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Abstract

Statistical prediction models are often trained on
data that is drawn from different probability distri-
butions than their eventual use cases. One approach
to proactively prepare for these shifts harnesses the
intuition that causal mechanisms should remain
invariant between environments. Here we focus
on a challenging setting in which the causal and
anticausal variables of the target are unobserved.
Leaning on information theory, we develop fea-
ture selection and engineering techniques for the
observed downstream variables that act as proxies.
We identify proxies that help to build stable models
and moreover utilize auxiliary training tasks to ex-
tract stability-enhancing information from proxies.
We demonstrate the effectiveness of our techniques
on synthetic and real data.

1 INTRODUCTION

The principle assumption when building any (not necessar-
ily causal) prediction model is access to relevant data for the
task at hand. When predicting label Y from inputs X , this
assumption reads that the data is drawn from a (training)
probability distribution X, Y that is identical to the distri-
bution that will generate its use-cases (target distribution).

Unfortunately, the dynamic nature of real-world systems
makes obtaining perfectly relevant data difficult. Data-
gathering mechanisms can introduce sampling bias, yielding
distorted training data. Even in the absence of sampling bi-
ases, populations, environments, and interventions give rise
to distribution shifts in their own right. For example, Zech
et al. [2018] found that convolutional neural networks to de-
tect pneumonia from chest radiographs often relied on site-
specific features, including the metallic tokens indicating
laterality and image processing techniques. This resulted in
poor generalization across sites. Understanding these inter-

site breakdowns in performance is essential to safety-critical
domains such as healthcare.

Transportability and Domain Generalization The first
attempts at handling dissociation between training and tar-
get distributions involved gathering unlabeled samples of
the testing distribution. Within domain generalization (DG),
covariate shift handles a shift in the distribution of X [Shi-
modaira, 2000] and label shift handles a shifting Pr(Y )
[Schweikert et al., 2008]. DG often assumes a stationary
label function Pr(Y | X), which is extremely limiting in
real-life applications.

To address these limitations, one can assume the label func-
tion is stationary for a subset of the covariates in X , called
an invariant set in Muandet et al. [2013] and Rojas-Carulla
et al. [2018]. The transportability problem concerns itself
with finding such an invariant set X .

One approach to transportability has been to capture shift-
ing information from a collection of datasets [Rojas-Carulla
et al., 2018, Magliacane et al., 2018]. Such techniques re-
quire access to a comprehensive set of datasets that repre-
sent all possible shiftings. A causal perspective developed
in Storkey et al. [2009] and Pearl and Bareinboim [2011]
instead uses graphical modeling via selection diagrams to
model shifting mechanisms. This approach requires access
to multiple datasets to learn these mechanisms, but does not
require that those datasets span the entire space of possi-
ble shifting. Such approaches also allow the use of domain
expert knowledge when building selection diagrams. A de-
tailed comparison of stability in the causal and anticausal
scenario is given in Schölkopf et al. [2012].

Contributions The causal perspective to distribution shift
is obscured when we lack direct measurements of the causes
and effects of Y . Such settings arise from noisy measure-
ments, privacy concerns, as well as abstract concepts that
cannot be easily quantified (such as “work ethic” or “inter-
ests”). Instead, we will focus on a setting where we only
measure proxies for the causes and effects of Y , see Fig. 1
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for an example. All of these proxies are descendants of U –
a case which is common in medicine, where the measured
variables are often blood markers (or other tests) that are
indicative of an underlying condition.

The proxy setting is difficult to address in standard trans-
portability framework. While previous approaches to par-
tially observed systems suggest restricting model inputs to
those on stable paths [Subbaswamy and Saria, 2018], no
observed proxies satisfy this condition in our setting. That
is, even if probability of Y given its unobserved causes is in-
variant, the probability of Y given the observed proxies may
vary, along with the marginal probability of those proxies.

We will use concepts from causal inference and information
theory to define and study the proxy-based transportabil-
ity problem. Our framework will demonstrate that perfection
is indeed the enemy of good – some variables (although with
an unstable relationship to the target) should still be included
as features to build a model with improved stability.

A primary goal of this paper will be to distinguish between
proxies that are “helpful” or “hurtful” for stability - a prop-
erty that they inherit from the causal and anti-causal vari-
ables whose information they contain. The stability of these
unobserved variables depends on the transportability of their
causal structure, which is unobserved. We will present a
strategy for feature selection based on properties that prop-
agate from the underlying causal structure to its observed
proxies. Specifically, we will build on the observation that
post-selecting on a single value of the prediction label Y
induces a special independence structure, which the proxies
for the causes and effects of Y also inherit. We use this to
classify proxies from partial knowledge of a few “seeds” - a
technique we call proxy bootstrapping.

It is possible that some proxy variables will contain infor-
mation about both stable and unstable hidden variables. We
call these ambiguous proxies because it is unclear whether
they will improve or worsen the model’s transportability.
Inspired by node splitting [Subbaswamy and Saria, 2018],
we introduce a method we call causal information splitting
(CIS), which can improve stability of our models at no cost
(and even some benefit) to the distribution shift robustness.
Again exploiting the inherited independence structure from
post-selecting on Y , CIS isolates stabilizing information
using seemingly unrelated auxiliary prediction tasks on the
covariates. While theoretical guarantees require a number of
assumptions, we demonstrate the surprising ability of CIS to
separate stabilizing information from ambiguous variables
on synthetic data experiments with relaxed assumptions.
Furthermore, we demonstrate CIS’s potential on U.S. Cen-
sus data which were strongly shifted due to the COVID-19
pandemic. While plenty of experiments have confirmed that
techniques for robust models do not consistently provide
benefits over empirical risk minimization [Gulrajani and
Lopez-Paz, 2021], our proposed technique provides benefits

for an income prediction task in the majority of tested states.

2 RELATED WORK

Apart from work on transportability, there is an increasing
body of work on domain generalization, see Quinonero-
Candela et al. [2008] for an overview. While we focus on
proactively modeling shifts, work on invariant risk mini-
mization [Arjovsky et al., 2019, Bellot and van der Schaar,
2020] has approached this problem when given access to the
shifted data on which the models will be used. Recent work
further generalizes to unseen environments constituting mix-
tures [Sagawa et al., 2019] and affine combinations [Krueger
et al., 2021]. Data from multiple environments can also be
used for causal discovery [Peters et al., 2016b, Heinze-Deml
et al., 2018, Peters et al., 2016a].

Another line of work seeks robustness to small adversar-
ial changes in the input that should not change the output
(with attacks, e.g. Croce and Hein [2020] and defenses,
e.g. Sinha et al. [2018]). Moving from small changes to
potentially bigger interventions, work on counterfactual ro-
bustness and invariance, introduces additional regularization
terms [Veitch et al., 2021, Quinzan et al., 2022]. Our work
differs by allowing for interventions that change the label.

We do not address the tradeoffs associated with robustness
and model accuracy in this paper. Such tradeoffs are a natu-
ral consequence of restricting the input information for our
model, since unstable information is still useful in unper-
turbed cases. This problem is generally addressed by Oberst
et al. [2021] via regularization.

3 BACKGROUND

General Notation Uppercase letters denote random vari-
ables, while lowercase letters denote assignments to those
random variables. Bold letters denote sets/vectors. The paper
will use concepts from information theory, withH(A) indi-
cating the entropy of A, I(A : B) indicating the mutual
information between A,B, and I(A : B : C) indicating
the interaction information betweenA,B,C. A short sum-
mary of key ideas (including the data processing inequality
(DPI) and chain rule) is given in Appendix B (see Cover
[1999] for more details).

Causal Graphical Models Graphically modeling distri-
bution shift makes use of causal DAGs. For a causal DAG
G = (V ,E), the joint probability distribution factorizes
according to the local Markov condition,

Pr(v) =
∏
v∈v

Pr(v | paGv(V )).

PAG(V ),CHG(V ) denote the parents and children of V in
G. Following the uppercase/lowercase convention, pav(V )
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is an assignment to PA(V ) using the values in v.1 DEG(V )
and ANG(V ) denote the descendants and ancestors respec-
tively. FM(V ) = PA(V ) ∪CH(V ) denotes the “family.”

We will rely on the concepts of d-separation and active
paths to discuss the independence properties of Bayesian
networks, which are discussed in Appendix A. See Pearl
[2009] for a more extensive study.

Active Path Notation In addition to using A ⊥⊥d B | C
to indicate d-separation conditioned on C, we will develop
a notation to refer to sets of variables that act as “switches”
for d-separation. A C B means that we have
both A 6⊥⊥d B and A ⊥⊥d B | C. Conversely, we have
A C B if A ⊥⊥d B, but A 6⊥⊥d B | C (i.e.
conditioning on C renders A and B d-connected).

Graphically Modeling Distribution Shift Borrowing
terms from Magliacane et al. [2018], we will begin with
a graphical model G = (V ∪U), calling U ∪V the system
variables with (un-)observed variables. In addition, we are
also given a set of context variables M , which model the
mechanisms that shift our distribution. The augmentation
of G with M gives what we call the distribution shift dia-
gram (DSD), G+ = (V ∪U ∪M ,E ∪EM ), for which
G is a subgraph, with additional vertices M introducing
shifts along EM . The transportability problem [Pearl and
Bareinboim, 2011] involves finding an input set X ⊆ V
such that Pr(Y | X) = Pr(Y | X,M). Such a set X ,
called an “invariant set” in Magliacane et al. [2018], blocks
all possible influence from the mechanisms of the dataset
shift. Pearl and Bareinboim [2011] shows this framework is
capable of modeling sampling bias and population shift.

4 SETTING

This paper will consider the proxy-based transportability
(PBT) setting. PBT focuses on the role of proxy variables in
feature selection by assuming all of the causes and effects
U = FM(Y ) are unobserved.2 We are given access to a list
of “visible proxy variables” V \{Y } which are descendants
of at least one U ∈ U . Hence, V can be thought of as the
union of overlapping subsets CH(U) for each U ∈ U .

We will assume that there are no edges directly within U
or within V , which we call systemic sparsity. See Figure 1
for an example of this setting. This assumption enforces
two useful independence properties: (1) Vi ⊥⊥ Vj | U for
Vi, Vj ∈ CH(U) and (2) Ui ⊥⊥ Uj | Y for Ui 6= Uj ∈ U .
Systemic sparsity guarantees that a discoverable causal

1PA(V ) ⊆ V
2This assumption is not necessary but allows us to focus on

more difficult questions that have not been answered by previous
work. Namely, direct causes and effects can be visible or have
perfect proxies without changing the results of the paper.

structure exists within the unobserved variables and sim-
plifies the interactions between the proxies.

We will build our theory on distribution shift diagrams G+ =
(V ∪U ∪M ,E ∪EM ) with one Mi ∈M connected to a
corresponding Ui ∈ U . Each Mi models a different shifting
mechanism for each unobserved cause and effect of Y . It is
common to assume there is no direct shifting mechanism
acting on Y - which comes without loss of generality since
such a mechanism can be thought of as another unobserved
cause [Pearl and Bareinboim, 2011, Peters et al., 2016b].

In this setting, a perfect invariant set X in which Y ⊥⊥d

M |X does not exist. Proxy-based transportability will in-
stead seek to minimize the influence of the context variables
on our label function. Borrowing concepts from information
theory, the task in the proxy-based transportability problem
corresponds to finding a set of features X that minimizes
the conditional mutual information between the label and
the environment. We call this quantity, I(Y : M | X),
the context sensitivity. To allow for feature engineering,
we define these features to be the output of a function,
X = F (V \ {Y }) which can capture higher-level rep-
resentations of V \ {Y }.

Challenges in PBT The PBT setting is difficult to ad-
dress using existing methods for transportability. Building a
model on the causes PA(Y ) as in Schölkopf et al. [2012]
is impossible because all of the causes are unobserved. Fur-
thermore, finding a separating set as in Magliacane et al.
[2018], Pearl and Bareinboim [2011] is also impossible for
the same reason. Proxies can contain combinations of both
stable and unstable information when they are connected
to multiple U ∈ U . Introduced in Subbaswamy and Saria
[2018], “node splitting” requires knowledge of the structural
equations that govern a vertex to remove unstable informa-
tion from ambiguous variables, which can only be learned if
the causes of the split node are observed. This requirement
limits node splitting’s power in the proxy setting.

4.1 INVERTIBLE DROPOUT FUNCTIONS

We will demonstrate the failure of existing transportability
approaches in this setting using a counterexample built on
structural equations models with cleanly interpretable en-
tropic relationships. This construction will show the cost of
restricting features to those with stable paths to the predic-
tion variable Y , and serve as a framework for understanding
the problem in general. For a discussion of relaxations, see
Sec. 8 and for a demonstration that our method can work in
real-world settings (where the assumption does not hold),
see Sec.7.

Our restricted structural equations give edges from A to B
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(a)

M1

U1

V1 V2 V3 V4 V5 V6 V7

U2

M2

U3

M3

Y

(b)

Income

Pandemic

Interests Employment Residence Medicaid Eligibility

Commute Medicaid StatusEducation

Figure 1: Examples of the G+ considered for the paper. (a) shows a generic setup where U1 is a hidden cause of Y , and
U2, U3 are hidden effects. (b) shows a plausible model explaining the success of our real-data experiment in Section 7.2.

described by an invertible function with “dropout” noise,

B(A)(A) =

{
TA,B(A) with probability αA,B

φ with probability 1− α
. (1)

TA,B(·) is a function that is invertible, with TA,B(φ) = φ.
The probability that information from the parent is preserved
is given by αA,B ∈ [0, 1]. We will refer to B(A)(A) 6= φ
as “transmission,” and αA,B as the “probability of trans-
mission.”3 φ, called “null”, is a value that represents the
dropout, or the failure of the edge to “transmit”.

The structural equation for a vertex B given its parents is a
deterministic function of these B(A),

B = TB({B(A)(A) for A ∈ PA(B)}), (2)

where TB is not necessarily an invertible function.

For functions with many children, the probability that at
least one of their children transmits is

αA,CH(A) := 1−
∏

B∈CH(A)

(1− αA,B). (3)

Separability and Faithfulness If TB is invertible, we say
that B is a separable variable, which means that a child B
with more than one parent can be split into separate dis-
connected vertices B(A) for A ∈ PA(B), each with the
structural equation given by Equation 1 (See Figure 2). Sep-
arable variables make up a special violation of faithfulness
in that conditioning on separable colliders no longer opens
up active paths, illustrated by Lemma 1.

Lemma 1 (Separability violates faithfulness). If U1

V U2 and V is separable, then U1 6⊥⊥d U2 | V , but
U1 ⊥⊥ U2 | V .

The proof follows from the definition of mutual information
and the fact that U1 ⊥⊥ U2 | V .

3The direction of the edge for these αA,B will sometimes be
arbitrary, in which case the ordering of the vertices is unimportant.

B

A1 A2

B(A1) B(A2)

A1 A2

B

Figure 2: A diagram showing separability.

Our setting will rely on the assumption of faithfulness of the
sub-graph on the U ∪ {Y } vertices for proxy bootstrapping,
as is the case for algorithms attempting any degree of struc-
ture learning. Specifically, we will require that any active
path between two proxies Vi, Vj that does not travel through
any other vertices in V must imply statistical dependence
(we call this “partial faithfulness”). When we move to causal
information splitting, we will allow specific violations of
faithfulness that come from separable proxies V in order
to illustrate an ideal use-case of our method. This does not
contradict partial faithfulness.

Transmitting Active Paths A convenient aspect of these
structural equations is that αAB controls the mutual infor-
mation between A and its child B(A),

I(A : B(A)) =H(A)−H(A | B(A))

=H(A)− Pr(B(A) = φ)H(A | B(A) = φ)

− Pr(B(A) 6= φ)H(A | B(A) 6= φ)

An important insight is that H(A | B(A) = φ) = 0 and
H(A | B(A) 6= φ) = H(A). Applying this gives,

I(A : B(A)) = H(A)− (1− αA,B)H(A) = αA,BH(A).

This aspect generalizes to active paths. For a length-2 path
A → B → C, I(A : C) = I(A : C(B)) = H(A) −
H(A | C(B)). Again, we can break up H(A | C(B)) into
H(A | C(B) = φ) = 0 and H(A | C(B) 6= φ) = H(A).
Hence, reasoning about mutual information reduces to the
task of determining the probability that one of the endpoints
is null. In our setup, the dropout events of different edges are
independent events. Hence, I(A : C) = αA,BαB,C H(A).
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Conditioning adds an additional complication. Notice that
transmitting active paths can “transfer” a conditioning. That
is,H(A | x) = 0 when there is only one active path between
A and X (or X to A) and it transmits. In the next section,
we will study two cases that emerge in the PBT problem:
colliders and non-colliders.

5 CONTEXT SENSITIVITY

We quantify robustness through the dependence on environ-
mental mechanisms and the label function.

Definition 1 (Context sensitivity). Context sensitivity of a
mechanism M ∈M is defined as I(Y :M |X).

If X d-separates M from Y , the context sensitivity is 0
and training on X to predict Y yields a model that is robust
across environments M .

We are usually most concerned with the success of our pre-
diction models, something that is limited by the “relevance”,
I(Y : X), of our input. This concept is related to context
sensitivity, and we can rewrite the sensitivity in terms of the
expected relevance across environments.

I(Y :M |X) = I(Y :M)− I(Y :M : X)

= I(Y :M)− I(Y : X) + I(Y : X |M).

5.1 REDUNDANCY

Recall that in our setting we assume that all direct causes
and effects are unobserved. This unobserved set of parents
gives rise to an invariant set S ⊆ U 4. We seek to identify
a subset of visible proxies X ⊆ V to extract information
about S.

Definition 2. For a specific U , we call I(U : X) =
H(U)−H(U |X) the redundancy between U and X .

Lemma 2. In the dropout function setting, let CHX(U) :=
CH(U) ∩X .

I(U : X) = αU,CHX(U)H(U).

Redundancy in the dropout function setting is controlled by
our choice of X via αU,CHX(U), the probability of trans-
mission to at least one child.

Our graphical assumptions ensure that only one potential
active path exists between each M ∈ M and Y - hence
each vertex acts as either a collider or a non-collider in
the interaction of M and Y (and does not do both). We
now demonstrate that redundancy with stable (non-collider)
variables generally improves our context sensitivity, whereas
redundancy with unstable (collider) variables worsens it.

4The Markov boundary of Y would also give an invariant set,
but could include vertices in M that are parents of effects of Y .

“Good” U If Mi and Y do not form a collider at Ui ∈ U ,
we say Ui ∈ UGOOD. From d-separation, we have that
Mi ⊥⊥d Y | Ui for all Ui ∈ UGOOD. For an exam-
ple, UGOOD = {U1, U3} in Figure 1. Let CHX(Ui) =
CH(Ui) ∩X .

Lemma 3 (Redundancy with UGOOD). In the dropout func-
tion setting, for some Ui ∈ U , if corresponding Mi

Ui Y , then

I(Mi : Y |X) = αMi,Ui(1−αUi,CHX(Ui))αUi,Y H(Mi).

Lemma 3 comes from multiplying the probability of trans-
mission of each edge along the pathMi, Ui, Y . We also pick
up a term requiring that the Ui,X edges do not transmit, in
which case conditioning on X would reduce the entropy of
U to nothing and close off the path.

“Bad” U The inclusion of CH(Ui) in X could open
up active paths via colliders of the form Mi → Ui ← Y .
We call the set of these variables UBAD. For an example,
UBAD = {U2} in Figure 1.

Lemma 4 (Redundancy with UBAD). In the dropout func-
tion setting, Ui ∈ U ,X ⊆ V , if Mi Ui Y then

I(Mi : Y |X) = αUi,CHX(Ui) I(Mi : Y | Ui)

Lemma 4 demonstrates that there are still proxies for which
inclusion hurts our model’s robustness. Similar concepts
can be demonstrated via upper bounds when we allow ar-
bitrary sets of structural equations - given in Appendix C.
Optimizing these upper bounds does not give a guarantee
of optimality, but can still point towards a general improve-
ment.

5.2 FEATURE SELECTION IMPLICATIONS

The proxy graphical setup requires X U Y , mean-
ing the relevance of our input is upper bounded by the
redundancy with U , I(X : Y ) ≤ I(U : X).

Lemma 3 shows that proxies of UGOOD help build accurate
and universal models, while Lemma 4 shows that proxies of
UBAD can trade universality for domain-specific accuracy.
Of course, proxies need not lie neatly in these two classes -
many proxies contain a combination of universally-relevant
and domain-relevant features. This suggests multiple classes
of proxy variables.

Definition 3.

V GOOD := CH(UGOOD) \CH(UBAD) (4)

V BAD := CH(UBAD) \CH(UGOOD) (5)

V AMBIG := CH(UBAD) ∩CH(UGOOD) (6)
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The behavior of V GOOD in the dropout function setting
shows how restricting models to invariant features fails; a
high redundancy with UGOOD is beneficial for the context
sensitivity even though the paths from the proxies are unsta-
ble. Inclusion of V GOOD in X improves context sensitivity
even though V GOOD is not made up of direct causes (as
suggested by Schölkopf et al. [2012]) or invariant features
(as suggested by Magliacane et al. [2018] and [Subbaswamy
and Saria, 2018]).

For feature selection, an obvious strategy is to choose
X = V GOOD, avoid V BAD, and potentially try using some
elements in V AMBIG. In the next section we will explore
how we can use non-invertible functions to transform these
V AMBIG into V GOOD.

5.3 PROXY BOOTSTRAPPING

Given the robustness implications of the different classes of
V , their partitioning into good, bad, and ambiguous parti-
tions will be important. We will now demonstrate how to
harness partial information to determine these partitions and
classify proxies. This step is optional if the role of each
proxy is already understood (as is the case when the DAG
is known). The results in this subsection will only require
the graphical assumptions of the PBT setting - i.e. systemic
sparsity, partial faithfulness, and an independent shifting
mechanism Mi for each Ui ∈ U .

We begin with an observation about the independence struc-
ture of the conditional probability distribution on Y .

Lemma 5 (Linking related proxies). Within the graphical
constraints of PBT, if Vi 6⊥⊥d Vj | Y , then either they have a
shared parent (PA(Vi) ∩PA(Vj) 6= ∅) or they both have
at least one parent that is a cause of Y (i.e. PA(Vi) ∩
PA(Y ) 6= ∅ and PA(Vj) ∩PA(Y ) 6= ∅).

Definition 4. For a DSD G+ = {V ∪U ∪M ,E}, define
the dependence graph GY = (V ,EY ) to be an undirected
graph with edges (Vi, Vj) ∈ EY iff Vi 6⊥⊥d Vj | Y .

Lemma 5 tells us that GY will have a clique on the sets
CHG(U) for U ∈ U . Furthermore, conditioning on Y links
its causes, so GY has one large clique on CHG(PA(Y )).
This clique structure can be utilized to enhance partial
knowledge of CH(UGOOD) and CH(UBAD). In this
sense, “birds of a feather flock together” – information about
each clique’s proxies can be a determined from understand-
ing a single member of that clique.

Lemma 6 (Information about seed proxies spreads). If Vi ∈
V GOOD then all neighbors of Vj ∈ NBGY (Vi) are not in
V BAD - i.e. Vj ∈ V GOOD ∩V AMBIG. If Vi ∈ V BAD then
all neighbors of Vj ∈ NBGY (Vi) are not in V GOOD - i.e.
Vj ∈ V BAD ∩ V AMBIG.

Lemma 6 suggests a simple algorithm for bootstrap-
ping the sets V GOOD,V BAD,V AMBIG from a set of
“seed” vertices V ∗ ⊆ V with known assignments to
V GOOD,V BAD,V AMBIG.

1. Construct GY according to Definition 4 using condi-
tional independence tests.

2. For each V ∗ ∈ V ∗, if V ∗ ∈ V GOOD then add a
“good” label to NB(V ∗). If V ∗ ∈ V BAD then add a
“bad” label to NB(V ∗).

3. All V ∈ V \ V ∗ with both “good” and “bad” labels
receive an “ambigious” label instead.

Theorem 1 (Proxy bootstrapping works). Upon termination
of proxy bootstrapping all vertices with a single label are
correctly described if :

1. Partial faithfulness holds.
2. V ∗ has at least one V ∗ ∈ V ∗ ∩ CH(U) for each
U ∈ UGOOD ∩CH(Y ).

3. V ∗ has at least one V ∗ ∈ V ∗ ∩CH(PA(Y )).
4. V ∗ has at least one V ∗ ∈ V ∗ for each U ∈ UBAD.

6 CAUSAL INFORMATION SPLITTING

This section will expand our theory into feature engineer-
ing, which allows us to build inputs on functions of V . A
main takeaway from Section 5 was that we should build
models using proxies for UGOOD and avoid using features
that are proxies for UBAD. The extension of this to engi-
neered features is to build a model on functions of proxies
for which the output of those functions is related to UGOOD

and not related to UBAD. We present two lemmas to for-
malize this notion.

Let C̃HX(Ui) be the children or functions of children of
Ui in X . Lemma 7 shows that building models with more
redundancy with UGOOD (i.e. lower H(Ui | C̃HX(Ui))
improves our context sensitivity in the dropout function
setting.5

Lemma 7 (Engineering redundancy for UGOOD). In the
dropout function setting, if Ui ∈ UGOOD then

I(Mi : Y |X) = αMi,Ui
αUi,Y H(Ui | C̃HX(Ui)).

Of course, even good proxies are related to UBAD through
their connection to Y , so X ⊥⊥ UBAD is impossible. In-
stead, Lemma 8 tells us that if we avoid redundancy with
UBAD after conditioning on Y , we do not pick up any con-
text sensitivity from the associated shifting mechanisms.

Lemma 8 (Avoiding redundancy with UBAD). For some
Ui ∈ UBAD, if we maintain I(Ui : X | Y ) = 0, then
I(Mi : Y |X) = 0.

5Appendix C shows that redundancy with UGOOD lowers an
upper bound on context sensitivity in more general cases
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Recall that ambiguous proxies contain information about
both UGOOD and UBAD. The inclusion of an ambiguous
proxy VA improves context sensitivity because of its redun-
dancy with UGOOD via Lemma 7. This section will develop
a technique for filtering VA into F (VA), which will satisfy
the conditions in Lemma 8. To do this, we will require
separability.

VA

Y

UG UB

MG MB

V
(G)
A

VG VBV
(B)
A

Figure 3: VG ∈ V GOOD, VB ∈ V BAD. VA ∈ V AMBIG

is a linear transformation of two components, V (G)
A , V

(B)
A ,

which are good and bad respectively.

Separable Ambigious Proxies Consider the setup in Fig-
ure 3, where VG ∈ V GOOD, VB ∈ V BAD, and VA ∈
V AMBIG. VA is generated by invertible TA, making it a sep-
arable ambiguous proxy (SAP).6 Splitting VA into compo-
nents allows us to isolate the origins of its ambiguity - the
mixing of good information from V

(G)
A and bad information

from V
(B)
A .

6.1 ISOLATION FUNCTIONS

We would like to isolate V (G)
A from VA to avoid paying the

penalty for V (B)
A . We will do this using isolation functions.

Definition 5. We define an isolation function of Vi on VA,
with optional conditioning on y, to be

FISO(Vi)(VA | y) := argmin
F

H(F (VA | y))

such that I(F (VA) : Vi | y) = I(VA : Vi | y).
(7)

FISO(Vi)(VA | Y ) gives a vector of functions with an entry
for each y ∈ Y .

Note that isolation functions are sufficient statistics for Vi
[Cover, 1999]. Isolation involves maintaining the informa-
tion about Vi while removing excess noise.

Recall from Lemma 8 that in order to avoid worsening
context sensitivity, we want to ensure I(F (VA) : UBAD |
Y ) = 0. Isolation functions on SAPs are well designed
for this purpose, because they enforce the independence
properties of the isolated vertex on their outputs. In order

6While we may still be able to gain useful information from
non-separable proxies, the tradeoffs are difficult to quantify and
hence beyond the scope of this paper.

to achieve I(F (VA) : UBAD | Y ) = 0 while preserving
as much information about UGOOD as possible, an opti-
mal isolation function would be to isolate UGOOD using
FISO(UGOOD)(VA | Y ).

Of course, we do not have access to UGOOD, so our next
best option is to isolate V GOOD using FISO(V GOOD)(VA |
Y ), since UBAD ⊥⊥ V GOOD | Y . Lemma 9 shows that the
output of FISO(VG)(VA | Y ) behaves like a good proxy if
VG ∈ V GOOD and VA is a SAP.

Lemma 9 (Isolating V GOOD behaves like V GOOD). For
VG ∈ V GOOD and UB ∈ UBAD and an isolation function
FISO(VG)(VA | Y ),

I(UB : FISO(VG)(VA | Y ) | Y ) = 0.

The benefit from FISO(VG)(VA | Y )’s information about
UGOOD is difficult to quantify for use with Lemma 7, but
lower bounds are obtained in Appendix D.

Even without a quantification of improvement, Theorem 2
shows that isolation functions can avoid worsening the con-
text sensitivity, while certain conditions can guarantee rele-
vance gains for predicting Y .

Theorem 2 (CIS costs and benefits). Consider VG ∈
V GOOD and VA ∈ V AMBIG where VA is a SAP. Also
consider the isolation function FISO(VG)(VA | Y ). We
will compare the context sensitivity of inputs X := {VG}
and X+ := {VG, FISO(VG)(VA | Y ))}. We claim that
I(M : Y | X+) ≤ I(M : Y | X) for all M ∈ M .
Furthermore, if

I(FISO(VG)(VA | Y ) : VG) <

I(FISO(VG)(VA | Y ) : VG | Y ),
(8)

then the relevance improves: I(Y : X+) > I(Y : X).

Theorem 2 tells us that using an isolation function helps
when the function is more predictive of the isolated vari-
able in the post-selected Y distribution than it is in the
full distribution. This condition is sufficient but loose be-
cause it does not take into account direct effects from
I(Y : FISO(VG)(VA | Y )) (for which we have no guar-
anteed bounds). The proof is given in Appendix E.

6.2 AUXILIARY TRAINING TASKS

In the infinite sample regime, consider an “optimal” model
F (·) that predicts Vi using input VA. Optimal models should
utilize all of the information available for prediction in
their inputs, meaning I(F (VA) : Vi) = I(VA : Vi). Infor-
mation theoretically, minimizingH(FVi

(VA)) corresponds
to reducing the outputs of FVi(Vi) to equivalence classes
wherein Pr(VA | FVi(Vi) = f) is constant. This minimiza-
tion corresponds to ensuring FVi

(Vi) does not over-fit to
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the empirical values of VA using noise that is orthogonal to
PA(VA).

Auxiliary training tasks can therefore be used in place of
isolation functions: we can get an approximate isolation
function, F̃ISO(Vi)(VSAP), by training a model to predict Vi
using input VSAP. We do not give any theoretical results
beyond intuition for this interpretation, but will support our
claims with experiments in the next section.

Equation 8 in Theorem 2 also has a nice interpretation within
the training context – the accuracy of the predictor must
degrade when moving from the post-selected data to the
full dataset. More precisely, the conditions for improvement
now translate to

min
F

E[Error(F (VA), VG)]

>
∑
y

Pr(y)min
F

(E[Error(F (VA), VG) | y]),
(9)

which can easily be checked on our training data.

6.3 SUGGESTED OVERALL PROCEDURE

We propose the following procedure for building robust (low
context-sensitivity) models in the PBT problem.

1. Partition the data into constant Y = y and determine
cliques of dependence.

2. Using domain knowledge, identify seeds in
V GOOD,V BAD for proxy bootstrapping (Sec. 5.3).

3. Perform CIS on V AMBIG (Sec. 6.2).
4. Build a prediction model for Y using V GOOD and the

CIS-engineered V AMBIG.

7 EXPERIMENTS

We will now demonstrate the effectiveness of these meth-
ods on synthetic and real world data. Full code for both
of these experiments is available at https://zenodo.
org/badge/latestdoi/651823136.

7.1 EXPERIMENTS ON SYNTHETIC DATA

We generate data for the DAG in Figure 3 based on normal
distributions, see details of the setup in Appendix F. We vary
the standard deviations of normally distributedMG andMB .
The training data is drawn from σ(MG) = σ(MB) = 1,
while the testing data varies both quantities and thus the in-
fluence of the context. We measure the accuracy of our fea-
ture engineering based on CIS, Ŷ (3)(VG, F̃ISO(VG)(VA)),
that utilizes the auxiliary task approximation to isolate
VA’s predictive information about VG. We compare it to
Ŷ (1)(VG, VA) trained on V GOOD∪V AMBIG and Ŷ (2)(VG)
trained on only V GOOD. For a theoretical limit of CIS we

also compare to Ŷ (4)(VG, V
(G)
A ) although access to V (G)

A

is usually not possible.

(a)
1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
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Varying (MG)

Y(1)(VG, VA)
Y(2)(VG)
Y(3)(VG, FISO(VG|Y = 0)(VA), FISO(VG|Y = 1)(VA))
Y(4)(VG, V(G)

A )

(b)
1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
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0.80
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0.84
0.86
0.88
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Figure 4: Results from our experiments on synthetic data.
Single standard deviation confidence intervals are shaded in
the corresponding colors.

Results When comparing feature selection approaches,
we observe in Figure 4 that including VA results in higher
accuracy of Ŷ (1) over Ŷ (2) when the shift acts on UGOOD

(a) or is small for UBAD (b). However, the accuracy of Ŷ (2)

deteriorates with bigger shifts in UBAD.

Our proposed method based on causal information splitting
offers a middle ground. Ŷ (3) is able to maintain the same
robustness as Ŷ (2) while taking advantage of some of the
gains enjoyed by Ŷ (1) in (a). In fact, Ŷ (3) performs very
similarly to Ŷ (4), which had a-priori knowledge of the SAP
components and used only V (G)

A . These improvements were
achieved despite not meeting the sufficient condition for
increasing relevance in Theorem 2.

7.2 EXPERIMENTS ON CENSUS DATA

We use US Census data processed through folktables Ding
et al. [2021] to predict whether the income of a person
exceeds 50k following Dua and Graff [2017]. To test out-
of-domain generalization, prediction models were built on
2019 pre-pandemic data and evaluated on 2021 data during
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the pandemic.7 As model inputs, we consider commute time
(coded as JWMNP in the dataset), a flag whether the per-
son received Medicaid, Medical Assistance, or any kind of
government-assistance plan for those with low incomes or
a disability (coded as HINS4) and education level (SCHL).
This small feature set was purposefully selected to see a
starker effect of including/excluding individual features, in-
cluding a feature with relatively stable predictive power
(education level) and two features heavily affected by the
pandemic through increased work-from-home and medi-
caid’s continuous enrollment provision.

Our auxiliary task from Sec. 6.2, referred to as engineered
features, does not use HINS4 and JWMNP directly as in-
put features to predict the income level. Instead it uses
HINS4 and JWMNP to train two models predicting the
education-level: One trained on examples with high income
and one trained on examples with low income. These predic-
tions based on HINS4 and JWMNP together with the actual
education-level serve as input features to the final model.
We compare the model built on these engineered features to
ones using all three features directly (all features) or using
just the stable education feature (limited features).

We use logistic regression from sklearn with l1 regulariza-
tion to build models based on the different feature sets that
the three methods created. l1 regularization yielded better
generalization than l2 regularization.

Table 1: Comparison of out-of-domain (2021) performance
via mean of accuracy.

State All Features Engineered Features Limited Features
CA 0.712 ± 0.0011 0.711 ± 0.0014 0.692 ± 0.0014
FL 0.683 ± 0.0012 0.678 ± 0.0018 0.68 ± 0.0013
GA 0.689 ± 0.0025 0.707 ± 0.0055 0.709 ± 0.0029
IL 0.662 ± 0.0026 0.689 ± 0.0033 0.684 ± 0.0019

NY 0.707 ± 0.0022 0.702 ± 0.0025 0.687 ± 0.008
NC 0.691 ± 0.0031 0.684 ± 0.0034 0.683 ± 0.003
OH 0.689 ± 0.0022 0.703 ± 0.004 0.696 ± 0.0029
PA 0.672 ± 0.0017 0.695 ± 0.0023 0.688 ± 0.0022
TX 0.69 ± 0.0029 0.712 ± 0.0028 0.712 ± 0.0027
avg 0.688 0.698 0.692

Results Table 1 reports the mean and standard deviation of
accuracies for 10 different test splits. For the F1 scores of
the same experiment, see Appendix F. Using all features
leads to the best in-domain performance (see Appendix
F), but not necessarily the best out-of-domain performance.
Dropping the ambiguous features hurts predictive power
in limited feature models, but helps with robustness varies
across the states: these limited models even perform better
on 2021 data. Our proposed feature engineering using CIS
achieves the best of both worlds, with the best mean out-of-
domain accuracy of 0.698. It also achieves close to the best
out-of-domain accuracy for 8 out of 9 states.

7We ignored the experimental release of 2020 data to ensure a
starker distribution shift.

8 DISCUSSION

In this paper we studied the challenging problem of building
models that are robust to distribution shift when causes
and effects of the target variable are unmeasured. Among
the observed noisy proxies, we showed how to perform
feature selection based on conditional independence tests
and knowledge about some seed nodes.

After bootstrapping, we often have a significant number of
ambiguous proxies, which have components that are both
helpful and hurtful to our model’s robustness. Through CIS,
however, we showed how to isolate robust predictive power
from these ambiguous proxies using auxiliary learning tasks.
We proved that including these engineered features safely
increases robustness in our setting, while also improving
accuracy. In our experiments on real census data under shifts
due to the pandemic, we showed that the engineered features
provided benefits for most states over using the ambiguous
features directly or completely ignoring them. While our
theoretical framework is involved, these experiments demon-
strate improvements outside of our assumptions.

Relaxation of Assumptions A number of our assump-
tions can be softened. One softening of systemic sparsity
would involve allowing edges within U so long as their
dependence is relatively weak. Such a relaxation would in-
volve using mutual information (or correlation) thresholds
instead of independence tests. Sparsity assumptions may
also be relaxed by building on ideas from mixtures of DAG
structures like [Gordon et al., 2021].

The strongest assumption is that of separable ambiguous
proxies. Under a softening of the separability assumption,
we cannot guarantee that we have isolated only robust infor-
mation from our ambiguous proxy – some unstable infor-
mation associated with UBAD may slip through. However,
degrees of separability may still guarantee the benefit of the
engineered feature.

While separability corresponds to invertability with linear
functions, there are many examples of nonlinear that are
separable. For example, when the effects of two causes
have significantly different magnitudes they can be easily
disentangled, such as fine and hyper-fine structures in atomic
energy levels. Work on data fission [Leiner et al., 2022] may
provide valuable insights to help understand the degrees of
separability for different choices of functions.
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