
TCE: A Test-Based Approach to Measuring Calibration Error
(Supplementary Material)

Takuo Matsubara1,2 Niek Tax3 Richard Mudd3 Ido Guy3

1The Alan Turing Institute
2Newcastle University
3Meta Platforms, Inc.

This supplement contains all the additional results referred to in the main text. Appendix A contains the proof that the
optimisation criterion of eq. (8) is indeed minimised using PAVA. Appendix B shows an example of bins obtained using
PAVA-BC that caused mild violation of the monotonic constraint of the empirical probabilities {P̂b}Bb=1. Finally, additional
experimental results are presented in Appendix C.

A OPTIMAL BINS BASED ON PAVA

The optimal bins defined by Definition 3 can be exactly computed under the error function D specified by eq. (9) which
corresponds to the variance of each Dy

b . The optimal bins result in minimisation of a weighted average of the variance
of each Dy

b over all b, where the weights are proportional to the size of each bin. The following proposition shows that
Algorithm 3 with PAVA-BC replaced by PAVA generates the optimal bins under the error function D. In what follows, we
assume a standard setting where the solution of eq. (8) is at least not a set of only one single bin, i.e., {∆b}1b=1 = {[0, 1]}.

Proposition 1. The minimum of eq. (8) in Definition 3 under the error function D in eq. (9) is attained at bins computed by
Algorithm 3 with PAVA-BC replaced by PAVA.

Proof. First, we show that the optimasation problem of eq. (8) in Definition 3 under the loss function D in eq. (9) is
equivalent to the monotonic regression problem under the squared error. Recall that, given a choice of bins {∆b}Bb=1, each
label subset Dy

b is defined by Dy
b := {yi ∈ Dy | Pθ(xi) ∈ ∆b}. The input of Algorithm 3 is a set of labels Dy = {yi}Ni=1

ordered by in ascending order of {Pθ(xi)}Ni=1. This means that each label subset Dy
b is a set of consecutive elements in the

ordered set {yi}Ni=1. Therefore, there exist corresponding indices nb and nb+1 s.t. each label subset Dy
b can expressed by

Dy
b = {yi ∈ Dy | Pθ(xi) ∈ ∆b} = {yi ∈ Dy | i s.t. nb ≤ i < nb+1}.

Accordingly, with the ordered labels Dy , each empirical probability P̂b in Dy
b can be expressed by

P̂b =
1

Nb

∑
y∈Dy

b

y =
1

nb+1 − nb

nb+1−1∑
j=nb

yj .

Define a set of scalars {gi}Ni=1 whose element gi ∈ [0, 1] corresponds to the empirical probability P̂b of the bin index b if
nb ≤ i < nb+1. Namely,

gi := P̂b =
1

nb+1 − nb

nb+1−1∑
j=nb

yj for each i s.t. nb ≤ i < nb+1. (1)

Under these notations, the optimisation criterion in eq. (8) can be rewritten as

B∑
b=1

Wb ×D(Db, P̂b) =
1

N

B∑
b=1

∑
y∈Db

(
y − P̂b

)2

=
1

N

B∑
b=1

nb+1−1∑
i=nb

(
yi − P̂b

)2

=
1

N

N∑
i=1

(yi − gi)
2. (2)
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This formulation translates a problem of choosing bins {∆b}Bb=1 into a problem of finding a monotonically increasing
sequence {gi}Ni=1 that is determined by the choice of indices {nb}Bb=1, so that eq. (11) is minimised. Therefore the
optimasation problem of eq. (8) in Definition 3 under the loss function D in eq. (9) is equivalent to the monotonic regression
problem under the squared error whose solution sequence {gi}Ni=1 is restriced to a form of eq. (10).

Next, consider a standard monotonic regression problem under the square error
∑N

i=1(yi − ŷi)
2 for the ordered set {yi}Ni=1.

PAVA finds a monotonically increasing sequence {ŷi}Ni=1 that minimises the square error. The solution sequence {ŷi}Ni=1 by
PAVA is given in a form of eq. (10); see e.g. [de Leeuw et al., 2009, Henzi et al., 2022]. This means that there exists a set of
indices {n∗

b}Bb=1 s.t. the solution sequence {ŷi}Ni=1 by PAVA is expressed as

ŷi =
1

n∗
b+1 − n∗

b

n∗
b+1∑

j=n∗
b

yj for each i s.t. n∗
b ≤ i < n∗

b+1

and the sequence {ŷi}Ni=1 satisfies the monotonic constraint ŷ1 ≤ · · · ≤ ŷN holds. We can obtain such a solution sequence
{ŷi}Ni=1 by applying any standard implementation of PAVA.

An output of most implementations of PAVA is the solution sequence {ŷi}Ni=1 rather than the associated indices {n∗
b}Bb=1.

However, the indices {n∗
b}Bb=1 can be easily recovered from a given solution sequence {ŷi}Ni=1 of PAVA by simply finding

all indeces i s.t. ŷi ̸= ŷi+1. Finally, we consider constructing bins {∆b}Bb=1 based on the recovered indices {n∗
b}Bb=1. Recall

that the set of labels Dy = {yi}Ni=1 are ordered in ascending order of {Pθ(xi)}Ni=1. If we construct each bin ∆b by

∆b :=

[
Pθ(xn∗

b−1) + Pθ(xn∗
b
)

2
,
Pθ(xn∗

b+1−1) + Pθ(xn∗
b+1

)

2

]
,

it is sufficient to generate each label subset Dy
b that corresponds to

Dy
b = {yi ∈ Dy | Pθ(xi) ∈ ∆b} = {yi ∈ Dy | i s.t. n∗

b ≤ i < n∗
b+1}.

Then the optimisation criterion in eq. (8), which is translated to the error of the monotonic regression problem of PAVA, is
minimised by the choice of bins produced in this procedure. Observing that Algorithm 3 with PAVA-BC replaced by PAVA
performs this procedure concludes the proof.

B MILD VIOLATION OF MONOTONICITY BY PAVA-BC

A monotonic regression algorithm finds a monotonically increasing sequence ŷ1 ≤ · · · ≤ ŷN that minimises some error
D({ŷi}Ni=1, {yi}Ni=1) for a given ordered set {yi}Ni=1. PAVA is one of the most common monotonic regression algorithms
that uses the square error

∑N
i=1(ŷi − yi)

2. For some partition A of indices I = {1, . . . , N} whose element A ∈ A is a set
of consequentive indices in I , PAVA produces a solution sequence s.t. each element ŷi is given by ŷi = (1/|A|)

∑
i∈A yi

for A in which i ∈ A. We refer to each element A in the partition A of indices I as block. PAVA-BC produces a solution
sequence that approximates the solution sequence by PAVA under the contraints of the minimum and maximum size of each
block. For some partition A′ of indices I , each element ŷi of the solution sequence is given by ŷi = (1/|A′|)

∑
i∈A′ yi for

A′ in which i ∈ A′ in the same manner as PAVA. PAVA-BC meets the minimum and maximum size constraints of each
block A′ ∈ A′ at the cost of the possibility of mild violation of the monotonic constraint. It depends on the minimum and
maximum size constraints, data, and models whether violation of the monotonic constraint occurs by PAVA-BC. Figure 3
shows an example where bins based on PAVA-BC did not violate the monotonicity of the empirical probabilities {P̂b}Bb=1.
Figure 3 was computed using a random forest model trained on the satimage dataset used in Section 4.2, and corresponds
to Figure 2 presented in Section 3. The total estimation error in eq. (8) and an average of the estimation error within each
bin in eq. (9) for each set of the bins in Figure 3 were summerised in Table 1 presented in Section 3. Figure 4 shows an
example where bins based on PAVA-BC violated the monotonic constraint of the empirical probabilities {P̂b}Bb=1. Figure 4
was computed using a random forest model trained on the coil_2000 dataset used in Section 4.2. The total estimation
error in eq. (8) for each set of the bins in Figure 4 was 0.0509, 0.0517, and 0.0521 for PAVA, PAVA-BC, binning based on
10-quantiles, respectively. An average of the estimation error within each bin in eq. (9) for each set of the bins in Figure 3
was 0.0834, 0.0627, and 0.0520 for PAVA, PAVA-BC, binning based on 10-quantiles, respectively.



Figure 3: Comparison of bins based on three different approaches for a random forest model on the satimage dataset: (top)
PAVA, (middle) PAVA-BC, (bottom) binning based on 10-quantiles. The dotted line in the left and right panels represents
the boundary of each bin. The grey bar in the left panel repsents the size of each bin. The red line in the right panel repsents
the empirical probability of each bin.

Figure 4: Comparison of bins based on three different approaches for a random forest model on the satimage dataset: (top)
PAVA, (middle) PAVA-BC, (bottom) binning based on 10-quantiles. Each xaxis is restricted to a range [0.0, 0.1] as the
majority of bins were contained in the range in this example. The dotted line in the left and right panels represents the
boundary of each bin. The grey bar in the left panel repsents the size of each bin. The red line in the right panel repsents the
empirical probability of each bin. A random forest model trained on the coil_2000 dataset was used.



C ADDITIONAL EXPERIMENTS

We present additional experiments in each section that complement the experiments illustrated in the main text. We use the
same settings as the main text for the minimum and maximum size for bins based on PAVA-BC as well as the bin number B
for equi-spaced and quantile-based bins.

C.1 SIMULATION STUDY OF TCE

We perform detailed simulation studies of TCE in the same simplified setting as Section 4.1. We demonstarate sensitivity of
TCE to its hyperparameters, an impact of different dataset size and prevalence, and sensitivity to a small purtabation to
model predictions. In all experiments, we generated training and test data from the Gaussian discriminant analysis in Section
4.1, each with the prevalence Ptraining(y) and Ptest(y), and compute TCE of a logistic model fitted to the training data. In all
experiments except ones on an impact of different dataset size and prevalence, we set the training data size to 14000 and set
the test data size to 6000. We then examine two cases where the model is calibated and miscalibrated synthetically, setting
Ptraining(y) = 0.5 and Ptest(y) = 0.5 for the first case and setting Ptraining(y) = 0.5 and Ptest(y) = 0.4 for the second case.
In summary, we present the following experimental analyses:

• Sensitivity to the minimum bin size Nmin in PAVA-BC from Nmin = 1 to Nmin = 3000;

• Sensitivity to the maximum bin size Nmin in PAVA-BC from Nmax = 6 to Nmax = 6000;

• Sensitivity to a pair of (Nmin, Nmax) in PAVA-BC chosen so that each binsize fall into selected ranges;

• Sensitivity to a small purtabation of predictions by a logit-normal noise with scale σ from σ = 0.0 to σ = 1.0;

• Sensitivity to a choice of significance level α in the Binomial test from α = 0.0001 to α = 0.1;

• Comparison of TCE by different choices of test, binomial test and t-test;

• Comparison of TCE by different total sizes N of test dataset from N = 30 to N = 60000;

• Comparison of TCE by different prevalences P of dataset from P = 0.5 to P = 0.02.

Tables 6 to 13 presents the result of each experiment above in order. In each table, TCE(P) denotes TCE based on PAVA-BC,
TCE(Q) denotes TCE based on quantile-binning, and TCE(V) denotes TCE based on PAVA. For reference, we include
values of ECE, ACE, MCE, and MCE(Q), where MCE(Q) denotes MCE based on quantile-binning. Observations from each
result in are summarised as follows.

• Table 6: The performance of TCE(P) to evidence the well-calibrated model was consistently reasonable for any
minimum binsize constaint between Nmax = 1 and Nmax = 600, while there was a breakdown point between
Nmin = 600 and Nmin = 3000 where TCE(P) was no longer able to do so. This is likely because the number of bins
produced under the contraint Nmin = 3000 for the total datasize 6000 was 2 at maximum, which was too small to
estimate the empirical probabilities {P̂b}Bb=1 accurately.

• Table 7: The performance of TCE(P) to evidence the miscalibrated model was consistently reasonable for any maximum
binsize constaint between Nmax = 300 and Nmax = 6000, while there was a breakdown point between Nmin = 60 and
Nmin = 300 where TCE(P) was no longer able to do so. This is likely because the number of bins produced under
the contraint Nmax = 60 for the total datasize 6000 was 100 at minimum, which is too large to estimate the empirical
probabilities {P̂b}Bb=1 accurately.

• Table 8: The performance of TCE(P) to evidence both the well-calibrated and miscalibrated models was arguably the
most reasonable when (Nmin, Nmax) was chosen so that the number of bins produced falls into the range [5, 20]. This
suggests a huristic to use such (Nmin, Nmax) for other experiments.

• Table 9: At each model prediction Pθ(x), we sample a new prediction from a logit-normal distribution centred at Pθ(x)
with scale σ to generate a perturbed prediction by a small noise. All calibration error metrics were shown to have
similar sensitivities to the noise. The scale between σ = 0.10 and σ = 0.50 was the breakdown point where each
metric started to produce an unreasonable score for the well-calibrated model.

• Table 10: The performance of TCE(P) to evidence both the well-calibrated and miscalibrated models was consistently
reasonable for any significant level between α = 0.001 and α = 0.1, while there was a breakdown point between
α = 0.1 and α = 0.5 where TCE(P) was no longer able to do so for the well-calibrated model.



• Table 11: TCE based on the Binomial test outperformed one based on the t-test in the majority of the settings. It is
possible that the Binomial test produces more accurate outcomes than the t-test, given that it is an exact test whose test
statistics does not involve any apporoximation.

• Table 12: The performance of TCE(P) to evidence both the well-calibrated and miscalibrated models was consistently
reasonable for any dataset size between Ntest = 3000 and Ntest = 60000, while there was a breakdown point between
Ntest = 600 and Ntest = 3000 where TCE(P) was no longer able to do so for the well-calibrated model. This is likely
because the dataset size Ntest = 600 was not big enough to estimate the empirical probabilities {P̂b}Bb=1 accurately.
This result may be improved by using different settings of the minimnum and maximum binsize constaints.

• Table 13: The performance of TCE(P) on both the well-calibrated and miscalibrated models was reasonable for any
prevalence. While there was a fluctuation in values of TCE(P) for different values of prevalence, TCE(P) overall
produced better values than TCE(Q and TCE(V).

Table 6: Sensitivity to the minimum binsize Nmin = 1, 6, 30, 300, 600, 3000 in PAVA-BC. For comparison purpose, the
number of bins B of quantile-binning and equispaced-binning was varied as B = 1000, 500, 100, 50, 10, 5, 1 along with
Nmin. Note that TCE(V) is a constant across all the row because PAVA does not involve any binsize constraint.

Test Prevalence Min Binsize TCE(P) TCE(Q) TCE(V) ECE ACE MCE MCE(Q)

50%
(Calibrated)

1 3.4500 5.1000 3.4500 0.1143 0.1651 0.8767 0.6392
6 3.3833 4.2000 3.4500 0.0839 0.1142 0.8767 0.5016

30 2.3500 4.3000 3.4500 0.0382 0.0457 0.8767 0.1705
60 2.6333 3.5667 3.4500 0.0271 0.0370 0.2533 0.1189
300 7.2833 10.8833 3.4500 0.0138 0.0150 0.1020 0.0528
600 13.5667 38.7500 3.4500 0.0116 0.0086 0.1020 0.0236

3000 92.2000 92.2000 3.4500 0.0021 0.0021 0.0021 0.0021

40%
(Miscalibrated)

1 88.0667 6.6667 88.0667 0.1417 0.1847 0.8767 0.6111
6 88.0667 8.7000 88.0667 0.1179 0.1389 0.8767 0.4811

30 88.3333 32.2833 88.0667 0.0993 0.0992 0.8767 0.2264
60 87.8667 56.7667 88.0667 0.0971 0.0964 0.2426 0.1827
300 96.1000 96.4667 88.0667 0.0963 0.0951 0.1466 0.1314
600 96.6000 96.7833 88.0667 0.0963 0.0951 0.1099 0.1092

3000 93.9500 93.9500 88.0667 0.0951 0.0951 0.0951 0.0951



Table 7: Sensitivity to the maximum binsize Nmax = 6, 30, 300, 600, 3000, 6000 in PAVA-BC. For comparison purpose, the
number of bins B of quantile-binning and equispaced-binning was varied as B = 1000, 500, 100, 50, 10, 5, 1 along with
Nmax. Note that TCE(V) is a constant across all the row because PAVA does not involve any binsize constraint.

Test Prevalence Max Binsize TCE(P) TCE(Q) TCE(V) ECE ACE MCE MCE(Q)

50%
(Calibrated)

6 5.8500 5.1000 3.4500 0.1143 0.1651 0.8767 0.6392
30 3.0000 4.2000 3.4500 0.0839 0.1142 0.8767 0.5016
60 2.3667 4.3000 3.4500 0.0382 0.0457 0.8767 0.1705
300 3.7667 3.5667 3.4500 0.0271 0.0370 0.2533 0.1189
600 3.3833 10.8833 3.4500 0.0138 0.0150 0.1020 0.0528

3000 3.4500 38.7500 3.4500 0.0116 0.0086 0.1020 0.0236
6000 3.4500 92.2000 3.4500 0.0021 0.0021 0.0021 0.0021

40%
(Miscalibrated)

6 5.5000 6.6667 88.0667 0.1417 0.1847 0.8767 0.6111
30 9.1000 8.7000 88.0667 0.1179 0.1389 0.8767 0.4811
60 14.3833 32.2833 88.0667 0.0993 0.0992 0.8767 0.2264
300 79.6667 56.7667 88.0667 0.0971 0.0964 0.2426 0.1827
600 85.6500 96.4667 88.0667 0.0963 0.0951 0.1466 0.1314

3000 88.0667 96.7833 88.0667 0.0963 0.0951 0.1099 0.1092
6000 88.0667 93.9500 88.0667 0.0951 0.0951 0.0951 0.0951

Table 8: Sensitivity to the pairs (Nmax, Nmin) in PAVA-BC selected so that the number of bins produced falls into ranges
[250, 1000], [50, 200], [25, 100], [10, 20], [3, 10]. For comparison purpose, the number of bins B of quantile-binning and
equispaced-binning was varied as B = 1000, 500, 100, 50, 10, 5, 1 along with (Nmax, Nmin). Note that TCE(V) is a constant
across all the row because PAVA does not involve any binsize constraint.

Test Prevalence Binsize Range TCE(P) TCE(Q) TCE(V) ECE ACE MCE MCE(Q)

50%
(Calibrated)

[250, 1000] 3.8000 4.2000 3.4500 0.0839 0.1142 0.8767 0.5016
[50, 200] 1.8333 4.3000 3.4500 0.0382 0.0457 0.8767 0.1705
[25, 100] 0.2833 3.5667 3.4500 0.0271 0.0370 0.2533 0.1189

[5, 20] 7.2833 10.8833 3.4500 0.0138 0.0150 0.1020 0.0528
[3, 10] 13.5667 38.7500 3.4500 0.0116 0.0086 0.1020 0.0236

40%
(Miscalibrated)

[250, 1000] 7.7333 8.7000 88.0667 0.1179 0.1389 0.8767 0.4811
[50, 200] 45.7667 32.2833 88.0667 0.0993 0.0992 0.8767 0.2264
[25, 100] 66.1833 56.7667 88.0667 0.0971 0.0964 0.2426 0.1827
[10, 20] 96.1000 96.4667 88.0667 0.0963 0.0951 0.1466 0.1314
[3, 10] 96.6000 96.7833 88.0667 0.0963 0.0951 0.1099 0.1092



Table 9: Sensitivity to a small purtabation to model predictions by a logit-normal noise with scale σ =
0.01, 0.05, 0.10, 0.50, 1.00. The maximum and minimum binsize of PAVA-BC were set to 1200 and 300. The number
of bins of quantile-binning and equispaced-binning was set 10.

Test Prevalence Noise Level TCE(P) TCE(Q) TCE(V) ECE ACE MCE MCE(Q)

50%
(Calibrated)

0.00 7.2833 10.8833 3.4500 0.0138 0.0150 0.1020 0.0528
0.01 8.7167 9.6167 4.8000 0.0113 0.0125 0.0923 0.0527
0.05 12.8833 11.9000 7.7667 0.0136 0.0156 0.1198 0.0589
0.10 8.3500 13.0500 3.5500 0.0109 0.0164 0.1143 0.0587
0.50 61.9500 65.0500 56.1000 0.0615 0.0618 0.3601 0.1498
1.00 86.1833 84.1000 88.3833 0.1470 0.1478 0.3364 0.2621

40%
(Miscalibrated)

0.00 96.1000 96.4667 88.0667 0.0963 0.0951 0.1466 0.1314
0.01 96.4000 96.4000 89.6167 0.0962 0.0951 0.1511 0.1332
0.05 94.7667 95.5333 89.1667 0.0962 0.0951 0.1496 0.1420
0.10 93.8500 95.9667 86.5833 0.0967 0.0951 0.1852 0.1412
0.50 86.6667 83.9000 81.2667 0.1071 0.1055 0.2513 0.2203
1.00 90.3167 88.8500 91.2167 0.1713 0.1698 0.4577 0.3648

Table 10: Sensitivity to a choice of significance level α = 0.001, 0.005, 0.01, 0.05, 0.1, 0.5. The maximum and minimum
binsize of PAVA-BC were set to 1200 and 300. The number of bins of quantile-binning and equispaced-binning was set 10.

Test Prevalence Significant Level TCE(P) TCE(Q) TCE(V) ECE ACE MCE MCE(Q)

50%
(Calibrated)

0.001 1.4500 4.6833 0.1833 0.0138 0.0150 0.1020 0.0528
0.005 2.4667 5.5667 1.1333 0.0138 0.0150 0.1020 0.0528
0.010 3.0500 6.2000 1.6500 0.0138 0.0150 0.1020 0.0528
0.050 7.2833 10.8833 3.4500 0.0138 0.0150 0.1020 0.0528
0.100 12.8500 15.2000 6.8667 0.0138 0.0150 0.1020 0.0528
0.500 53.1000 55.3333 46.5667 0.0138 0.0150 0.1020 0.0528

40%
(Miscalibrated)

0.001 77.8000 83.3833 76.1000 0.0963 0.0951 0.1466 0.1314
0.005 86.3000 92.8000 80.0833 0.0963 0.0951 0.1466 0.1314
0.010 90.1833 95.2167 83.1167 0.0963 0.0951 0.1466 0.1314
0.050 96.1000 96.4667 88.0667 0.0963 0.0951 0.1466 0.1314
0.100 97.2167 96.9167 90.1667 0.0963 0.0951 0.1466 0.1314
0.500 99.3000 98.7167 97.7500 0.0963 0.0951 0.1466 0.1314

Table 11: Comparison of TCE based on the Binomial test and the t-test. TCE(Q)-B denotes TCE(Q) based on the Binomial
test and TCE(Q)-T denotes TCE(Q) based on the t-test; the same applies for the other columns. The maximum and minimum
binsize of PAVA-BC and the number of bins of quantile-binning and equispaced-binning were varied as in Table 8.

Test Prevalence Binsize Range TCE(P)-B TCE(P)-T TCE(Q)-B TCE(Q)-T TCE(V)-B TCE(V)-T

50%
(Calibrated)

[250, 1000] 3.8000 33.6667 4.2000 31.9167 3.4500 34.2167
[50, 200] 1.8333 36.0000 4.3000 31.4333 3.4500 34.2167
[25, 100] 0.2833 31.3667 3.5667 40.4333 3.4500 34.2167

[5, 20] 7.2833 37.8000 10.8833 41.8500 3.4500 34.2167
[3, 10] 13.5667 46.5000 38.7500 68.8167 3.4500 34.2167

40%
(Miscalibrated)

[250, 1000] 7.7333 50.2833 8.7000 45.1833 88.0667 97.7333
[50, 200] 45.7667 73.2667 32.2833 71.1667 88.0667 97.7333
[25, 100] 66.1833 96.5333 56.7667 85.3833 88.0667 97.7333

[5, 20] 96.1000 99.2667 96.4667 98.4833 88.0667 97.7333
[3, 10] 96.6000 98.6333 96.7833 98.4833 88.0667 97.7333



Table 12: Comparison of TCE by different total sizes Ntest = 30, 60, 300, 600, 3000, 6000, 30000, 60000 of test dataset. The
training prevalence was Ptraining(y) = 0.5 for all datasets. The maximum and minimum binsize of PAVA-BC were set by
Nmax = Ntest/20 and Nmin = Ntest/5. The number of bins of quantile-binning and equispaced-binning was set 10.

Test Prevalence Data Size TCE(P) TCE(Q) TCE(V) ECE ACE MCE MCE(Q)

50%
(Calibrated)

30 0.0000 0.0000 0.0000 0.2293 0.2631 0.4164 0.5660
60 0.0000 3.3333 0.0000 0.0923 0.2158 0.7148 0.4208
300 5.3333 11.0000 6.3333 0.0774 0.0867 0.1971 0.2057
600 1.0000 4.5000 1.6667 0.0368 0.0445 0.3404 0.1270

3000 8.0667 4.6333 4.7667 0.0190 0.0182 0.1209 0.0304
6000 7.2833 10.8833 3.4500 0.0138 0.0150 0.1020 0.0528

30000 16.1633 31.7167 0.7833 0.0036 0.0061 0.9045 0.0164
60000 19.1483 45.7600 4.4417 0.0035 0.0043 0.0949 0.0100

40%
(Miscalibrated)

30 13.3333 6.6667 36.6667 0.3164 0.3377 0.6569 0.6338
60 0.0000 3.3333 0.0000 0.1072 0.1611 0.7148 0.4208
300 27.3333 37.3333 48.3333 0.1240 0.1368 0.1971 0.2665
600 14.1667 8.0000 26.5000 0.0694 0.0685 0.5824 0.1350

3000 92.2333 91.7667 76.7667 0.0964 0.0958 0.1495 0.1358
6000 96.1000 96.4667 88.0667 0.0963 0.0951 0.1466 0.1314

30000 99.4700 99.2300 97.4433 0.0907 0.0906 0.9045 0.1064
60000 99.7783 99.6600 98.9000 0.0923 0.0923 0.0972 0.1065

Table 13: Comparison of TCE by different prevalences P of training and test dataset. The training data size was 14000 and
the test data size was 6000. The maximum and minimum binsize of PAVA-BC were set to 1200 and 300. The number of
bins of quantile-binning and equispaced-binning was set 10.

Train - Test Prevalence TCE(P) TCE(Q) TCE(V) ECE ACE MCE MCE(Q)

Calibrated

50% - 50% 7.2833 10.8833 3.4500 0.0138 0.0150 0.1020 0.0528
40% - 40% 7.5500 16.2167 8.5667 0.0137 0.0191 0.1632 0.0365
30% - 30% 8.1667 12.8833 2.8167 0.0125 0.0134 0.1042 0.0313
20% - 20% 15.9500 22.2167 15.9167 0.0173 0.0153 0.6238 0.0370
10% - 10% 11.9833 16.7833 15.2333 0.0096 0.0114 0.4361 0.0218

8% - 8% 15.7000 18.5167 23.1500 0.0087 0.0107 0.0700 0.0234
6% - 6% 11.5333 17.5500 13.9833 0.0035 0.0109 0.3064 0.0195
4% - 4% 18.5000 15.6667 20.5833 0.0046 0.0074 0.2240 0.0177
2% - 2% 13.1167 11.5500 20.7667 0.0052 0.0059 0.0052 0.0131

Miscalibrated

50% - 40% 96.1000 96.4667 88.0667 0.0963 0.0951 0.1466 0.1314
40% - 30% 96.5667 96.1833 82.7500 0.0872 0.0869 0.1485 0.1262
30% - 20% 94.9500 94.6667 88.5833 0.0846 0.0846 0.2146 0.1247
20% - 10% 95.8833 95.5833 96.4333 0.0868 0.0868 0.6238 0.1500
10% - 8% 32.3500 26.7000 42.5667 0.0151 0.0173 0.4361 0.0502
8% - 6% 42.3167 38.7833 45.8333 0.0164 0.0186 0.3259 0.0477
6% - 4% 47.0833 39.9500 65.9500 0.0167 0.0188 0.3064 0.0440
4% - 2% 56.5833 42.4333 72.4500 0.0142 0.0142 0.2240 0.0337
2% - 0% 99.9167 96.9000 100.0000 0.0181 0.0181 0.0181 0.0382



C.2 RESULTS ON OTHER UCI DATASETS

Algorithms in Section 4.2 are all trained with the default hyperparameters in the scikit-learn package, except that the
maximum depth in the random forest is set to 10 and the number of hidden layers in the multiple perceptron is set to 1
with 1000 units. For better comparison, we add TCE based on quantile bins, denoted TCE(Q) in each table, to five metrics
presented in the main text. The following Table 14 compares six different calibration error metrics computed for eight UCI
datasets that were not presented in the main text: coil_2000, isolet, letter_img, mammography, optimal_degits, pen_degits,
satimage, spambase [Dua and Graff, 2017, van der Putten and van Someren, 2000-2009, Elter et al., 2007]. The prevalence
of the spambase dataset is well-balanced and that of the rest is imbalanced. The following Figures 5 and 6 shows the visual
representations of TCE, ECE, and ACE—the test-based reliability diagram and the standard reliability diagram—each
for the logistic regression and the gradient boosting algorithm. We selected four datasets, abalone, coil_2000, isolet, and
webpage, to produce the visual representations in Figures 5 and 6.

C.3 RELIABILITY DIAGRAMS OF RESULTS ON IMAGENET1000

The following Figure 7 shows the viaual representations of TCE, ECE, and ACE—the test-based reliability diagram and the
standard reliability diagram—for four different deep learning models presented in the main text, where we omit the model
ResNet50 whose result sufficiently resembles that of ResNet18.
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Table 14: Comparison of six calibration error metrics for five algorithms trained on eight UCI datasets. The same setting of
TCE presented in Section 4 is used. TCE(Q) and MCE(Q) denotes TCE and MCE each based on quantile bins where the
number of bins is set to 10.

Data Algorithm TCE TCE(Q) ECE ACE MCE MCE(Q)

coil_2000

LR 8.6189 11.7408 0.0047 0.0111 0.8558 0.0326
SVM 17.0003 28.9447 0.0071 0.0216 0.4860 0.0381
RF 22.2260 6.1758 0.0027 0.0125 0.2465 0.0439
GB 20.8687 12.6569 0.0052 0.0098 0.3738 0.0259

MLP 98.7445 98.7784 0.0652 0.0578 0.7900 0.1649

isolet

LR 28.8462 27.3932 0.0131 0.0051 0.2183 0.0286
SVM 11.5812 13.2479 0.0064 0.0028 0.1969 0.0194
RF 66.4530 52.5214 0.0524 0.0507 0.3635 0.2137
GB 25.2991 16.6667 0.0198 0.0174 0.4463 0.1123

MLP 9.8291 17.5641 0.0049 0.0031 0.4173 0.0232

letter_img

LR 10.5167 12.0500 0.0025 0.0008 0.1617 0.0042
SVM 11.8667 14.8167 0.0019 0.0017 0.6257 0.0146
RF 26.5000 20.2500 0.0097 0.0033 0.5179 0.0131
GB 25.9500 18.7333 0.0067 0.0029 0.3653 0.0109

MLP 19.9833 9.9833 0.0010 0.0001 0.4550 0.0007

mammography

LR 25.0671 26.7660 0.0027 0.0065 0.3594 0.0208
SVM 20.2683 20.1490 0.0067 0.0088 0.6741 0.0353
RF 19.4039 9.2996 0.0047 0.0016 0.4465 0.0043
GB 14.5156 15.4098 0.0061 0.0034 0.5355 0.0124

MLP 20.5663 26.9747 0.0042 0.0027 0.4351 0.0113

optical_digits

LR 11.6251 27.1649 0.0098 0.0037 0.2251 0.0135
SVM 4.8043 10.6762 0.0042 0.0028 0.6608 0.0157
RF 49.6441 38.3155 0.0451 0.0433 0.5432 0.2271
GB 13.0486 11.2693 0.0181 0.0168 0.5639 0.1122

MLP 4.6856 12.1590 0.0037 0.0034 0.5992 0.0306

pen_digits

LR 20.4063 23.1049 0.0121 0.0060 0.1652 0.0252
SVM 9.7635 10.2790 0.0017 0.0010 0.4735 0.0068
RF 29.6240 22.8623 0.0152 0.0132 0.4535 0.0592
GB 9.9151 13.0988 0.0077 0.0058 0.6543 0.0303

MLP 9.4603 10.0061 0.0014 0.0004 0.6457 0.0037

satimage

LR 23.6665 23.0968 0.0215 0.0223 0.7312 0.0767
SVM 10.2020 21.8540 0.0229 0.0163 0.1666 0.0870
RF 29.1041 20.1450 0.0265 0.0214 0.2084 0.1328
GB 23.2004 19.8861 0.0154 0.0235 0.2101 0.0902

MLP 58.0528 58.4671 0.0352 0.0328 0.5049 0.1384

spambase

LR 33.6713 56.1188 0.0256 0.0267 0.1539 0.0895
SVM 12.8168 34.5402 0.0177 0.0227 0.2207 0.0465
RF 66.0391 49.4569 0.0635 0.0601 0.2056 0.1616
GB 20.2028 20.4200 0.0295 0.0277 0.1409 0.0891

MLP 60.9703 67.1253 0.0413 0.0397 0.2931 0.1076



(a) abalone

(b) coil_2000

(c) isolet

(d) webpage

Figure 5: Comparison of visual representations of TCE, ECE and ACE for the logistic regression algorithm. (Left) The
test-based reliability diagram of TCE. (Middle) The reliability diagram of ECE. (Right) The reliability diagram of ACE.
Each row corresponds to a result on the dataset: (a) abalone, (b) coil_2000, (c) isolet, and (d) webpage.



(a) abalone

(b) coil_2000

(c) isolet

(d) isolet

Figure 6: Comparison of visual representations of TCE, ECE and ACE for the logistic regression algorithm. (Left) The
test-based reliability diagram of TCE. (Middle) The reliability diagram of ECE. (Right) The reliability diagram of ACE.
Each row corresponds to a result on the dataset: (a) abalone, (b) coil_2000, (c) isolet, and (d) webpage.



(a) AlexNet

(b) VGG19

(c) ResNet 18

(d) ResNet 152

Figure 7: Comparison of visual representations of TCE, ECE, and ACE on the ImageNet 1000 dataset. (Left) The test-based
reliability diagram of TCE, (Middle) The reliability diagram of ECE (Right) The reliability diagram of ACE. Each row
corresponds to a result for the model: (a) AlexNet, (b) VGG19, (c) ResNet 18, and (d) ResNet 152.
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