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Abstract

This paper proposes a new metric to measure the
calibration error of probabilistic binary classifiers,
called test-based calibration error (TCE). TCE in-
corporates a novel loss function based on a statist-
ical test to examine the extent to which model pre-
dictions differ from probabilities estimated from
data. It offers (i) a clear interpretation, (ii) a consist-
ent scale that is unaffected by class imbalance, and
(iii) an enhanced visual representation with respect
to the standard reliability diagram. In addition, we
introduce an optimality criterion for the binning
procedure of calibration error metrics based on a
minimal estimation error of the empirical probabil-
ities. We provide a novel computational algorithm
for optimal bins under bin-size constraints. We
demonstrate properties of TCE through a range of
experiments, including multiple real-world imbal-
anced datasets and ImageNet 1000.

1 INTRODUCTION

In recent years, it has become ubiquitous to deploy complex
machine learning models in real-world production systems.
Many of these systems rely on probabilistic classifiers that
predict the probability that some target outcome occurs. For
such systems, it is often crucial that their predictive prob-
abilities are well-calibrated, meaning that the predictive
probability accurately reflects the true frequency that the
target outcome occurs. In some contexts, failures to achieve
calibration can lead to negative consequences. In applica-
tions like medical diagnoses [Topol, 2019] and autonomous
driving [Grigorescu et al., 2020], associated risks are often
assessed based on model predictions and the consequences
of a misguided risk evaluation can be severe. In online ad-
vertising auctions [Li et al., 2015], it is common to incor-
porate a prediction of the probability of some outcome of

interest (e.g., a click on an advert) when calculating an
advertiser’s bid.

While a number of metrics—such as log-likelihood, user-
specified scoring functions, and the area under the receiver
operating characteristic (ROC) curve—are used to assess the
quality of probabilistic classifiers, it is usually hard or even
impossible to gauge whether predictions are well-calibrated
from the values of these metrics. For assessment of calibra-
tion, it is typically necessary to use a metric that measures
calibration error, that is, a deviation between model predic-
tions and probabilities of target occurrences estimated from
data. The importance of assessing calibration error has been
long emphasised in machine learning [Nixon et al., 2019,
Minderer et al., 2021] and in probabilistic forecasting more
broadly [Dawid, 1982, Degroot and Fienberg, 1983].

However, existing metrics of calibration error have several
drawbacks that in certain scenarios can mean that their val-
ues do not appropriately reflect true calibration performance.
In particular, we will demonstrate that values of existing
calibration error metrics have an inconsistent scale that is
influenced by the target class proportion. In applications
such as fraud detection [Abdallah et al., 2016, Tax et al.,
2021] and advertising conversion prediction [Yang and Zhai,
2022], the prevalence, i.e., the proportion of instances be-
longing to the target class, is often very low. This leads to
situations where one may be unable to identify whether the
values of calibration error metrics are small due to good
calibration performance or due to the low prevalence. This
is also problematic for monitoring applications aimed at
tracking the calibration performance of a model in a pro-
duction system, where the prevalence can change over time
(i.e., prior probability shift [Storkey et al., 2009]) and that
makes it difficult to understand whether to attribute changes
in the metric to an actual change in calibration performance
or to the change in prevalence.

Furthermore, binning of model predictions—an essential
component of most calibration error metrics [Naeini et al.,
2015]—is often based on heuristics and lacks clear design
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principles. For calibration error metrics, empirical prob-
abilities of target occurrences are typically estimated by
clustering data into several subsets based on binning of the
associated model predictions. The design of the binning
scheme is a vital factor in the accurate estimation of the em-
pirical probabilities, yet few principles guiding the design
of binning schemes have emerged to date.

In this paper, we elaborate on the issues of existing calib-
ration error metrics in Section 2. We establish a simple yet
novel metric that counterbalances the issues in Section 3.
Section 4 empirically demonstrates properties of the pro-
posed metric by experiments based on various datasets. Re-
lated works are discussed in Section 5, followed by the
conclusion in Section 6. This paper focuses on the meth-
odological aspects of the proposed new metric for binary
classification, while theoretical development is left for fu-
ture research. Our contributions are summarised as follows:

Contributions

• Our primary contribution is a novel calibration error
metric called test-based calibration error (TCE). TCE is
based on statistical hypothesis testing and is interpretable
as a percentage of model predictions that deviate signi-
ficantly from estimated empirical probabilities. TCE pro-
duces values in a normalised, comparable range [0, 100]
regardless of the class prevalence.

• We propose an explanatory visual representation of TCE
called the test-based reliability diagram. It carries more
information than the standard reliability diagram and
facilitates a better understanding of calibration perform-
ance (See Figure 1).

• We introduce an optimality criterion for bins under which
optimal bins minimise an estimation error of the empir-
ical probabilities. We then propose a novel algorithm
to compute optimal bins approximately under the con-
straints of the minimum and maximum size of each bin.

2 BACKGROUND

In this section, we introduce the definition of calibration
and recap one of the most common calibration error met-
rics. We then outline several critical challenges of existing
calibration error metrics. The basic notation used in this
paper is introduced below.

Denote input and output spaces respectively byX andY . We
focus on probabilistic binary classification, i.e. Y = {0, 1},
in which a probabilistic classifier Pθ : X → [0, 1] models a
conditional probability of Y = 1 given an input x ∈ X . The
data D := {xi, yi}Ni=1 are assumed to be i.i.d. realisations
from a random variable (X,Y ) ∼ P. To simplify notation,
for any data subset S ⊆ D, we denote by Sx a set of all
inputs x in S and by Sy a set of all outputs y in S. By “a
set of bins” or simply “bins”, we mean a set of arbitrary

disjoint intervals whose union is the unit interval [0, 1]. For
example, a set {∆b}2b=1 of intervals ∆1 = [0.0, 0.4) and
∆2 = [0.4, 1.0] is a set of bins.

2.1 CALIBRATION ERROR

A probabilistic classifier Pθ : X → [0, 1] is said to be
calibrated [Dawid, 1982, Bröcker, 2009] if

P(Y = 1 | Pθ(X) = Q) = Q (1)

for all Q ∈ [0, 1] s.t. the conditional probability is well-
defined. Informally, this criterion implies that the model
prediction coincides with the actual probability of Y = 1
for all inputs. Any deviation between the actual probabilities
and the model predictions in eq. (1) is often referred to
as calibration error, which quantifies to what degree the
classifier Pθ is calibrated. The empirical computation of
such a deviation involves estimating conditional probability
P(Y = 1|Pθ(X) = Q) from data. For given bins {∆b}Bb=1,
define disjoint subsets {Db}Bb=1 of data D by

Db := {(xi, yi) ∈ D | Pθ(xi) ∈ ∆b}. (2)

Simply put, Db is a subset of data whose model predictions
have similar values. The conditional probability P(Y = 1 |
Pθ(X) = Q) for any Q ∈ ∆b can then be estimated by the
empirical mean of the labels in subset Db:

P(Y = 1 | Pθ(X) = Q) ≈ P̂b :=
1

Nb

∑
yi∈Dy

b

yi (3)

where we denote by P̂b the estimated conditional probability
in Db and by Nb the sample size of Db.

One of the most common metrics to measure calibration
error is expected calibration error (ECE) [Naeini et al.,
2015]. ECE uses equispaced bins {∆b}Bb=1 over [0, 1] for
a given number B and measures an absolute difference
between the averaged model predictions and the estimated
conditional probability P̂b within each data subset Db. The
value of ECE is defined as

ECE :=

B∑
b=1

Nb
N

∣∣∣∣∣∣P̂b − 1

Nb

∑
xi∈Dx

b

Pθ(xi)

∣∣∣∣∣∣ . (4)

ECE has an associated practical visual representation known
as the reliability diagram [Degroot and Fienberg, 1983,
Niculescu-Mizil and Caruana, 2005], which aligns the aver-
aged model prediction and the estimated conditional prob-
ability in each Db (see Figure 1). The reliability diagram is
a powerful tool to intuitively grasp the deviation between
the model and the estimated probability in ECE.

2.2 CHALLENGES IN CALIBRATION ERROR

Calibration error metrics, such as ECE, are widely used
in real-world applications. There nonetheless exist several
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challenges that may cause a misassessment of calibration.
These problems become evident especially when a distribu-
tion of model predictions {Pθ(xi)}Ni=1 is not well-dispersed.
This scenario often arises in imbalanced classification where
model predictions tend to be severely skewed towards either
0 or 1. The following paragraphs illustrate challenges of
existing calibration error metrics, which we aim to address.

Challenge 1 (Scale-Dependent Interpretation) In most
calibration error metrics, the deviation between the model
prediction and the estimated probability P̂b in each Db is
measured by the absolute difference as in eq. (4). However,
the use of the absolute difference can result in values that
have an inconsistent scale influenced by the class prevalence.
To illustrate this problem, consider an estimated probability
P̂b and an averaged model prediction denoted Qb for some
b in eq. (4). If P̂b = 0.50 and Qb = 0.49, their absolute
difference is 0.01. On the other hand, if P̂b = 0.01 and
Qb = 0.0001, their absolute difference is 0.0099. Despite
the comparison under the absolute difference suggesting
that the probability Qb = 0.0001 with respect to P̂b =
0.01 in the latter case is better calibrated than in the former
case, one may reasonably argue that the latter is not well-
calibrated—or at least not comparable to the former—given
the stark difference in the order of magnitude. Similarly to
this illustration, the values of existing calibration metrics
built on the absolute difference can be proportionally small
whenever the scales of P̂b and Qb are small. This issue
makes it difficult to distinguish whether the metric values are
low due to good calibration performance or due to the small
scale of the probabilities as in imbalanced classification.

Challenge 2 (Lack of Normalised Range) The range of
values of calibration error metrics built on absolute differ-
ences is not normalised. The range can vary depending on
the choice of bins {∆b}Bb=1. To illustrate this problem, con-
sider a bin ∆b for some b. If ∆b = [0.4, 0.6], the absolute
difference between P̂b and Qb falls into a range [0.0, 0.6]

because P̂b is the estimated probability in [0.0, 1.0] and the
averaged model prediction Qb in the bin ∆b takes the value
within ∆b. Similarly, a different choice of bin ∆b leads to
a different range of the absolute difference. Consequently,
the choice of bins {∆b}Bb=1 impacts the range of the final
value of calibration error metrics that are built on the abso-
lute difference. To assure rigorous comparability of the final
value of a calibration error metric, it is desirable to establish
a measurement of the deviation whose value has a fixed,
normalised range independent of the choice of bins.

Challenge 3 (Arbitrary Choice of Bins) An appropriate
choice of bins is critical because it meaningfully impacts
on final values of calibration error metrics. Equispaced bins
{∆b}Bb=1 over [0, 1] for a given number B are one of the
most common choices of bins in practice, as used in ECE.
However, equispaced bins can often cause a situation where

a few particular bins contain the majority of the model
predictions when they are not well-dispersed over [0, 1],
as often happens in imbalanced classification. If some bin
∆b contains the majority of model predictions, the corres-
ponding estimated probability P̂b coincides approximately
with the empirical mean of all labels. On the other hand,
estimated probabilities of the bins other than ∆b become
unreliable due to the small size of samples contained. A
potential solution to this problem is to use bins that adapt
based on the dispersion of model predictions. Nixon et al.
[2019] proposed adaptive calibration error (ACE) that com-
putes the value of eq. (4) using bins {∆b}Bb=1 based on
B-quantiles of model predictions {Pθ(xi)}Ni=1 for given B.
However, questions remain regarding the optimal number
B of bins and the appropriate quantile to use for each bin.
To the best of our knowledge, there is no established notion
of what makes bins optimal, nor do clear design principles
for bins exist.

3 CALIBRATION ERROR BASED ON
TEST AND OPTIMAL BINS

We propose a new calibration error metric that offers a
simple yet novel solution to the challenges outlined in Sec-
tion 2.2. First, in Section 3.1, we present a general formu-
lation of calibration error metrics that encompasses most
metrics used in practice. This general formulation allows
for a structured understanding of the design of calibration
error metrics. In Section 3.2, we derive from the general for-
mulation a new calibration error metric, called TCE, which
incorporates a loss based on a statistical test to compare
model predictions with estimated empirical probabilities.
TCE produces a value that has a clear interpretation as a
percentage of model predictions determined to deviate signi-
ficantly from estimated empirical probabilities, which leads
to a normalised range of possible values [0, 100] regardless
of the choice of bins {∆b}Bb=1. In Section 3.3, we consider
an optimal criterion of bins {∆b}Bb=1 from the perspective
of minimising an estimation error of the empirical probab-
ilities {P̂b}Bb=1. We then develop a practical regularisation
approach that ensures a minimum and maximum sample
size in each subset Db.

3.1 GENERAL CALIBRATION ERROR

The following definition presents an abstract formulation of
calibration error metrics, which we call general calibration
error (GCE) for terminological convenience. Denote by 2D

a power set of D, i.e. a space of all subsets of D and byM
a space of all probabilistic classifiers below.

Definition 1. (GCE) Let L : 2D×M→ R be a loss of any
probabilistic classifier evaluated for any data subset. Let B
be a set of bins {∆b}Bb=1 that define data subsets {Db}Bb=1

as in eq. (2). Let ‖ · ‖ be a norm of a B-dimensional vector
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space. For a given probabilistic classifier Pθ : X → [0, 1],
define a scalar GCEb ∈ R for each b = 1, · · · , B by

GCEb := L (Db, Pθ) . (5)

Then, GCE of the probabilistic classifier Pθ is defined by

GCE = ‖(GCE1, · · · ,GCEB)‖. (6)

This formulation translates the problem of designing a cal-
ibration error metric into a problem of choosing the tuple
(L,B, ‖ · ‖). Most existing calibration error metrics used in
practice can be derived by selecting an appropriate tuple of
the loss L, the bins B, and the norm ‖ · ‖ in GCE. See Ex-
ample 1 below for the case of ECE. It is also immediate to
show that ACE can be recovered from GCE.

Example 1. Let B be equispaced bins {∆b}Bb=1 over [0, 1],
let L be L(Db, Pθ) = | 1

Nb

∑
y∈Dy

b
y − 1

Nb

∑
x∈Dx

b
Pθ(x)|,

and let ‖ · ‖ be a weighted 1-norm ‖v‖ =
∑B
b=1

Nb

N × |vb|.
The ECE corresponds to the GCE under this tuple.

We aim to choose the tuple (L,B, ‖ · ‖) so that it addresses
the aforementioned challenges in Section 2.2. Section 3.2
addresses a loss L based on a statistical test and presents
the resulting TCE. Subsequently, Section 3.3 addresses a
choice of bins B that is obtained through optimisation to
minimise an estimation error of the empirical probabilities
{P̂b}Bb=1. All norms ‖ · ‖ are equivalent in finite dimensions,
and hence we do not focus on any particular choice. As with
ECE, we use the weighted 1-norm ‖ · ‖ in Example 1 for
TCE.

3.2 TEST-BASED CALIBRATION ERRORS

We present our main contribution, a new calibration error
metric called TCE, that is derived from GCE by specifying a
novel loss L based on a statistical test. Our proposed loss L
summarises the percentage of model predictions that deviate
significantly from the empirical probabilities in each subset
Db. We effectively test a null hypothesis “the probability of
Y = 1 is equal to Pθ(x)” at each x ∈ Dxb using the output
data Dyb . A rigorous formulation of this loss L is provided
below, combined with the definition of the TCE. Note that
the bins {∆b}Bb=1 and the norm ‖ · ‖ of TCE are arbitrary,
while the weighted 1-norm is our default choice of ‖ · ‖.

Definition 2. (TCE) Given a statistical test and its signi-
ficance level α ∈ [0, 1], let R be a function of any observed
dataset of random variable Y ∈ {0, 1} and any probability
Q ∈ [0, 1], which returns 1 if a hypothesis P (Y = 1) = Q
is rejected based on the dataset and returns 0 otherwise.
In Definition 1, let L be an average rejection percentage s.t.

L(Db, Pθ) = 100× 1

Nb

∑
x∈Dx

b

R (Dyb , Pθ(x)) . (7)

GCE in Definition 1 is then called TCE.

In contrast to existing metrics that examine the difference
between averaged model predictions and empirical prob-
abilities in each bin, TCE examines each prediction Pθ(x)
and summarises the rejection percentage in each bin. The
procedure of TCE can be intuitively interpreted as follows.

Remark 1. Informally speaking, TCE examines whether
each model prediction Pθ(x) can be regarded as an outlier
relative to the empirical probability of the corresponding
data Dyb , where the test in function R acts as a criterion for
determining outliers. The level of model-calibration is then
measured by the rate of outliers produced by the model.

In this paper, we use the Binomial test as the de facto stand-
ard statistical test to define R in the TCE. TCE based on
other tests, including Bayesian testing approaches, is an
open direction for future research. Algorithm 1 summarises
the computational procedure of TCE. There are multiple
advantages of TCE as follows.

Advantage 1 (Clear Interpretation) The final value of
TCE has a clear interpretation as a percentage of model
predictions that are determined by the test of choice (here
the Binomial test) to deviate significantly from estimated
empirical probabilities. Because the value is a percentage,
the range of the value is normalised to [0, 100].

Advantage 2 (Consistent Scale) The test evaluates the
statistical deviation of data from a model prediction Pθ(x)
adaptively and appropriately for each scale of Pθ(x) and
data size Nb. Informally, TCE is the number of relative
outliers determined for each Pθ(x) adaptively. This endows
the value with a consistent scale robust to class imbalance.

Advantage 3 (Enhanced Visualisation) TCE leads to
a new visual representation that shows the distribution of
model predictions, and the proportion of model predictions
that deviate significantly from an empirical probability in
each bin. See Figure 1 for the description and comparison
with the standard reliability diagram.

Algorithm 1 Computation of TCE

Input: data D, model Pθ, norm ‖ · ‖, bins {∆b}Bb=1, func-
tion R based on a chosen test and significant level

Output: a value TCE ∈ R
for b = 1, . . . , B do
Db ← {(xi, yi) ∈ D | Pθ(xi) ∈ ∆b} . make subset
TCEb ← 0
for xi ∈ Dxb do

TCEb ← TCEb +R(Dyb , Pθ(xi)) . test each
end for
TCEb ← 100/Nb × TCEb

end for
TCE← ‖(TCE1, . . . ,TCEB)‖
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Figure 1: Comparison of two visual representations both applied for a gradient boosting model trained on the abalone dataset
used in Section 4.2. (Left) A new visual representation, which we call the test-based reliability diagram. The central plot
shows a violin plot of model predictions in each bin, whose estimated probability is presented by a red line. The bottom plot
shows by grey bar the sample size of each bin and by red bar the percentage of model predictions that deviate significantly
from the estimated probability in each bin. The right plot shows a histogram of all model predictions. (Right) The standard
reliability diagram with the bin-size plot on the bottom and the histogram plot on the right added for comparison.

Our interest is in the aggregated rejection percentage of all
the tests performed, and so multiple testing corrections—
e.g., the Bonferroni correction to offer a frequentist guaran-
tee to control the familywise error rate—are not considered.
If all the null hypotheses were simultaneously true, TCE
would simply coincide with the false positive rate which
equals in expectation to type I error specified by the signi-
ficant level of the test. Full discussion on when and how
adjustments for multiple hypotheses tests should be made
may be found in Bender and Lange [2001].

Given that TCE is based on a statistical testing procedure,
it may be possible to apply ideas from power analysis to
inform the desired sample size in each Db. Such analysis
may also benefit the algorithm in the next subsection to com-
pute optimal bins under the bin-size constraints, providing
insights on what bin-size should be used as the constraints.
Finally, it is worth noting that TCE can be extended to
multi-class classification. The following remark presents
one straightforward approach to the extension.

Remark 2. Any calibration error metric defined for binary
classification can be extended to multi-class classification
by considering classwise-calibration [e.g. Kull et al., 2019],
where the calibration error metric is applied for one-vs-rest
classification of each class independently. A modification of
TCE in multi-class classification settings can then be defined
as an average of TCEs applied for one-vs-rest classification
of each class.

3.3 OPTIMAL BINS BY MONOTONIC
REGRESSOR AND BIN-SIZE CONSTRAINTS

It is a fundamental challenge to establish a practical and
theoretically sound mechanism to design bins used in calib-
ration error metrics. Ideally designed bins provides accurate
probability estimates {P̂b}Bb=1 from data D while keeping
the size of each bin reasonable. To this end, we propose a
novel algorithm to compute bins that aim to minimise an
estimation error of the probability estimates {P̂b}Bb=1 under
the constraint of the size of each bin.

Recently, Dimitriadis et al. [2021] pointed out that an exist-
ing quadratic programming algorithm, called pool-adjacent-
violators algorithm (PAVA), can be directly applied to com-
pute “optimal” bins in the context of obtaining a better
reliability diagram. The bins are designed in a manner that
minimises the Brier score [Brier, 1950] of resulting empir-
ical probabilities by virtue of PAVA. Forging ahead with
this observation, we introduce the following definition that
makes explicit in what sense bins {∆b}Bb=1 can be con-
sidered optimal given an arbitrary estimation error D of the
probability estimates {P̂b}Bb=1 from data D.

Definition 3. (Optimal Bins) Let Π be a space of all sets
of bins {∆b}Bb=1 for any B, with associated data subsets de-
noted by {Db}Bb=1 and probability estimates from {Dyb }Bb=1

denoted by {P̂b}Bb=1. Let D be any error function between
an observed dataset of random variable Y ∈ {0, 1} and a
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given probability Q ∈ [0, 1]. Any set of bins that satisfies

min
{∆b}Bb=1∈Π

B∑
b=1

Wb ×D(Dyb , P̂b)

subject to P̂1 ≤ · · · ≤ P̂B (8)

can be considered an optimal set of bins under the estima-
tion error D, where Wb := Nb/N is the weight associated
with the error of subset Dyb of size Nb.

The monotonic constraint P̂1 ≤ · · · ≤ P̂B of the probab-
ility estimates {P̂b}Bb=1 is a natural requirement because
the choice of bins becomes trivial otherwise. For example,
consider bins {∆b}Bb=1 with B = N such that ∆b contains
one single point yb and the probability estimate P̂b = yb for
each b. This clearly achieves that

∑B
b=1Wb×D(Dyb , P̂b) =

1
N

∑N
b=1 D({yb}, yb) = 0. Under the monotonic constraint,

the choice of bins becomes non-trivial.

Under some choices of the estimation error D, the optim-
isation of eq. (8) can be solved as a monotonic regression
problem. Given an ordered dataset {yi}Ni=1, a monotonic re-
gression algorithm finds N monotonically increasing values
ŷ1 ≤ · · · ≤ ŷN that minimise some loss between {ŷi}Ni=1

and {yi}Ni=1. There exist algorithms for various losses, in-
cluding the lp loss, the Huber loss, and the Chebyshev loss
[de Leeuw et al., 2009]. PAVA solves a monotonic regres-
sion problem under the squared error

∑N
i=1(ŷi−yi)2. If we

choose the error D as the variance of each Dyb , i.e.,

D(Dyb , P̂b) =
1

Nb

Nb∑
i=1

(yi − P̂b)2 (9)

the optimal set of bins under D can be obtained using PAVA,
which corresponds to the case of Dimitriadis et al. [2021].
See Appendix A for the proof that the optimisation criterion
of eq. (8) is indeed minimised at bins obtained using PAVA.
The approach using PAVA is a highly appealing solution
to the design of bins {∆b}Bb=1 because it achieves a fully-
automated design of the bins based on the clear criterion
of eq. (8). However, such a fully-automated design can
occasionally generate a bin that contains an excessively
small or large number of data for the sake of minimising the
aggregated estimation error over all {P̂b}Bb=1. Imposing a
certain regularisation on the minimum and maximum size
of each Db can aid in keeping some baseline quality of the
estimation of each individual P̂b.

Therefore, we propose a modified version of PAVA that reg-
ularises based on the given minimum and maximum size of
each subset Dyb . Algorithm 2 summarises the full algorithm,
which we call PAVA with block constraints (PAVA-BC), fol-
lowed by Algorithm 3 that summarises how to compute
bins using PAVA-BC accordingly, where Sort(D, Pθ) in Al-
gorithm 3 denotes any algorithm that sorts labels {yi}Ni=1

in acending order of model predictions {Pθ(xi)}Ni=1. By

Algorithm 2 PAVA-BC (PAVA with Block Constraints)

Input: ordered scalars {yi}Ni=1, size constraints Nmin and
Nmax s.t. 0 ≤ Nmin ≤ Nmax ≤ N .

Output: sequence {ŷi}Ni=1

B ← 0
for i = 1, . . . , N −Nmin do

B ← B + 1
YB ← yi
WB ← 1
while B > 1 do

if WB−1 +WB > Nmin then
If WB−1 +WB > Nmax then Break
If YB−1/WB−1 < YB/WB then Break

end if
YB−1 ← YB−1 + YB
WB−1 ←WB−1 +WB

B ← B − 1
end while

end for
if WB +Nmin ≤ Nmax then

YB ← YB +
∑N
i=N−Nmin+1

yi
WB ←WB +Nmin

else
B ← B + 1
YB ←

∑N
i=N−Nmin+1 yi

WB ← Nmin
end if
s← 0
for j = 1, . . . , B do

for k = 1, . . . ,Wj do
ŷs+k ← Yj/Wj

end for
s← s+Wj

end for

Algorithm 3 Near-Optimal Bins Based on PAVA-BC

Input: data D, model Pθ, size constraints Nmin and Nmax
s.t. 0 ≤ Nmin ≤ Nmax ≤ N .

Output: a set of bins {∆b}Bb=1

{yi}Ni=1 ← Sort(D, Pθ)
{ŷi}Ni=1 ← PAVA-BC({yi}Ni=1, Nmin, Nmax)
B ← 1
L← 0
R← 0
for i = 2, . . . , N do

if ŷi−1 6= ŷi then
R← (Pθ(xi−1) + Pθ(xi))/2
∆B ← [L,R)
L← R
B ← B + 1

end if
end for
∆B ← [L, 1.0]
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Figure 2: Comparison of bins for a random forest model
on the satimage dataset used in Section 4.2 based on (top)
PAVA, (middle) PAVA-BC, (bottom) binning based on 10-
quantiles. The dotted line represents the boundary of each
bin and the grey bar represents the size of each bin.

Algorithm 3, we can obtain bins that satisfy the given min-
imum and maximum size constraints Nmin and Nmax in each
Db, while benefitting from the automated design of bins by
PAVA. A set of bins based on PAVA can be recovered by
replacing PAVA-BC with PAVA in Algorithm 3. In general,
the introduction of the regularisation can cause mild viol-
ation of the monotonicity P̂1 ≤ · · · ≤ P̂B , meaning that
there may exist a few values P̂b that is smaller than P̂b−1.
See Appendix B for each example where mild violation of
the monotonicity by PAVA-BC occured and did not occur.
In practice, mild violation of the monotonicity can often be
a reasonable cost to achieve better properties of bins. For
example, Tibshirani et al. [2011] studied settings where the
monotonicity is only “nearly" satisfied.

See Figure 2 for a comparison of the bins computed by
three different approaches: PAVA, PAVA-BC, and binning
based on 10-quantiles. The bins produced by PAVA-BC in-
terpolate between the optimal bins produced by PAVA and
the well-sized bins produced by binning based on quantiles.
This is further confirmed by Table 1 which shows the total
estimation error in eq. (8) and the estimation error within
each bin in eq. (9) for each approach. The total estimation
error is minimised by PAVA, while an average of the estim-
ation error within each bin is minimised by binning based
on quantiles. In contrast, PAVA-BC takes a balance between
the total and individual estimation error.

Table 1: The total estimation error and an average of the
estimation error within each bin for the bins in Figure 2.

PAVA PAVA-BC Quantile

Total Error 0.040 0.042 0.048
Averaged Within-Bin Error 0.132 0.077 0.047

4 EMPIRICAL EVALUATION

In this section, we demonstrate the properties of TCE via
three experiments. The first experiment uses synthetic data
to examine the properties of TCE under controlled class
imbalance. The second experiment involves ten real-world
datasets from the University of California Irvine (UCI) ma-
chine learning repository [Dua and Graff, 2017], where
nine are designed as benchmark tasks of imbalanced clas-
sification, and one is a well-balanced classification task for
comparison. In the second experiment, we also demonstrate
that ECE and ACE may produce misleading assessments of
calibration performance under class imbalance. TCE has the
potential to reduce such misinterpretation risks. The final
experiment uses the ImageNet1000 dataset to illustrate that
TCE is applicable to large-scale settings. In all experiments,
models are fitted to training data first and any calibration
error metric are computed using validation data. Source
code to reproduce the experiments is available in https:
//github.com/facebookresearch/tce.

We compute TCE with bins based on PAVA-BC unless oth-
erwise stated. The minimum and maximum size of each bin
for PAVA-BC are set to N/20 and N/5 for a given dataset
size N . Under these constraints, the number of bins based
on PAVA-BC falls into a range between 5 and 20. In addi-
tion to ECE and ACE, we include the maximum calibration
error (MCE) [Naeini et al., 2015] for comparison. MCE
is defined by replacing the weighted 1-norm with the su-
premum norm over b = 1, . . . , B in Example 1. We denote,
by TCE(Q) and MCE(Q), TCE and MCE each with bins
based on B-quantiles. For all metrics, B-equispaced bins
and B-quantiles bins are computed with B = 10.

4.1 SYNTHETIC DATA WITH CONTROLLED
CLASS IMBALANCE

We first examine TCE using synthetic data from a simulation
model considered in Vaicenavicius et al. [2019]. The data
are simulated from a Gaussian discriminant analysis model
(x, y) ∼ P (x | y)P (y). The output y ∈ {0, 1} is first
sampled from a Bernoulli distribution P (y) with parameter
π and the input x ∈ R is then sampled from a Gaussian
distribution P (x | y) = N (my, sy) with mean my and
scale sy dependent of y. We set my = (2 × y − 1) and
sy = 2, and change the parameter π for each setting below.
By Bayes’ theorem, the conditional probability of y given
x corresponds to a logistic model: P (y | x) = 1/(1 +
exp(β0 +β1×x)) where β0 = log(π/(1−π)) and β1 = 4.
A logistic model is therefore capable of reproducing the
probability P (y | x) of this synthetic data perfectly.

We consider two baseline cases of (i) well-balanced classi-
fication and (ii) imbalanced classification in this experiment.
We train a logistic model for the training data simulated with
the parameter π = 0.5 (i.e. 50% prevalence) in case (i) and
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with π = 0.01 (i.e. 1% prevalence) in case (ii). In each case
(i) and (ii), we generate three different test datasets to create
situations where the trained model is (a) well-calibrated, (b)
over-calibrated, and (c) under-calibrated. We examine the
performance of TCE under these senarios. Test datasets for
senarios (a), (b), and (c) are generated from the simulation
model with prevalences 50%, 40%, and 60% in case (i) and
with prevalences 1%, 0%, and 2% in case (ii). We generate
20000 data points in total, of which 70% are training data
and 30% are test data.

Table 2 shows the values of four calibration error metrics
applied to the logistic regression model in each scenario.
Table 2 demonstrates that all values of ECE and ACE in
imbalanced case (ii) can be smaller than—or very close
to—values for well-calibrated senario (a) in well-balanced
case (i). For example, the ECE value for case (ii)-(b) was
smaller than that for case (i)-(a). In contrast, TCE provides
values with a consistent scale in both well-balanced and
imbalanced cases. More simulation studies of TCE with
different hyperparameters are presented in Appendix C.1.

Table 2: Comparison of four calibration error metrics under
senarios (a) - (c) in each case (i) and (ii).

Prevalence TCE TCE(Q) ECE ACE

50% vs 50% 7.28% 10.88% 0.0138 0.0150
50% vs 40% 96.10% 96.47% 0.0963 0.0951
50% vs 60% 98.83% 98.93% 0.1097 0.1096
1% vs 1% 3.40% 0.18% 0.0017 0.0031
1% vs 0% 95.50% 68.73% 0.0094 0.0094
1% vs 2% 92.32% 89.73% 0.0139 0.0139

4.2 IMBALANCED UCI DATASETS

Next, we compare calibration error metrics using real-world
datasets in the regime of severe class imbalance. We use
nine UCI datasets that were preprocessed by Lemaître et al.
[2017] as benchmark tasks of imbalanced classification. We
also use one additional UCI dataset with a well-balanced pre-
valence for comparison. For each dataset, 70% of samples
are used as training data and 30% of samples are kept as
validation data. We train five different algorithms: logistic
regression (LR), support vector machine (SVM), random
forest (RF), gradient boosting (GB), and multi-layer per-
ceptron (MLP). We evaluate the calibration performance of
each model by five different calibration error metrics in the
following tables. Tables 3 and 4 show results for the imbal-
anced datasets, abalone and webpage [Dua and Graff, 2017],
respectively. Results for all the other datasets are presented
in Appendix C.2. In Table 3, the best model ranked by TCE
and ACE agree with each other while ECE identifies RF
as the best model. It can be observed from the reliability
diagram of ECE for both the datasets in Appendix C.2 that

a large majority of model predictions are contained in a
single bin of ECE. In such cases, ECE becomes essentially
equivalent to a comparison of global averages of all labels
and all model predictions. Table 4 demonstrates a situation
where ECE and ACE risk misleading assessments of calib-
ration performance. Several values of ECE and ACE are all
sufficiently small in Table 4, by which one may conclude
that it is reasonable to use a model with the smallest calib-
ration error. However, the values of TCE indicate that no
model has a good calibration performance. In fact, relatively
large statistical deviations between model predictions and
empirical probabilities can be observed from the test-based
reliability diagram for the webpage dataset in Appendix C.2.

Table 3: Comparison of five calibration error metrics for five
different algorithms trained on the abalone dataset.

TCE ECE ACE MCE MCE(Q)

LR 7.26% 0.0140 0.0252 0.0946 0.0851
SVM 47.21% 0.0436 0.0473 0.8302 0.1170
RF 33.89% 0.0127 0.0177 0.0670 0.0547
GB 4.86% 0.0182 0.0160 0.2965 0.0418
MLP 3.83% 0.0167 0.0122 0.0806 0.0540

Table 4: Comparison of five calibration error metrics for five
different algorithms trained on the webpage dataset.

TCE ECE ACE MCE MCE(Q)

LR 40.16% 0.0044 0.0034 0.3134 0.0214
SVM 59.83% 0.0043 0.0057 0.5402 0.0239
RF 99.66% 0.0234 0.0241 0.5980 0.1189
GB 71.12% 0.0086 0.0107 0.2399 0.0436
MLP 49.81% 0.0090 0.0018 0.4344 0.0076

4.3 K-VS-REST ON IMAGENET1000

Finally, we demonstrate that TCE is applicable for a large-
scale binary classification task using ImageNet1000 data.
We consider a K-vs-rest classification problem by using a
set of all dog-kind classes (from class 150 to class 275) as
a positive class and the rest as a negative class. Under this
setting, 12.5% of validation samples belong to the positive
class. We used 5 different trained models: AlexNet, VGG19,
ResNet18, ResNet50, and ResNet152. Their calibration er-
rors were measured based on the ImageNet1000 validation
dataset consisting of 50000 data points. Table 5 demon-
strates that TCE produces interpretable values, with model
rankings that largely agree with other metrics in this setting.
The last row of Table 5 shows the average computational
time of each metric. Computation of all the procedures in
TCE required only 71.78 seconds for 50000 data points with
1 CPU on average. The reliability diagrams corresponding
to the results are presented in Appendix C.3.

1397



Table 5: Comparison of five calibration error metrics for five
different deep learning models on ImageNet1000 data.

TCE ECE ACE MCE MCE(Q)

AlexNet 42.74% 0.0070 0.0070 0.1496 0.0528
VGG19 23.57% 0.0028 0.0028 0.2148 0.0247
Res18 29.93% 0.0042 0.0042 0.2368 0.0350
Res50 24.60% 0.0020 0.0018 0.1911 0.0152
Res152 16.09% 0.0012 0.0013 0.1882 0.0102

Time (s) 71.78 0.4873 0.4221 0.0046 0.0063

5 RELATED WORK

Several calibration error metrics have been proposed, includ-
ing the aforementioned ECE. MCE is a widely used variant
of ECE that replaces the summation over b = 1, . . . , B
in (4) with the supremum over b = 1, . . . , B. [Kumar et al.,
2019] introduce a more general lp calibration error, which
includes both ECE and MCE. ACE replaces the equispaced
bins in ECE with bins designed based on quantiles of model
predictions, which prevents high concentration of data in
one bin when data is imbalanced [Nixon et al., 2019]. These
calibration error metrics can be extended to multi-class clas-
sification [Kumar et al., 2019]. Other than calibration error,
scoring functions [Gneiting et al., 2007] are commonly used
measurements to evaluate a probabilistic classifier. [Wallace
and Dahabreh, 2014] reported a limitation of the Brier score
for imbalanced classification, and proposed the stratified
Brier score that aggregates multiple Brier scores.

This paper designed a new calibration error metric based
on a statistical test. While statistical tests have been used in
the context of calibration, we are the first to incorporate a
statistical test into the design of a calibration error metric.
Vaicenavicius et al. [2019] performed a statistical test on
whether ECE computed for synthetic data generated from
predictive probabilities is significantly different from ECE
computed for actual data. Similarly, Widmann et al. [2019]
proposed a statistical test of the value of their calibration
error metric built on kernel methods. In contrast to existing
works which considered a test for final values of calibra-
tion error metrics, our approach incorporates a test into the
metric itself.

While the use of binning is vital in the vast majority of
calibration metrics, there are a few works on the binning-
free design of calibration error metrics. The main idea is to
use an cumulative distribution function (CDF) of predictive
probabilities, which can be estimated without binning, and
evaluate how significantly it differs from an ideal CDF that
occurs if the predictive probabilities are all well-calibrated.
For example, Gupta et al. [2021] and Arrieta-Ibarra et al.
[2022] considered the Kolmogorov-Smirnov test for the
empirical CDF, where Gupta et al. [2021] further proposed
a spline interpolation to obtain a continuous approximation

of the CDF. An approach proposed by Kull et al. [2017]
can also be regarded as binning-free. It uses a continuous
CDF of the beta distribution produced by their calibration
method, mentioned below, rather than the empirical CDF.

Calibration methods refer to algorithms used to improve the
calibration performance of a model Pθ. Usually, they learn
some ‘post-hoc’ function ϕ : [0, 1]→ [0, 1] to be applied to
each model predictio so that the new prediction ϕ(Pθ(x)) is
better calibrated. Various calibration algorithms have been
proposed in parallel to the development of calibration error
metrics. Platt scaling uses a logistic function for the post-
hoc function ϕ [Platt, 1999]. Alternatively, Kull et al. [2017,
2019] proposed to use a beta distribution in binary classifica-
tion and a Dirichlet distribution in multi-class classification.
Isotonic regression is a powerful non-parametric approach
to find a monotonically increasing function ϕ that minim-
ises the Brier score [Zadrozny and Elkan, 2002]. Finally,
Bayesian Binning into Quantiles by Naeini et al. [2015] ex-
tends a classical histogram-based calibration [Zadrozny and
Elkan, 2001] to an ensemble of histogram-based calibrations
based on Bayesian model averaging.

6 CONCLUSION

In this paper, we proposed a new calibration error metric
TCE that incorporates a novel loss function based on a stat-
istical test. TCE has (i) a clear interpretation as a percent-
age of model predictions determined to deviate significantly
from estimated empirical probabilities, (ii) a consistent scale
that is robust to class imbalance, and (iii) an informative
visual representation that facilitates a better understand-
ing of calibration performance of probabilistic classifiers.
We further introduced an optimality criterion of bins as-
sociated with a minimal estimation error of the empirical
probabilities and a new algorithm to compute optimal bins
approximately under the constraint of the size of each bin.

Our proposal opens up room for new research directions
in the context of calibration. This paper focuses on the
methodological development of TCE. There are various
directions to investigate in terms of theoretical properties
of TCE. These include the convergence properties of TCE
in the limit of data size N , understanding the minimum
number of data points that should be contained in each
subset Db, and a rigorous theoretical analysis of PAVA-BC.
By continuing to investigate these areas, we can refine and
expand our understanding of the capabilities of TCE.
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