of-the-art algorithms for learning tractable,
interpretable cutset networks [Rahman et al., 2014, 2019,
Mauro et al., 2015] use training data alone. Recently, there
has been a surge in developing systems that can effectively
use human inputs that range from decision boundary con-
straints [Fung et al., 2002, Towell and Shavlik, 1994, Ku-
napuli et al., 2010, 2013], label preferences [Odom et al.,
2015], misclassification costs [Yang et al., 2014], privileged
information [Vapnik and Vashist, 2009, Sharmanska et al.,
2013] and qualitative influences [Altendorf et al., 2005,
Yang and Natarajan, 2013, Kokel et al., 2020]. Our key hy-
pothesis in this work is that such knowledge can potentially
allow for effective learning of cutset networks in settings
where data is scarce or noisy.

Specifically, we consider a type of qualitative influence
called monotonicities, as an inductive bias when learning
cutset networks. We consider this task in the context of a
real-world problem, that of modeling gestational diabetes
from a clinical study [Haas et al., 2015], a high-stakes appli-
cation where using tractable, interpretable models such as
cutset networks is necessary. The monotonicities obtained
from the domain expert (a physician in our case) will serve
as constraints on the model and allow for learning a more ro-
bust model. We develop a novel learning framework, Knowl-
edge Intensive Learning of Cutset Networks (KICN) that
enforces these constraints during either structure or parame-
ter learning. Consequently, we present two variations of our
learning algorithm – one for parameter learning and one for
structure learning.

Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023), PMLR 216:1380–1389.

mailto:<SaurabhSanjay.Mathur@utdallas.edu>?Subject=Your UAI 2023 paper


BMI

PRS Age Age PCOS

Age Age Age Age T1 METs PRS METs T2 PRS METs T3 Age HiBP

0.17

0.5
9

0.20 0.04

0.
27

0.
36

0.19
0.18

0.
01

0.
44

0.53
0.02

0.
01

0.44
0.53

0.02

0.
80

0.20

PRS

BMI Hist HiBP Hist

GDM PCOS HiBP PCOS METs PCOS Hist T1 PCOS HiBP

0.25

0.
28

0.21

0.26

0.
17

0.
59

0.20
0.04

0.83
0.17

0.
98

0.02

0.78

0.22

Figure 1: The first 3 levels of cutset networks (CNs) learned from the nuMoM2b-b dataset using LearnCNet (left) and using KICN (right).
While Polygenic Risk Score (PRS) is a very important risk factor for Gestational Diabetes in the literature [Pagel et al., 2022], the CN
learned from data has it in second and third levels. Combining data with monotonicities obtained from the domain expert allows the CN
on the right to select PRS as the root node. Moreover, the CN on the right is more concise (and thus more interpretable).

To understand the impact of knowledge in learning, con-
sider the learned models in Figure 1. The model on the
left is learned from data alone while the one on the right
is learned from data and knowledge for modeling gesta-
tional diabetes [Haas et al., 2015]. We observe that while
the model learned from data alone uses BMI as the top fea-
ture in modeling gestational diabetes, the model learned
using both data and domain knowledge from clinicians uses
polygenic risk scores (PRS), a top risk factor for gestational
diabetes according to literature [Pagel et al., 2022]. These
are precisely the type of models that we aim to learn using
our KICN algorithm.

We make the following key contributions: (1) As far as
we are aware, we present the first work on employing rich
qualitative information as inductive biases when learning
tractable probabilistic models. (2) We develop an efficient
learning framework (KICN) that uses this qualitative infor-
mation as constraints during learning. (3) We outline a few
variations of this framework based on where and how the
constraints are enforced. (4) We perform extensive evalua-
tion of the proposed framework on many standard data sets
and demonstrate the superiority of the proposed algorithm
on two evaluation measures: test set log-likelihood score
and mean-squared error on conditional probability queries.
Most importantly, we present results on a real, high-impact,
gestational diabetes data set where these learned models
allow for interpretability and hence, can result in building
effective treatment plans.

2 BACKGROUND

2.1 CUTSET NETWORKS

Cutset networks [Rahman et al., 2014] are a class of
tractable probabilistic models that compactly represent large
multi-dimensional joint probability distributions. They com-
bine two interpretable and tractable representations: OR
probability trees and tree BNs.

Formally, given a set of variables X = {X1, . . . , Xn}, a

cutset network is defined as a pairM = (O, T ) where O is
an OR tree having l leaves where each OR node is labeled
with a variable Xi ∈ X and T = {T1, . . . , Tl} is a set
of tree BNs such that Tj ∈ T is associated with the j-th
leaf node of O. Similar to decision trees, we assume that
each variable Xi ∈ X appears at most once on the path
from the root to a leaf node in O. OR nodes in O repre-
sent conditioning and each OR node labeled with Xi has
|domain(Xi)| children, one for each value in domain(Xi).
Each edge from a parent OR node labeled with Xi ∈ X
and a child OR node labeled with Xj ∈ X (or a leaf node
Tk) is labeled with the conditional probability of Xi taking
the corresponding value given the assignment from the root
note to the parent. Each tree BN Tj ∈ T represents the
conditional probability distribution over all variables from
the set X that are not included in the OR nodes on the path
from the root node to Tj given the assignment on the path
from the root node to Tj .

Given an assignment (data-point) x = (x1, . . . , xn) to all
variables in the set X , let z = l(x) be the leaf node corre-
sponding to x, pathO(z) be the path from the root of the
OR tree O to the leaf z, Vz be the variables in X that are not
included on the OR nodes in pathO(z), and Wz be the set
of conditional probability labels on the edges in pathO(z).
Then, the joint probability distribution induced by the cutset
networkM is

PM(x) =

( ∏
w∈Wz

w

)
P z(xVz

) (1)

where xVz
is the projection of x on the subset Vz of X . We

assume that each tree BN Tz ∈ T is defined by the parent
map Paz : Vz 7→ Vz and parameters θz as Tz = (Paz, θz).
Further, we use the shorthand Pazi to refer to Paz(Xi). Then,
the probability distribution at each leaf is

P z(xVz ) =
∏

Xi∈Vz

P zi (xi | xPazi ) =
∏

Xi∈Vz

θzijk

where θzijk is the conditional probability that the random
variable Xi at the leaf z has the value k given that its par-
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Figure 2: A Cutset network over 5 binary random vari-
ables {X1, . . . , X5}. The children for each node are shown
in ascending order of their corresponding values. Here,
T1, . . . , T4 are tree Bayesian Networks over the variables
not included on the path from the root. Each edge label rep-
resents a conditional probability and can be interpreted as
the proportion of data points belonging to the corresponding
data partition.

ent Pazi has the value j. Let W and θ denote the set of
parameters associated with O and T respectively.

Cutset networks are learned using the LearnCNet algorithm
[Rahman et al., 2014, Mauro et al., 2015]. It works by re-
cursively splitting the given data on a heuristically selected
variable until a termination condition is reached. For exam-
ple, termination conditions could be defined in terms of the
number of remaining variables or the amount of remain-
ing data or both. When a termination condition is met, the
Chow-Liu algorithm [Chow and Liu, 1968] is used to fit
a tree BN. The most widely used heuristic for variable se-
lection is the maximum pairwise mutual information score
heuristic where we select a variable having the maximum
sum pairwise mutual information.

Figure 2 shows a cutset network defined over a set of 5
binary valued random variables {X1, . . . , X5}. The nodes
of the OR tree are shown as circular nodes, while tree BNs
are shown as dashed square nodes labeled T1, . . . , T4. T1
and T2 represent conditional probability distribution over
{X3, X4, X5} given the assignments (X1 = 0, X2 = 0)
and (X1 = 0, X2 = 1), respectively. T3 and T4 represent
the conditional probability distribution over {X2, X4, X5}
given the assignments (X1 = 1, X3 = 0) and (X1 =
1, X3 = 1), respectively.

Cutset networks are tractable probabilistic models [Rahman
et al., 2014]. Queries such as finding the most probable
explanation and computing the marginal probability distri-
bution at each variable given observations can be answered
in time that scales linearly with the size (number of parame-
ters) of the network. In addition to being tractable, Cutset
networks are also interpretable [Rahman et al., 2019] be-
cause they consist of OR-trees and tree BNs. OR-trees are
structured like probabilistic decision trees and hence inherit
their interpretability. Tree BNs at the leaves of the OR-tree
are interpretable because all of their nodes correspond to
observed variables. The parameters of both the OR-tree and

the tree BNs have probabilistic interpretations because they
are conditional probabilities of observed variables. For ex-
ample, in Figure 2, the path from the root node to T1 can
be interpreted as follows. The probability that X1 takes the
value 0 is 0.3; given X1 = 0, the probability that X2 takes
the value 0 is 0.8; given (X1 = 0, X2 = 0) the conditional
distribution over the remaining variables is given by a tree
BN T1. These two properties – tractability and interpretabil-
ity – make cutset networks a natural fit for high-stakes
domains like healthcare that require the models to be inter-
pretable while being able to answer certain queries exactly
in order to build trust with the domain expert [Rudin, 2019].

2.2 QUALITATIVE INFLUENCES IN
PROBABILISTIC MODELS

We approach the problem of learning interpretable and
tractable probabilistic models for high-stakes domains by
using qualitative influences given by a domain expert as an
inductive bias. As far as we are aware, this is the first work
on learning interpretable tractable probabilistic models us-
ing qualitative influences. Qualitative influences have been
previously used for learning probabilistic models [Wellman,
1990]. For instance, they have been used to learn more ac-
curate discriminative models in the presence of noisy and
sparse data [Kokel et al., 2020, Odom et al., 2015]. However,
their use in learning generative models has been limited to
BNs [Altendorf et al., 2005, de Campos et al., 2008, Yang
and Natarajan, 2013], where exact inference is intractable
in general [Cooper, 1990].

Additionally, while generative models like Sum-Product
Networks (SPNs) guarantee tractable inference [Poon and
Domingos, 2011], they are hard to explain because their
internal nodes do not correspond to any observed variables.
The probabilistic prior constraints that have been used to
learn SPNs [Papantonis and Belle, 2021] are harder to elicit
from experts. In contrast, the structure of cutset networks
makes it natural to encode a variety of domain knowledge
such as conditional independences, context-specific inde-
pendences, deterministic constraints, and quantitative con-
straints [Chavira and Darwiche, 2007, Gogate and Domin-
gos, 2010, Rahman et al., 2014]. In this work, we propose
to learn cutset networks using qualitative influences which
are easier to elicit from experts in domains like healthcare.

Concretely, we consider a specific type of qualitative in-
fluence called monotonic influence [Altendorf et al., 2005].
A random variable Xj is said to positively monotonically
influence another random variable Xi if an increase in the
value of Xj increases the probability of higher values of Xi.
We use Xj

M+
≺ Xi to denote a positive monotonic influence.

Similarly, a negative monotonic influence Xj
M−
≺ Xi implies

that an increase in the values ofXj decreases the probability
of higher values of Xi.
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The positive and negative influences can be expressed re-
spectively using the following constraints:

PM(Xi ≤ c | Xj = a) ≤ PM(Xi ≤ c | Xj = b)

∀a > b; a, b ∈ domain(Xj); c ∈ domain(Xi)
(2)

PM(Xi ≤ c | Xj = a) ≥ PM(Xi ≤ c | Xj = b)

∀a > b; a, b ∈ domain(Xj); c ∈ domain(Xi)
(3)

This form of monotonic influence relation has been ex-
pressed in prior work [Altendorf et al., 2005] in the context
of BNs for the case where Xj is a parent of Xi. This work
on BNs was later extended to learn conditional distributions
with causal independence and qualitative constraints [Yang
and Natarajan, 2013]. These relations were used as margin
constraints to learn conditional probability tables. In our
work, instead of using monotonic influences as constraints
on conditional distributions, we use them as constraints on
the joint distribution.

3 KNOWLEDGE INTENSIVE LEARNING
OF CUTSET NETWORKS

We hypothesize that knowledge in the form of monotonic
influence statements integrates well with the patterns learned
from data in a cutset network, producing more accurate and
concise (and hence more interpretable) models. To test our
hypothesis, we propose Algorithm KICN, which solves the
following problem:

Given: Dataset D = {x(i)}Ni=1 over random variables X
and a set of qualitative influences C
To Do: Learn a cutset networkM

Mathematically, the above problem can be expressed as the
following constrained optimization problem:

argmax
M

L(M,D) s.t. constraints in C (4)

where L(M,D) is the log-likelihood of D w.r.t. M =
(O, T ) and is given by

L(M,D) =
∑
x∈D

(
logP z(xVz

) +
∑
w∈Wz

logw

)
(5)

where z = l(x) is the leaf node corresponding to x. An
issue with the constrained optimization formulation given
in Eq. (4) is that it may not have any feasible solutions.
For example, since the qualitative influence statements are
elicited from a domain expert, they are not guaranteed to
be consistent with each other. As a result, exact constraint
satisfaction may not be possible. To address this issue, we
propose an algorithm to incorporate the qualitative influ-
ences in the parameters of Tree BNs. Finally, we propose
the KICN framework which adapts the LearnCNet frame-
work to leverage qualitative influences for both parameter
learning and structure learning.

3.1 LEARNING TREE BN PARAMETERS

Consider a tree BN Tz having scope Vz . Let Dz be a dataset
over Vz and Cz be a set of qualitative influences over Vz .
Given the structure of Tz defined by Paz , we define the opti-
mization problem for parameter learning using qualitative
influences as

argmax
θz

L(Tz,Dz) s.t. constraints in Cz (6)

Here, Lz(Tz,Dz) is the log likelihood function and is

Lz(Tz,Dz) =
∑
x∈Dz

logP z(xVz
)

=
∑
x∈Dz

∑
Xi∈Vz

log θzijk
(7)

where k = xi and j = xpazi .

Inspired by prior work of Altendorf et al. [2005], we define
the following margin constraint for each positive monotonic
influence Xj

M+
≺ Xi ∈ C (see Eq. (2))

δa,b,ci,j,+ =P (Xi ≤ c | Xj = a)

− P (Xi ≤ c | Xj = b) + ε ≤ 0
(8)

where ε ≥ 0 is a user-defined margin parameter. Similarly,
each negative monotonic influence Xj

M−
≺ Xi ∈ C can be

encoded as margin constraint δa,b,ci,j,− ≤ 0.1 The key dif-
ference from prior work (see [Altendorf et al., 2005]) is
that we interpret the monotonic influence as constraints on
conditional distributions obtained by marginalizing other
variables instead of fixing their values.

Using the notation given in Eq. (8), we can express the
optimization problem given in Eq. (6) as

argmax
θz

L(Tz,Dz) s.t.

δa,b,ci,j,+ ≤ 0 ∀Xj
M+
≺ Xi ∈ C (9)

δa,b,ci,j,− ≤ 0 ∀Xj
M−
≺ Xi ∈ C

A standard approach for solving the above optimization task
is to use Lagrangian relaxation (see, for example, [Bertsekas,
1996]). A better alternative is the penalty method, which we
will use in this paper. This method relaxes the constrained
optimization problem into an unconstrained one by adding
a penalty term to the objective. The latter equals the product
of a penalty parameter λ and a function that is zero when
the constraints are satisfied and non-zero (i.e., it penalizes
the objective) when they are violated. It then optimizes the
value of the penalty parameter λ by progressively increasing
it (e.g., by multiplying it by 10) until convergence. Several
penalty functions have been proposed in the literature. In
our work, we use the quadratic penalty.

1Essentially this is similar to the positive monotonic constraint
with a and b reversed.

1383



To simplify our notation, we define the penalty function for
each pair Xi, Xj as ζi,j =

∑
c

∑
a>b ζ

a,b,c
i,j where,

ζa,b,ci,j =


1δa,b,c

i,j,+≥0
(δa,b,ci,j,+)

2 If Xj
M+
≺ Xi ∈ C

1δa,b,c
i,j,−≥0

(δa,b,ci,j,−)
2 If Xj

M−
≺ Xi ∈ C

0 Otherwise

(10)

Using the penalty function given in Eq. (10), we can solve
the optimization problem given in Eq. (6) using the follow-
ing series (indexed by t) of penalized problems:

argmax
θz

Lpl(T
z,Dz, t) (11)

where Lpl(T
z,Dz, t) is the penalized log-likelihood and is

Lpl(T
z,Dz, t) = Lz(T z,Dz, t)− λt

∑
i,j

ζi,j(T
z, Cz)

Here, t denotes the iteration number. At each iteration, we
increase λt (e.g. by a factor of 10), solve the unconstrained
problem given in Eq. (11), and use the values of θz as the
initial guess for the next iteration. As we increase λt, the
solution will eventually converge to the solution of the con-
strained optimization problem given in Eq. (6) [Luenberger
and Ye, 2016].

3.1.1 Gradients

At each iteration t, the unconstrained optimization problem
given in Eq. (11) can be solved in practice using a standard
gradient ascent procedure. Since the objective is smooth, the
gradient ascent will always converge to a local optimum. To
complete the description of this gradient ascent procedure,
we provide the expressions for gradients in this section.

To encode the constraints 0 ≤ θzijk ≤ 1 and
∑
k′ θ

z
ijk′ =

1, we parameterize θz using the softmax function, S as
θzijk = S(µzij)k. The gradient of the tree BN distribution
with respect to the parameter µzijk is

∂P z(x)

∂µzijk
= 1Pazxi

=j
P z(x)

θzijk′
S′(µzij)k′ , (12)

where S′ is the gradient of the softmax function.

Now, without loss of generality, the gradient of penalty term
due to the positive monotonic influence Xj

M+
≺ Xi ∈ C is

∂ζa,b,ci,j

∂µzijk
= 21δa,b,c

i,j,+≥0
δa,b,ci,j,+

∂δa,b,ci,j,+

∂µzijk
, (13)

where the gradient of margin constraint is

∂δa,b,ci,j,+

∂µzijk
=
∂P z(Xi ≤ c | Xj = a)

∂µzijk

−∂P
z(Xi ≤ c | Xj = b)

∂µzijk

(14)

The gradient of each conditional distribution is

∂P z(Xi = xi | Xj = a)

∂µzijk
=

∂P z(Xi=xi,Xj=a)
∂µz

ijk
P z(Xj = a)

P z(Xj = a)2

−
P z(Xi = xi, Xj = a)

∂P z(Xj=a)
∂µz

ijk

P z(Xj = a)2
,

(15)

where the gradient of each marginal distribution over a set
of variables Q can be computed using equation 12 as

∂P z(XQ = xQ)

∂µzijk
=

∑
x′∈domain(X)
s.t.x′Q=xQ

∂P z(X = x′)

∂µzijk (16)

3.1.2 Parameter Learning Algorithm

We use these gradients to optimize the penalized loglike-
lihood over the tree BN distribution (Equation (11)) using
the L-BFGS-B algorithm. We describe the procedure to use
the monotonic influences as constraints for the penalized
loglikelihoods in Algorithm 1. Here, we iteratively increase
the value of λ value until the penalty term is 0. We use a
parameter tmax to limit the number of such iterations.

Algorithm 1 can be used to learn the parameters of the
leaf distributions of Cutset Networks. Specifically, this can
be done by setting Dz to the set of datapoints x such that
l(x) = z and Cz to the subset of C such that for each
Xj

M+
≺ Xi ∈ Cz and each Xj

M−
≺ Xi ∈ Cz , both i and j

are in the scope Vz of the leaf. Algorithm 2 describes the
procedure to learn leaf distributions of a cutset network
using monotonic influences. It selects the data points Dz
and constraints Cz that are applicable to each leaf z us-
ing the procedures SelectDatapointsByPath and SelectInflu-
encesByScope before performing the optimization over the
parameters which are specific to that leaf.

3.2 VARIABLE SELECTION HEURISTIC

A limitation of the above parameter learning approach is that
it can only use the monotonic influences over variables that
are present in the scope of leaf nodes. As a result, knowl-
edge about the variables in the internal nodes of the OR tree
cannot be incorporated. To address this issue, we propose
a variable selection heuristic to incorporate monotonic in-
fluences in the OR-tree structure. At internal node n, the
heuristic score for variable Xm ∈ Vn is given as

L(M′nm,D′n)
|D′n|

− log(|D′n|)
∑

Xi,Xj∈V 2
m

ζi,j(M′nm, Cn)

where D′n is the set of data points at node n,M′nm is a
cutset network of depth 1, rooted at Xm, and ζi,j(M′nm)
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Algorithm 1: FitParameters
input :Parent map for a Tree BN Pa : X 7→ X ,

Scope of the Chow-Liu Tree V ,
Data D,
Set of Monotonic Influences C,
Maximum number of tries tmax

output :Parameters for Tree BN θ
1 initialize: µ = argmax

µ
L(µ,Pa,D), t = 1

2 . start with maximum likelihood solution
3 λ1 = 1
4 while

∑
Xi,Xj∈V 2 ζi,j(µ,C) 6= 0 and t ≤ tmax do

5 . while constraints are not satisfied
6 µ =

argmax
µ

(L(µ, pa,D)−λt
∑
i,j ζi,j(µ, pa, C))

7 λt+1 = λt × 10 . increase penalty weight
8 t = t+ 1

9 end
10 θijk = S(µij)k, ∀i, j, k . map into probability

space
11 return θ′

is the penalty function (Equation 10) defined over the cutset
network distribution and the subset of qualitative influences
Cn which are applicable to scope Vn. Note that this score is
the same as the penalized loglikelihood objective function
from Equation (11) applied to a cutset network of depth 1
and setting the penalty weight λt to |D′n| log(|D′n|). Al-
gorithm 3 describes the procedure to compute this variable
selection heuristic score for a variable Xm.

3.2.1 Structure Learning Algorithm

The knowledge-based parameter learning and variable se-
lection heuristics described above can be integrated into a
generalized framework for learning the structure and the
parameters of a cutset network using qualitative influences.
Algorithm 4 describes the KICN algorithm which learns a
cutset network recursively like LearnCNet but uses Algo-
rithm 1 to learn leaf parameters and uses Algorithm 3 for
the variable selection heuristic.

4 EMPIRICAL EVALUATION

We aim to answer the following questions explicitly:

(Q1) Are monotonicities useful in learning cutset networks
from noisy and sparse data?

(Q2) Does KICN improve the accuracy of learned models?

(Q3) Does KICN learn an interpretable, explainable yet ac-
curate probabilistic model in high-stakes, clinical set-
tings?

Algorithm 2: FitLeaves
input :Cutset NetworkM = (O, T ),

Data D,
Set of Monotonic Influences C,
Maximum number of tries tmax

output :Cutset Network with updated leaf
parametersM′

1 initialize:M′ =M
2 for z in 1, . . . , |T | do
3 Lz = GetPathToLeaf(O, z)
4 Dz = SelectDatapointsByPath(D, Lz)
5 Vz = GetScope(O, z)
6 Cz = SelectInfluencesByScope(C, Vz)
7 Paz = GetParentMap(Tz)
8 θz = FitParameters(Paz, Vz,Dz, Cz, tmax)
9 replace T ′z ∈M′ with (Paz, θz)

10 end
11 return θ

Algorithm 3: ScoreWithKnowledge
input :Variable Xm,

Scope V ,
Data D,
Set of Monotonic Influences C,
Maximum number of tries tmax

output :Heuristic score for variable Xm

1 O = OR-tree of depth 1 defined over V , rooted at
Xm

2 T = Chow-Liu Trees at each leaf of O
3 Minit = (O, T )
4 M = FitLeaves(Minit,Dz, Cz, tmax)

5 MeanLL = 1
|D|L(M,D)

6 PenaltyTerm =
∑
i,j∈V 2 ζi,j(M, C)

7 Score = MeanLL− log(|D|) · PenaltyTerm
8 return Score

To answer these questions, we compared the networks
learned using KICN with networks learned using LearnCNet.

We used two types of data sets for our experiments – 15
standard data sets to study the properties of KICN and 4 data
sets from high-stakes medical domains to understand the
interpretability and explainability of the models.

Benchmark data sets: We used two types of benchmark
data sets – UCI repository [Dua and Graff, 2017] and classic
Bayes net (BN) data sets. For UCI data sets, we considered
the Computer Hardware (cpu), Breast Cancer (Ljubljana),
Haberman’s Survival (haberman), Auto MPG (auto), Car
Evaluation (car), Yeast (yeast), Wine quality (redwine and
whitewine), Abalone (abalone) Heart disease (cleveland)
and Pima Indians Diabetes (diabetes) data sets. Wherever
discretization ranges were not available, we categorized
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Algorithm 4: KICN

input :Data D,
Scope V ,
Set of Monotonic Influences C,
Maximum number of tries tmax

output :Cutset Network with updated leaf
parametersM′

1 if Termination condition is satisfied then
2 Pa = Structure of Tree BN using Chow-Liu

algorithm
3 θ = FitParameters(Pa, V,D, C, tmax)
4 T = (Pa, θ)
5 return T
6 end
7 Select a variable Xm as

argmax
Xm∈V

ScoreWithKnowledge(Xm, V,D, C, tmax)

8 Child = List, W = List
9 for i in |domain(Xm)| do

10 Dz = {x : x ∈ D, xm = i}
11 Wi =

Dz

D
12 Vz = V \Xm

13 Cz = SelectInfluencesByScope(C, Vz)
14 Childi = KICN(Di, Vi, Ci, tmax)

15 end
16 O = (Child, W)
17 return O

each non-boolean variable into 3 categories and split each
data set into a 50:50 train-test split. Of these, Haberman’s
Survival, Heart disease, and Pima Indians Diabetes data sets
had monotonic influences available in the literature [Al-
tendorf et al., 2005, Kokel et al., 2020]. For all the other
data sets, we employed the use of the Qualitative Knowl-
edge Extraction (QuaKE) algorithm [Karanam et al., 2021]
to generate monotonic influences. Since the QuaKE algo-
rithm can work with any probabilistic model, we used cutset
networks to infer the monotonic constraints.

Our key hypothesis is that these domain constraints are
more useful in data-scarce and noisy domains. While 50:50
train-test split takes care of sparsity, we induced noise in the
training data by replacing 30% of the data points for each
positive monotonic influence Xj

M+
≺ Xi with Xi = Ri −

bXj
Ri

Rj
c where Ri and Rj are the max values of Xi and Xj .

Similarly, for each negative monotonic influence, we use
Xj

M−
≺ Xi, Xi = bXj

Ri

Rj
c. The noisy examples computed

using the above formulas encode the reverse monotonic
influences in C.

Our second type of benchmark data sets come from the
BN community. We used Earthquake [Korb and Nicholson,
2010], Asia [Lauritzen, 1988], Survey [Scutari and Denis,
2014] and Sachs [Sachs et al., 2005] BNs. We sampled

Data set LearnCNet KICN (P) KICN

cpu -509.67 -490.98 -468.76
ljubljana -1,059.62 -1,053.26 -1,026.08
cleveland -1,498.21 -1,486.55 -1,475.27
haberman -670.85 -668.82 -643.76
diabetes -2,121.14 -2,084.99 -2,078.09
auto -1,239.30 -1,233.32 -1,230.08
yeast -6,040.67 -5,927.33 -5,864.03
car -7,518.63 -7,501.16 -7,485.55
redwine -5,769.67 -5,722.72 -5,659.97
whitewine -15,054.33 -15,017.73 -14,985.78
abalone -13,461.99 -13,340.42 -12,992.09

sachs -1,025.38 -1,015.24 -1,015.92
asia -411.62 -397.13 -389.92
earthquake -124.65 -121.25 -116.94
survey -451.02 -450.04 -449.93

ppd -717.13 -711.90 -710.02
adni -907.67 -901.85 -867.09
numom2b-a -14,102.51 -14,102.81 -14,068.81
numom2b-b -10,535.51 -10,515.25 -10,448.37

Table 1: Test loglikelihood scores for cutset networks fit on
UCI data sets with 30% noise (rows 1–11), data sampled
from Bayesian Networks (rows 12–15), and data from medi-
cal domains (rows 16–19) using LearnCNet, KICN with only
parameter learning (KICN(P)) and KICN with both structure
and parameter learning. The scores are averaged over 10
bootstrap samples.

100 examples (for sparsity) for generating both training
and testing data from the BNs. We added 30% noise to the
sampled training data using the same formula as above. We
computed the monotonicities using the QuaKE algorithm.

High-stakes medical-domains: To understand the ad-
vantage of cutset networks over other deeper models in
issues of interpretability, we used data from 3 studies,
namely, Post-Partum Depression Survey (PPD Natarajan
et al. [2017]), Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI), and Nulliparous Pregnancy Outcomes Study:
Monitoring Mothers-to-Be (nuMoM2b Haas et al. [2015]).

While we selected subsets of variables based on prior work
on the PPD and ADNI domains, we considered two sub-
cohorts of the nuMoM2b data, focusing on risk factors
for Gestational Diabetes [Pagel et al., 2022]. The first sub-
cohort (nuMoM2b-a) had 7 variables, namely, Body Mass
Index (BMI), exercise in Metabolic Equivalent of Task units
(METs), Age at first visit (Age), family history of diabetes
(Hist), Polycystic Ovary Syndrome (PCOS), high Blood
Pressure (HiBP), and Gestational Diabetes Mellitus (GDM).
After excluding participants that had missing data for any of
these variables, we had data from 6,164 in this sub-cohort.
We obtained the following set of qualitative influences from

1386



Data set LearnCNet KICN (P) KICN

sachs 0.0708 0.0685 0.0663
asia 0.1923 0.1766 0.1696
earthquake 0.1391 0.1296 0.1221
survey 0.0181 0.0185 0.0165

cleveland 0.2746 0.2655 0.2477
haberman 0.2121 0.2065 0.1953
diabetes 0.2298 0.2164 0.2114

ppd 0.2043 0.1974 0.1963
adni 0.1825 0.1713 0.1636
numom2b-a 0.0397 0.0390 0.0383
numom2b-b 0.0515 0.0490 0.0445

Table 2: Mean squared error (MSE) for conditional proba-
bility queries for cutset networks fit on data sampled from
BNs, on UCI data sets with prior knowledge and on data
from clinical studies using LearnCNet, KICN with only pa-
rameter learning (KICN(P)) and KICN with both structure
and parameter learning. The MSE values are averaged over
10 bootstrap samples.

an Obstetrics and Gynecology expert, Dr. David Haas:

{BMIM+
≺ GDM, METsM−≺ GDM, AgeM+

≺ GDM,

HistM+
≺ GDM, PCOSM+

≺ GDM, HiBPM+
≺ GDM}

The second sub-cohort (nuMoM2b-b) had the Polygenic
Risk Score (PRS) as an additional variable. Further, since
PRS is applicable only to non-Hispanic white participants
with European ancestry, we excluded all the other partici-
pants. As a result, we had data from 3,657 participants in
this sub-cohort. We categorized the non-boolean variables,
namely, BMI, METs, Age, and PRS into 4 categories each.
Apart from the influences listed above, we used the addi-
tional influence that PRSM+

≺ GDM.

Methods We compared the following versions of KICN2 –

(1) Parameter learning using knowledge (KICN(P)).

(2) Parameter and structure learning using knowledge.

For version (1), the structure is pre-learned using LearnCNet
and only the leaf parameters are updated. On the other hand
version (2) involves learning the structure and parameters of
the cutset network. For both modes, we set the number of
tries tmax to 10 and we set the margin parameter ε to 0.001.

Metrics We used two metrics in our evaluation: the log-
likelihood of the cutset network on the test data (test loglike-
lihood), and the Mean Squared Error (MSE) for conditional
probability queries.

2Code and supplementary material available at
github.com/saurabhmathur96/KIL-CN

Edge count Parameter count

Data set LearnCNet KICN LearnCNet KICN

ppd 113.8 114.1 205.7 198.8
adni 121.9 57.8 343.3 246.4
numom2b-a 179.4 108.6 422.2 366.3
numom2b-b 416.5 220.9 1,069.9 905.7

Table 3: The number of edges and the number of free pa-
rameters for cutset networks fit using LearnCNet and KICN
on medical data sets, averaged over 10 bootstrap samples.

Results

(Q1) Table 1 presents the log-likelihood on the test set for
standard data sets (rows 1–15). The training data for
each of these domains had 30% noise. Overall, using
domain knowledge improves generative performance,
and using knowledge for structure learning results
in better performance than using knowledge only for
parameter learning. This allows us to answer Q1 affir-
matively.

(Q2) Table 2 presents the mean squared error for condi-
tional probability queries for the BN data sets (rows
1–4) and the UCI data sets with prior knowledge (rows
5–7). For the BN datasets, we compared queries of
the form P (Xi = xi | Xj = xj) for each positive
monotonic influenceXj

M+
≺ Xi or negative monotonic

influence Xj
M−
≺ Xi to the ground truth probabilities

from the BN. For the UCI data sets, we used the con-
ditional probability of the target given all the risk
factors (P (Xtarget | X \Xtarget)) and compared it to
the values of the target in the test data set. The use of
monotonic influence results in a lower mean squared
error and hence more accurate answers to the queries.
Further, as with the log-likehood scores, knowledge-
based structure learning methods perform better than
those using only parameter learning. Thus, we can
answer Q2 affirmatively.

(Q3) The last 4 rows of table 1 show the test log-likelihood
for the PPD, ADNI, and the two nuMoM2b data
sets. For all the data sets, KICN improves the test
log-likelihood. The last five rows of table 2 show the
mean squared error for conditional probability queries.
As with the UCI data sets with prior knowledge, we
compared the probability P (Xtarget | X \Xtarget) to
the values of the target variable in the test set. The
models learned using KICN give more accurate an-
swers for the conditional probability query. Finally,
table 3 compares the edge count and free parameter
count for the structures learned using LearnCNet and
KICN. The structures learned using KICN are more
concise than the ones learned using LearnCNet. Thus,
Q3 is answered affirmatively.
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Finally, recall that as shown in Figure 1, the learned model is
not only interpretable3 but follows published research [Pagel
et al., 2022]. It should be mentioned that while KICN uses
the monotonic constraints on both PRS and BMI, it correctly
infers that PRS is more important than BMI. Moreover, for
the low values of PRS, BMI is chosen indicating that while
the person might have a low propensity risk of gestational
diabetes, BMI can have a significant impact. Similarly, for
high-risk scores, the history of gestational diabetes becomes
more important than BMI. These not only reflect and vali-
date current medical knowledge but enhances it by identify-
ing specific combinations that can allow for corresponding
treatment plans.

Discussion: One of the limitations of KICN is that the
knowledge in the form of monotonic influences must be
valid regardless of the context. That is, if an influence
Xi

M+
≺ Xj is given, we assume that there does not exist

any context {XQ = xQ} where XQ ⊆ (X \ {Xi, Xj})
and xQ ∈ domain(XQ) such that Xi

M+
≺ Xj | Xq = xq is

false. To account for this limitation, we used influences that
were either independent of other variables or had a positive
synergistic effect with them.

5 CONCLUSION

We considered the problem of incorporating rich domain
knowledge in the form of qualitative constraints when learn-
ing an interpretable, tractable probabilistic model, namely,
cutset networks. We developed KICN to leverage qualitative
constraints to learn the structure and parameters of cutset
networks. Our experiments on benchmark data sets and
medical data sets demonstrated the efficacy of the proposed
approach. Extending this work to deeper tractable models
is an interesting future direction. Incorporating different
types of domain knowledge including synergistic informa-
tion, preferences over conditional distributions, privileged
information, and imbalance tradeoffs is another direction.
Finally, generating global explanations using the structure of
these networks, and instance-level explanations constructed
from the differences in the reasoning paths of the different
examples can allow clinicians to develop treatment plans
that mitigate adverse pregnancy outcomes.
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