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A ADDITIONAL SCM BACKGROUND

For any DAG G = (V ,E), we call P ⊆ E a path if it connectsA andB with no repeated vertices. The path is directed if it
obeys the directions of the edges and undirected if it does not. Both directed and undirected paths in a causal DAG can result
in dependencies between variables. To understand the conditions for dependence/independence (d-connection/d-separation)
Pearl [1988], we will use the concepts of active and inactive paths, which are defined relative to a conditioning set Pearl
[2009], Peters et al. [2017]. Intuitively, whether a path is active or not indicates whether it “carries dependence” between the
variables.

For an empty conditioning set, a path between A to B is active if it is directed or if it is made up of two directed paths from
a common cause along that path. In the same unconditioned setting, inactive paths are paths that contain a collider, i.e. a
vertex for which the path has two inward pointing arrows.

When we are given a conditioning set Z, conditional dependencies differ from unconditional ones. Active paths can be
blocked (thus becoming inactive paths) if some vertex Z along the path between A to B is included in C. Similarly,
inactive paths with a collider C can become unblocked by including C or some descendant of the collider variable in the
conditioning set Z. If two variables A,B contain no active paths (they may contain inactive paths), then we say they are
d-separated (A ⊥⊥d B | Z). If two variables contain at least one active path for a conditioning set Z, we say that they are
d-connected.

Pearl [1988] uses structural causal models to justify the local Markov condition, which means that d-Separation always
implies independence and allows DAG structures to be factorized. It is possible that two d-connected variables by chance
exhibit some unexpected statistical independence. The assumption of faithfulness Spirtes et al. [2000] ensures that d-
connectedness implies statistical dependence. This assumptions is popular in the causal discovery literature, but we will not
need it for our theoretical results.

B INFORMATION THEORY PRELIMINARIES

Lemma 1 (Chain Rule, [Cover, 1999]). For sets of variables A,B, and subset B′ ⊂ B

I(A : B) = I(A : B′) + I(A : B \B′ | B′) (1)

Definition 1 ([Cover, 1999]). For sets of variables A,B,C, the interaction information is defined,

I(A : B : C) := I(A : B)− I(A : B | C). (2)

A key property of interaction information is that it is symmetric to permutations in its three inputs,

I(A : B : C) = H(A,B,C) +H(A) +H(B) +H(C)−H(A,B)−H(B,C)−H(C,A). (3)
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Another key property is that interaction information can be either positive or negative, differing from mutual information
which is non-negative. The following lemmas will describe two common situations in which we can expect positive and
negative interaction information.

Lemma 2. Given three sets of random variables A,B,C if A ⊥⊥ C | B then I(A : B : C) ≥ 0.

Graphically, Lemma 2 represents a situation where conditioning on B d-separates A and C (i.e. B is a separating set of A
and B). Hence, a sufficient condition to utilize Lemma 2 is A B C, in which case the inequality becomes strict. The
symmetry of interaction information means that it is not important which set of variables is the separating set. Conveniently
I(A : B : C) ≥ 0⇒ I(A : B | C) ≤ I(A : B), meaning we can “drop” conditioned variables in our upper bounds.

The data processing inequality uses each “step” of an active path to upper bound the mutual information.

Lemma 3 (Data Processing Inequality (modified from Cover [1999])). If A ⊥⊥ C | B,D then

I(A : C |D) ≤ min(I(A : B |D), I(B : C |D))

≤ H(B |D). (4)

C REDUNDANCY BOUNDS WITHOUT FUNCTIONAL ASSUMPTIONS

Without the functional assumptions of our framework, we can only provide upper bounds on the context sensitivity.

To decompose the mutual information between sets of vertices M we will use the chain rule:

I(Y : M |X) = I(Y :M |X) + I(Y : M \ {M} |X,M) (5)

Repeated application of the chain rule accumulates conditioned M variables for an arbitrary ordering. This conditioning
represents the interactive nature of distribution shift mechanisms. We will now consider the context sensitivity of an arbitrary
context variable conditioned on some arbitrary set of previously considered M ′ ⊂ M . We will be able to drop this
conditioning on M ′ in our context sensitivity bounds.

Lemma 4. For some Ui ∈ U , and M ′ ⊆M , if Mi Ui Y , then

I(Mi : Y |X,M ′) ≤ H(Ui |X) = H(Ui)− I(Ui : X).

Proof. Using the data processing inequality (Lemma 3),

I(Mi :Y |X,M ′)

≤ min(I(Ui :Mi |X,M ′), I(Ui : Y |X,M ′))

≤ H(Ui |X,M ′)

≤ H(Ui |X)

Lemma 4 gives an information-theoretic quantification of the notion of d-separation, showing that reducing context sensitivity
involves selecting X with high UGOOD redundancy. An invariant set is an extreme case of this rule, in which X has full
redundancy with UGOOD.

Lemma 5. For Ui ∈ U ,X ⊆ V let X ′ = X ∩CH(Ui). If U ∈ UBAD then

I(Mi : Y |X,M ′) ≤ I(Ui : X
′ | Y ) ≤ I(Ui : X

′).

Lemma 5 quantitatively states that we should avoid redundancy with UBAD.

Proof. Mi ⊥⊥d Y by the conditions of the lemma. Because X \X ′ has no vertices in CH(Ui) and there are no other
descendants, Mi ⊥⊥d Y | (X \X ′).

I(Mi : Y |X,M ′) = −I(Mi : Y : X ′ |M ′)

= I(Mi : X
′ | Y,M ′)

− I(Mi : X |M ′)

≤ I(Mi : X
′ | Y,M ′).

(6)



Mi Ui X ′ because Ui is the only descendant of Mi. The DPI gives,

I(MU : X ′ | Y,M ′) ≤ I(U : X ′ | Y,M ′). (7)

We apply Lemma 2 because X ′ Ui M ′

I(MU : X ′ | Y,M ′) ≤ I(U : X ′ | Y ). (8)

We also have X ′ Ui Y from structural sparsity, so applying Lemma 2 gives the final loosest bound.

D GUARANTEEING REDUNDANCY

Though we cannot ever measure the relevance of a proxy with unobserved U , Lemma 6 shows that we can harness the
graphical structure to obtain lower bounds.

Lemma 6 (Unobserved common-cause information). Given a causal DAG G = (V ,E), for any U, Vi, Vj ∈ V that satisfy
Vi U Vj , then I(Vi, Vj : U) ≥ I(Vi : Vj).

Proof. A visualization of this proof is given in Figure 1. Colors are added to the equations in the proof to match this figure.
Begin with the definition of mutual information.

I(Vi, Vj : U) = H(Vi, Vj)−H(Vi, Vj | U) (9)

We can expand the joint entropy of both terms as follows,

H(Vi, Vj) =H(Vi | Vj) +H(Vj | Vi) + I(Vi : Vj) (10)
H(Vi, Vj | U) =H(Vi | Vj , U) +H(Vj | Vi, U) + I(Vi : Vj | U)︸ ︷︷ ︸

=0 because Vi⊥⊥G
dVj |U

(11)

Together, Equations 10 and 11 give:

I(Vi, Vj : U) =H(Vi | Vj , U)+H(Vj | Vi)+I(Vi : Vj)−H(Vi | U, Vj)−H(Vj | U, Vi)
=I(Vi : U | Vj)+I(Vj : U | Vi)+I(Vi : Vj)
≥I(Vi : Vj)

H(U)

H(Vi) H(Vj)

I(Vj : U | Vi)I(Vi : U | Vj)

I(Vi : Vj)

Figure 1: A visual proof for Lemma 6.

Hence, we can lower bound FISO(VG)(UA)’s hold on good information in U (G)
A using Lemma 6,

I((Vi, FISO(Vi)(VA)) : PA(Vi)) ≥ I(VA : Vi). (12)



E DEFERRED PROOFS

E.1 PROOF OF LEMMA 1

Proof. We can rewrite the conditional mutual information making use of U1 ⊥⊥ U2 as follows.

I(U1 : U2 | V ) = −I(U1 : U2 : V )

= −I(U1 : V ) + I(U1 : V | U2)

= −I(U1 : V (U1)) + I(U1 : V (U2) | U2)

= −I(U1 : V (U1)) + I(U1 : V (U1)) = 0.

E.2 PROOF OF LEMMA 2

Proof. I(U : X) = H(U)−H(U |X). If at least one child of U is conditioned on and transmits (i.e. in V ∈ CH(U)∩X
and vx 6= φ), then H(U | x) = 0. Otherwise, H(U | X) = H(U) because all X ∈ X \CH(U) with active paths to U
must go through colliders in CH(U) - all of which are not in X or not transmitting.

E.3 PROOF OF LEMMA 3

Proof. I(Mi : Y | X) =
∑

X I(Mi : Y | X) is zero unless (Mi, Ui) and (Ui, Y ) both transmit. Furthermore, the DPI
gives I(Mi : Y |X) ≤ H(Ui |X), which is zero if any of the edges from Ui → X for X ∈X transmit.

E.4 PROOF OF LEMMA 4

Proof. I(Mi : Y | X) =
∑

X I(Mi : Y | X) is zero unless both (Mi, Ui) and (Ui, Y ) transmit and at least one of
(Ui, X) transmits for X ∈X , in which case I(Mi : Y | x) = I(Mi : Y | Ui).

E.5 PROOF OF LEMMA 5

Proof. (⇒) We will prove this with the contrapositive. If there is no shared parent between Vi and Vj , then all active paths
must go through Y . However, because at least one of Vi, Vj is not connected to a cause, all paths between Vi and Vj cannot
have a collider at Y (through two causes). This means conditioning on Y blocks the remaining paths.

(⇐) If there is a shared parent U between Vi and Vj , then Vi ← U → Vj is an active path, d-connecting the two vertices. If
Vi and Vj each have corresponding parents Ui, Uj ∈ PA(Y ), then Vi ← Ui → Y ← Uj → Vj is an active path conditioned
on Y .

E.6 PROOF OF LEMMA 6

Proof. The proof follows from Lemma 5. Adjacent edges in GY either indicate shared parents or that both vertices have a
(potentially different) cause of Y as their parent.

If Vi and Vj share a parent, then PA(Vi) ⊆ UGOOD implies UGOOD ∩PA(Vj) 6= ∅, so Vj has at least one “good” parent.
The symmetric argument holds for PA(Vi) ⊆ UBAD.

If Vi and Vj both have at least one causal parent, then we know Vi, Vj 6∈ V BAD. We know both vertices have at least one
good U as a parent, so it trivially follows that both are either in V GOOD or V AMBIG.



E.7 PROOF OF THEOREM 1

Proof. The only potential conditioned collider is Y , which is not allowed to be separable by partial faithfulness. Hence,
partial faithfulness guarantees that we can construct GY from conditional independence tests because d-connection implies
dependence between V .

The requirements on V ∗ given by the theorem ensure that every V ∈ V has at least one label from an adjacency to a
V ∗ ∈ V ∗ in GY .

The algorithm adds “good” labels to all vertices with a known good parent and “bad” labels to all vertices with a known bad
parent. Therefore, all “ambigious” vertices are correctly labeled.

We now only need to guarantee that that the “good” and “bad” vertices are not ambiguous. If V were ambiguous, it would
be connected to a U of the opposite label (i.e. a “good” vertex would be connected to a bad U ). Such a U would have at
least one V ∗ ∈ V ∗ ∩CH(U) which would be adjacent to V and have given V the label of U , a contradiction.

E.8 PROOF OF LEMMA 7

Proof. I(Mi : Y |X) =
∑

x∈X Pr(x) I(Mi : Y | x). Now, we have

I(Mi : Y | x) = H(Mi | x) = H(Ui | x)

if both (Mi, Ui) and (Ui, Yi) edges transmit, which occurs with probability αMi,Ui
αUi,Y . Pulling this coefficient outside of

the sum gives I(Mi : Y |X) = αMi,Ui
αUi,Y H(Ui | x).

E.9 PROOF OF LEMMA 8

Proof. Ui ∈ UBAD means Mi Ui Y , so I(Mi : Y ) = 0.

I(Mi : Y |X) = −I(Mi : Y : X)

≤ I(Mi : X | Y )

≤ I(Ui : X | Y ) = 0

(13)

The final inequality comes from the data processing inequality.

E.10 PROOF OF LEMMA 9

Proof. Consider the function FC(VA) = FC(G,B)) = FISO(VG)(G). By definition,

I(FISO(VG)(G) : VG | Y ) = I(G : VG | Y ) (14)
= I(VA : VG | Y ). (15)

Hence, FC is in the feasible set of the optimization function defining isolation functions. Furthermore, FC(VA) is only a
function of G and G ⊥⊥ UB | Y , so we can also conclude that FC(VA) ⊥⊥ UB . This means

H(FC(VA) | Y ) = H(FC(VA) | UB , Y )

≤H(FISO(VG)(VA) | UB , Y )

≤H(FISO(VG)(VA) | Y )− I(FISO(VG)(VA) : UB | Y ).

Hence, if I(FISO(VG)(VA) : UB | Y ) > 0, thenH(FC(VA) | Y ) < H(FISO(VG)(VA) | Y ), contradicting the minimality of
FISO(VG)(VA).



E.11 PROOF OF THEOREM 2

Proof. To shorten some equations, we will use

F (VA) := FISO(VG)(VA | Y ).

We first show that Equation 8 is sufficient for an improvement in relevance. We can expand the relevance of X+ as follows

I(Y : X+) = I(Y : F (VA)) + I(Y : VG | F (VA))

≥ I(Y : VG | F (VA))

≥ I(Y : VG)− I(Y : VG : F (VA)).

(16)

So, for guaranteed improvement in relevance (I(Y : X+) > I(Y : VG)), we need negative I(Y : VG : F (VA)) < 0.
Expanding,

I(Y : VG : F (VA)) = I(F (VA) : VG)− I(F (VA) : VG | Y ). (17)

Thus, Equation 8 gives us the exact condition needed for negative interaction information, guaranteeing improvement.

We can show that the context sensitivity is no worse by separately considering the context sensitivity with PA(UBAD) and
PA(UGOOD). We begin with UBAD. Applying Lemma 9,

I((VG,F (VA)) : U
BAD | Y ) = 0, (18)

which satisfies the conditions for Lemma 8 to ensure us that I(PA(UBAD) : Y |X+) = 0.

Now, consider an arbitrary for MG = PA(UG) ∈ PA(UGOOD). Lemma 7 tells us that

I(MG : Y |X+) = αMG:UG
αUG,YH(UG | C̃HX+(UG)).

We then observe that H(UG | C̃HX+(UG)) ≤ H(UG |X) because entropy is submodular, which leads us to conclude,

I(MG : Y |X+) ≤ I(MG : Y |X).

This completes the proof.

F EXPERIMENTS

F.1 SYNTHETIC EXPERIMENTAL SETUP

MG and MB are drawn from normal distributions with mean 0 and variable standard deviations. All other vertices (other
than Y ) are the average of their parents plus additional Gaussian noise N(0, .2). TA ∈ R2 is generated by applying a
rotation matrix to (T

(G)
A , TB

A )T 1. Y indicates whether its parents sum to a positive number with a 5% probability of flipping
randomly.

F.2 F1 SCORES FOR REAL WORLD EXPERIMENT

We give the F1 scores for the experiment described in Section 7.2 in Table 1.

F.3 REAL WORLD EXPERIMENT IN-DOMAIN PERFORMANCE

Here we provide the results of the in-domain accuracy for the experiment described in Sec. 7.2. Recall, that we use US
Census data and consider distributions shifts across time as suggested by Ding et al. [2021]. Table 2 shows the accuracy
on 2019 data on a held-out dataset (separate from the training split). We repeated the experiment 10 times on different
training/testing splits and report the mean and standard deviation of the accuracy for the largest states in the U.S. As expected,
using all features has the most predictive power for in-domain tasks.

1Many rotations were tried in our experiments with identical results, so we display results from a 45 degree rotation.



Table 1: Comparison of out-of-domain (2021) performance on predicting high income via F1 scores.

State All Features Engineered Features Limited Features
CA 0.684 0.683 0.676
FL 0.459 0.388 0.388
GA 0.541 0.626 0.624
IL 0.563 0.630 0.628
NY 0.688 0.690 0.662
NC 0.475 0.410 0.410
OH 0.519 0.581 0.580
PA 0.531 0.608 0.606
TX 0.554 0.619 0.619
avg 0.557 0.582 0.577

Table 2: Comparison of in-domain (2019) performance on predicting high income via Accuracies.

State All Features Engineered Features Limited Features
CA 0.713 ± 0.0010 0.710 ± 0.0012 0.691 ± 0.0011
FL 0.700 ± 0.0014 0.693 ± 0.0020 0.694 ± 0.0017
GA 0.708 ± 0.0025 0.708 ± 0.0036 0.707 ± 0.0036
IL 0.689 ± 0.0023 0.690 ± 0.0039 0.685 ± 0.0021
NY 0.705 ± 0.0024 0.698 ± 0.0022 0.687 ± 0.0076
NC 0.713 ± 0.0020 0.703 ± 0.0049 0.700 ± 0.0028
OH 0.717 ± 0.0029 0.716 ± 0.0042 0.712 ± 0.0033
PA 0.702 ± 0.0028 0.701 ± 0.0027 0.695 ± 0.0026
TX 0.708 ± 0.0019 0.705 ± 0.0025 0.706 ± 0.0022
avg 0.706 0.703 0.697
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