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1 PROOFS AND DERIVATIONS

In this appendix, we report the proofs and derivations, we have omitted in the main paper.

1.1 PROOFS OF SECTION 4

Proof of Proposition 4.1

Proof. Let us consider the following derivation:

Ex„Ih˝f rP srfpxqs ´ Ex„P rfpxqs “
ż

X

ppxqhpfpxqq

Ex„P rhpfpxqqs
fpxqdx´ Ex„P rfpxqs

“
Ex„P rhpfpxqqfpxqs ´ Ex„P rfpxqsEx„P rhpfpxqqs

Ex„P rhpfpxqqs

“
Covx„P rhpfpxqq, fpxqs

Ex„P rhpfpxqqs
,

where we have exploited the definition of Ih˝f and the definition of covariance. The result is obtained by recalling that h
is increasing and the covariance between two increasing functions of the same random variable (i.e., h and the identity
function) is non-negative [Cuadras, 2002].

Proof of Theorem 4.2

Proof. We are going to actually prove a more general statement in which we consider a non-negative monotonic increasing
function h that is composed to function f , i.e., h ˝ f . The theorem statement can be obtained by setting h to be the identity
function.

We start with (i). First of all, we observe that since h is monotonically strictly-increasing it holds that Varx„P rfpxqs “ 0 if
and only if Varx„P rhpfpxqqs “ 0. P is a fixed point of Ih˝f , i.e., P “ Ih˝f rP s a.s. if and only if for all x P X it holds a.s.:

ppxq “
ppxqhpfpxqq

Ex„P rhpfpxqqs
,

that occurs if and only if either ppxq “ 0 (x R supppP q) or hpfpxqq “ Ex„P rhpfpxqqs. (ñ) Whenever ppxq is not
zero, function hpfpxqq is a constant in supppP q and, consequently, its variance under P is zero. (ð) Suppose that
Varx„P rhpfpxqqs “ 0, then hpfpxqq “ Ex„P rhpfpxqqs almost surely and, consequently ppxqhpfpxqq

Ex„P rhpfpxqqs “ ppxq almost
surely. Let us now consider (ii). First of all, we can easily observe that for every k P N:

pIh˝f qk rP spxq “
ppxqfpxqk

Ex„P rfpxqks
.
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Let f˚ “ maxxPsupppP qtfpxqu, consider the function gkpxq “ ppxq
´

fpxq
f˚

¯k

and the limit:

lim
kÑ8

gkpxq “ lim
kÑ8

ppxq

ˆ

fpxq

f˚

˙k

“

#

ppxq if x P X ˚

0 otherwise
.

Thus, we have:

Q8 “ lim
kÑ8

pIh˝f qk rP spxq “ lim
kÑ8

ppxqfpxqk
ş

X ppxqfpxq
kdx

“ lim
kÑ8

gkpxq
ş

X gkpxqdx
“

#

ppxq
ş

X˚ ppxqdx
if x P X ˚

0 otherwise
.

Thus, the support of Q8 is given by X ˚. Consequently, the expectation of f under Q8 is given by:

Ex„Q8rfpxqs “
ż

X
q8pxqfpxqdx “ f˚.

Proof of Theorem 4.3

Proof. We are going to actually prove a more general statement in which we consider a non-negative monotonic increasing
function h that is composed to function f , i.e., h ˝ f . The theorem statement can be obtained by setting h to be the identity
function.

Let us consider the following derivation:

J :“

ż

X
ppIh˝f rP sq pxqq

α
ppxq1´αdx “

ż

X

ˆ

ppxqhpfpxqq

Ex„P rhpfpxqqs

˙α

ppxq1´αdx

“
Ex„P rhpfpxqqαs
Ex„P rhpfpxqqsα

.

By observing that Dα pIh˝f rP s}P q “
1

α´1 log J , we obtain the result. For α “ 1, we provide an independent derivation:

DKLpIh˝f rP s}P q “

ż

X

ppxqhpfpxqq

Ex„P rhpfpxqqs
log

ppxqhpfpxqq

Ex„P rhpfpxqqsppxq
dx

“
Ex„P rhpfpxqq log hpfpxqqs ´ Ex„P rhpfpxqqsEx„P rlog hpfpxqqs

Ex„P rhpfpxqqs

“
Covx„P rhpfpxqq, log hpfpxqqs

Ex„P rhpfpxqqs
,

where we exploited the definition of covariance in the last line.

1.2 PROOFS OF SECTION 5

Proof of Proposition 5.1

Proof. We are going to actually prove a more general statement in which we consider a non-negative monotonic increasing
function h that is composed to function f , i.e., h ˝ f . The theorem statement can be obtained by setting h to be the identity
function.

First of all, we observe that since Ex„Q
”

ppxq
qpxqhpfpxqq

ı

“ Ex„P rhpfpxqqs, for α P r2,`8q, the absolute central α-moment
is smaller or equal than the (non-central) α-moment. Thus, for α P r2,`8q, we have:

Ex„Q
„
ˇ

ˇ

ˇ

ˇ

ppxq

qpxq
hpfpxqq ´ Ex„P rhpfpxqqs

ˇ

ˇ

ˇ

ˇ

α

ď Ex„Q
„ˆ

ppxq

qpxq
hpfpxqq

˙α



“

ż

X

ˆ

ppxqhpfpxqq

Ex„P rhpfpxqqs

˙α

qpxq1´αdxEx„P rhpfpxqqsα

“

ż

X
ppIh˝f rP sqpxqqα qpxq1´αdxEx„P rhpfpxqqsα

“ exp

"

pα´ 1q
1

α´ 1
log

ż

X
ppIh˝f rP sqpxqqα qpxq1´αdx

*

Ex„P rhpfpxqqsα,

where the first inequality follows from Lemma 1.1 with y “
´

ppxq
qpxqhpfpxqq

¯

{Ex„P rhpfpxqqs. By applying the definition
of Rényi divergences, we get the result.

Proof of Theorem 5.2

Proof. Let us consider the following derivation:

Ex„Qrhpfpxqqαs “
ż

X
qpxqhpfpxqqαdx

“

ż

X
ppxq

qpxq

ppxq
hpfpxqqαdx

“

ż

X
ppxqhpfpxqqαdx`

ż

X
ppxq

ˆ

qpxq

ppxq
´ 1

˙

hpfpxqqαdx

ě

ż

X
ppxqhpfpxqqαdx`

1

α´ 1

ż

X
ppxq

˜

1´

ˆ

ppxq

qpxq

˙α´1
¸

hpfpxqqαdx (1)

“ Ex„P rhpfpxqqαs `
1

α´ 1

ż

X
ppxqhpfpxqqαdx

´
1

α´ 1

ż

X
ppxq

ˆ

ppxq

qpxq

˙α´1

hpfpxqqαdx

“ Ex„P rhpfpxqqαs ` Ex„P rhpfpxqqsα
1

α´ 1

ż

X

ˆ

ppxqhpfpxqq

Ex„P rhpfpxqqs

˙α

ppxq1´αdx

´ Ex„P rhpfpxqqsα
1

α´ 1

ż

X

ˆ

ppxqhpfpxqq

Ex„P rhpfpxqqs

˙α

qpxq1´αdx

“ Ex„P rhpfpxqqαs

` Ex„P rhpfpxqqsα
1

α´ 1
exp

"

pα´ 1q
1

α´ 1
log

ż

X

ˆ

ppxqhpfpxqq

Ex„P rhpfpxqqs

˙α

ppxq1´αdx

*

´ Ex„P rhpfpxqqsα
1

α´ 1
exp

"

pα´ 1q
1

α´ 1
log

ż

X

ˆ

ppxqhpfpxqq

Ex„P rhpfpxqqs

˙α

qpxq1´αdx

*

“ Ex„P rhpfpxqqαs `
Ex„P rhpfpxqqsα

α´ 1

´

epα´1qDαpIh˝f }P q ´ epα´1qDαpIh˝f }Qq
¯

,

where line (1) derived from Lemma 1.2. The second inequality was provided in Proposition 6 of [Ghosh et al., 2020].

Proof of Theorem 5.3

Proof. We are going to actually prove a more general statement in which we consider a non-negative monotonic increasing
function h that is composed to function f , i.e., h ˝ f . The theorem statement can be obtained by setting h to be the identity
function.

Let us consider the sequence of distributions pQkqkPN , generated by the iterate in Equation (5), where possible ties are
broken with an arbitrary (possibly with a tie-breaking rule Tk different for every k). From Theorem 5.2, we have for every
k P N:

Ex„Qk`1
rhpfpxqqαs ´ Ex„Qk rhpfpxqqαs



ě
Ex„Qk rhpfpxqqsα

α´ 1

´

epα´1qDαpIh˝f rQks}Qkq ´ epα´1qDαpIh˝f rQks}Qk`1q
¯

ě 0,

where we simply exploited that Qk P arg minQPQ tDαpIh˝f rQks}Qqu. Thus, Ex„Qk rhpfpxqqαs is a non-decreasing
function of k. Since h ˝ f is bounded, it must be that limkÑ8 Ex„Qk rhpfpxqqαs “ µ8 ă 8, that proves convergence.1

Furthermore, being convergent, for k Ñ 8 it must be that Ex„Qk rhpfpxqqαs “ Ex„Qk`1
rhpfpxqqαs and consequently

DαpIh˝f rQks}Qkq “ DαpIh˝f rQks}Qk`1q. Therefore, even if the tie-braking rule prescribes to select Qk`1 ‰ Qk we
could select Qk instead, since it lead to the same divergence value. Consequently, being Qk a solution, we can assert that it
is a stationary point of the function DαpIh˝f rQks}¨q (as well as Qk`1):

0 “ ∇qp¨qDαpIh˝f rQks}Qq|Q“Qk

“
1

pα´ 1qepα´1qDαpIh˝f rQks}QqEx„Qk rhpfpxqqs
∇qp¨q

ż

X
hpfpxqqαqkpxq

αqpxq1´αdx|Q“Qk

“ ´
1

epα´1qDαpIh˝f rQks}QqEx„Qk rhpfpxqqs

ż

X
hpfpxqqαqkpxq

αqpxq´αdx|Q“Qk

“ ´
1

epα´1qDαpIh˝f rQks}QqEx„Qk rhpfpxqqs

ż

X
hpfpxqqαdx.

We observe that the latter expression is zero if and only if the gradient of Ex„Qrhpfpxqqαs w.r.t. Q is zero. Indeed:

∇qp¨qEx„Qrhpfpxqqαs “
ż

X
hpfpxqqαdx.

Thus, the process converges to a stationary point of Ex„Qk rhpfpxqqαs.

Proof of Theorem 5.4

Proof. The proof is a simple application of Lemma 1.3, by taking QÐ P , Q˚ Ð Q:, and P Ð If rP s.

1.3 PROOFS OF SECTION 6

Proof of Theorem 6.1

Proof. We start observing that each addendum of pdα pIf rQξis}Qξ; Φi,jq is non negative. Since all terms are i.i.d., we can
apply unilateral Bernstein’s inequality that allows achieving an exponential concentration. Thus, for every δ P r0, 1s, with
probability at least 1´ δ it holds that:

Ex„ξ

„ˆ

qξipxq

qξpxq
fpxq

˙α

ď pdα pIf rQξis}Qξ; Φi,jq

`

c

2Varxi„Φi,j

”

pdα pIf rQξis}Qξ; Φi,jq
ı

log
1

δ
.

Thus, it remains to provide a bound on the variance term. We exploit the fact that hpfpxqq ď m and that each addendum
represents an i.i.d. random variable:

Varxi„Φi,j

”

pdα pIf rQξis}Qξ; Φi,jq
ı

ď
1

pnjq2

ÿ

kPrjs

ÿ

lPrns

Exk,l„Φi,j

«

ˆ

qξipxk,lq
α

Φi,jpxk,lqqξpxk,lqα´1
fpxqα

˙2
ff

ď
m2α

pnjq2

ÿ

kPrjs

ÿ

lPrns

Exk,l„Φi,j

«

ˆ

qξipxk,lq
α

Φi,jpxk,lqqξpxk,lqα´1

˙2
ff

1Notice that the improvement holds also for α ă 1. Indeed, while it is true that
Ex„Qk rhpfpxqqs

α

α´1
ă 0, but in such a case function

epα´1qp¨q is decreasing in its argument.



“
m2α

nj
Ex„Φi,j

«

ˆ

qξipxq
α

Φi,jpxqqξpxqα´1

˙2
ff

.

1.4 TECHNICAL LEMMAS

Lemma 1.1. Let α P r2,`8q and let y be a non-negative random variable with expectation 1. Then, it holds that
Er|y ´ 1|αs1{α ď Eryαs1{α.

Proof. When y ě 0 and α P r2,`8q, it holds that yα ´ |y ´ 1|α ě y ´ 1. Consequently, we have:

Er|y ´ 1|αs ď Eryα ´ y ` 1s ď Eryαs.

Lemma 1.2. For every x ě 0 and α P p0, 1q Y p1,8q, it holds that:

x´ 1 ě
1

α´ 1

ˆ

1´
1

xα´1

˙

.

Furthermore, for α “ 1, it holds that:

x´ 1 ě log x.

Proof. Consider the auxiliary function gαpxq “ x ´ 1 ´ 1
α´1

`

1´ 1
xα´1

˘

. We are going to prove that the minimum of
gαpxq is zero. Suppose α ą 1, then gαp0q “ 8 and gap8q “ 8. Thus, the minimum must lie in between and since function
gα is differentiable, we have:

B

Bx
gαpxq “ 1´ x´α “ 0 ùñ x “ 1.

Thus, we have gαp1q “ 0. Suppose now that α ă 1, we have gαp0q “ α
1´α ą 0 and gαp8q “ 8. Thus, again, the minimum

must lie in between and with the same calculations as before, we conclude gαp1q “ 0. The case α “ 1 is trivial.

Lemma 1.3. Let P P PpX q and let α P r0, 1q. Let Q Ď PpX q be an p1´ αq-convex [van Erven and Harremoës, 2014,
Definition 4] subset of distributions. Let Q˚ P Q be the α-moment projection:

Q˚ “ arg min
QPQ

tDαpP }Qqu .

If Q˚ exists, then for every Q P Q if holds that:

DαpP }Qq ě DαpP }Q
˚q `DαpQ

˚}Qq.

Proof. The proof of the result is inspired to [van Erven and Harremoës, 2014, Theorem 14]. Let λ P r0, 1s and let us define
Qλ as the p1´ α, p1´ λ, λqq-mixture of Q˚ and Q:

qλpxq “ Z´1
λ

`

p1´ λqq˚pxq1´α ` λqpxq1´α
˘

1
1´α ,

Zλ “

ż

X

`

p1´ λqq˚pxq1´α ` λqpxq1´α
˘

1
1´α dx.

Let us first observe that for λ “ 0, we have Q0 “ Q˚ and Z0 “
ş

X q
˚pxqdx “ 1. Since Q is p1´ αq-convex and Q˚ is the

minimizer over Q, it holds that B
BλDαpP }Qλq|λ“0 ě 0. First of all, we compute:

ż

X
ppxqαqλpxq

1´αdx “ Zα´1
λ

ż

X

“

p1´ λqppxqαq˚pxq1´α ` λppxqαqpxq1´α
‰

dx



B

Bλ
Zλ “

1

1´ α

ż

X

`

p1´ λqq˚pxq1´α ` λqpxq1´α
˘

α
1´α

`

qpxq1´α ´ q˚pxq1´α
˘

dx.

The latter, for λ “ 0, becomes: B
BλZλ

∣∣∣
λ“0

“ 1
1´α

“ş

X q
˚pxqαqpxq1´α ´ 1

‰

. For calculation easiness, instead of directly

operating on DαpP }Qλq, we consider:

B

Bλ

ż

X
ppxqαqλpxq

1´αdx “ Zα´1
λ

ż

X

“

´ppxqαq˚pxq1´α ` ppxqαqpxq1´α
‰

dx,

` pα´ 1qZα´2
λ

B

Bλ
Zλ

ż

X

“

p1´ λqppxqαq˚pxq1´α ` λppxqαqpxq1´α
‰

dx.

We now evaluate it at λ “ 0:

B

Bλ

ż

X
ppxqαqλpxq

1´αdx
∣∣∣
λ“0

“ ´

ż

X
ppxqαq˚pxq1´αdx`

ż

X
ppxqαqpxq1´αdx

´

ż

X
ppxqαq˚pxq1´αdx

„
ż

X
q˚pxqαqpxq1´αdx´ 1



.

For α ě 1, we require B
Bλ

ş

X ppxq
αqλpxq

1´αdx
∣∣∣
λ“0

ě 0, to obtain:

ż

X
ppxqαqpxq1´αdx ě

ż

X
ppxqαq˚pxq1´αdx

ż

X
q˚pxqαqpxq1´αdx.

By applying both sides the log function and dividing by 1
α´1 ą 0 we get the result. Symmetrically, for α ă 1, we require

the converse B
Bλ

ş

X ppxq
αqλpxq

1´αdx
∣∣∣
λ“0

ď 0. Recalling that 1
α´1 ă 0, we obtain the desired result.

2 CLOSED FORM OF THE INTEGRAL FOR GAUSSIANS

In this appendix, we derive a closed form for the integral involved in the computation of the bound of Theorem 6.1 in the
case that all involved distributions are Gaussians and for α “ 2. Let us introduce the notation:

µ “ N pµµ,Σµq, φ “ N pµφ,Σφq, ν “ N pµν ,Σνq. (2)

We have to compute the following integral:
ż

X

µ4pxq

φpxqνpxq2
dx.

Let us start elaborating on the integrand function, denoting for properly sized vector x and matrix S, }m}S “ xTSx and |S|
the determinant of S:

µ4pxq

φpxqνpxq2
“

p2πq´2k|Σµ|
´2 exp

´

´2}x´ µµ}
2
Σµ

´1

¯

p2πq´k{2|Σφ|
´1{2 exp

´

´1{2}x´ µφ}
2
Σφ

´1

¯

p2πq´k|Σν |
´1 exp

´

´}x´ µν}
2
Σν

´1

¯

“
p2πq´k{2|Σµ|

´2

|Σφ|
´1{2|Σν |

´1
exp

´

´2}x´ µµ}
2
Σµ

´1 ` 1{2}x´ µφ}
2
Σφ

´1 ` }x´ µν}
2
Σν

´1

¯

.

Now, we have to deal with the argument of the exponential:

´2}x´ µµ}
2
Σµ

´1 ` 1{2}x´ µφ}
2
Σφ

´1 ` }x´ µν}
2
Σν

´1

“ ´
1

2
xT

`

4Σµ
´1
´Σφ

´1
´ 2Σν

´1
˘

looooooooooooooooomooooooooooooooooon

M

x`
`

4Σµ
´1µµ ´Σφ

´1µφ ´ 2Σν
´1µν

˘T

loooooooooooooooooooooooomoooooooooooooooooooooooon

bT

x

´
1

2

`

4µµ
TΣµ

´1µµ ´ µφ
TΣφ

´1µφ ´ 2µν
TΣν

´1µν

˘

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

c

.



We now proceed completing the square:

xTMx´ 2bTx “ px´M´1bqTMpx´M´1bq ´ bTM´1b.

Thus, we have:

´
1

2

´

xTMx´ 2bTx` c
¯

“ ´
1

2
px´M´1bqTMpx´M´1bq `

1

2
bTM´1b´

1

2
c.

Moreover, we observe that the following expression is the density of a k-variate normal distribution with mean M´1b and
covariance matrix M´1:

p2πq´k{2|M´1
|´1{2 exp

ˆ

´
1

2
px´M´1xqTMpx´M´1bq

˙

.

Thus, its integral is 1. Therefore, coming to the initial expression:

ż

X

µ4pxq

φpxqνpxq2
dx “

p2πq´k{2|Σµ|
´2

|Σφ|
´1{2|Σν |

´1

´

p2πq´k{2|M´1
|´1{2

¯´1

exp

ˆ

1

2
bTM´1b´

1

2
c

˙

“
|Σφ|

1{2|Σν |

|Σµ|
2|M|1{2

exp

ˆ

1

2

´

bTM´1b´ c
¯

˙

3 GRADIENT OF THE OBJECTIVE FUNCTION OF THEOREM 6.1

In this appendix, we report the expression of the gradient of the right hand side of Theorem 6.1:

p1´ αq
1

nj

ÿ

kPrjs

ÿ

lPrns

qξipxk,lq
α

Φi,jpxk,lqqξpxk,lqα´1
p∇ξ log qξpxk,lqq fpxk,lq

α

´ 2pα´ 1qmα

g

f

f

e

logp1{δq

2nj
ş

X
qξi pxq

2α

Φi,jpxqqξpxq2pα´1q dx

ż

X

qξipxq
2α

Φi,jpxqqξpxq2pα´1q
p∇ξ log qξpxqqdx

The integral present in the second addendum can be either evaluated from samples (i.e., replacing the expectation with
the sample mean) or computed exactly for common classes of distributions, e.g. Gaussian distributions, as we show in
Appendix 2.

4 EXPERIMENTAL DETAILS

In this appendix, we report the experimental details and additional experimental results.

Infrastructure The experiments have been run on two machines:

• 2 x CPUs Intel(R) Xeon(R) CPU E7-8880 v4 @ 2.20GHz (22 cores, 44 thread, 55 MB cache) and 128 GB RAM;

• 4 x Intel(R) Xeon(R) CPU E5-4610 v2 @ 2.30GHz (8 cores, 16 thread, 16 MB cache) and 256 GB RAM.

Environments The environments are the rllab implementations [Duan et al., 2016], MIT license, https://github.
com/rll/rllab. The Swimmer environment belongs to the Mujoco suite [Todorov et al., 2012], MuJoCo Personal
License, http://www.mujoco.org/.

Algorithms The TRPO implementation is taken from baselines, MIT licence, https://github.com/openai/
baselines. For POIS we use the original implementation [Metelli et al., 2018], MIT license, https://github.com/
T3p/baselines.

https://github.com/rll/rllab
https://github.com/rll/rllab
http://www.mujoco.org/
https://github.com/openai/baselines
https://github.com/openai/baselines
https://github.com/T3p/baselines
https://github.com/T3p/baselines


Hyperparameters In order to properly compare the algorithms, a set of 20 seeds has been chosen. A subset of 5 seeds,
underlined, was used to test the performances during the tuning phase. Once the optimal hyperparameters were found, the
experiments were extended to the other 15 seeds. In the following, we report the hyperparameter values for MBPExPI.

The shift return refers to the need for making the return non-negative in order to perform the optimization of the α-moment in
MBPExPI. This procedure is carried out independently at each algorithm iteration by subtracting the minimum return among
the ones observed. The variance init hyperparameter refers to the logarithm of the standard deviation. All experiments have
been carried out with Gaussian policies linear with mean linear in the state variables and constant variance uniform over the
state space.

Cartpole

• seeds: 0, 3, 11, 16, 19, 42, 66, 72, 84, 87, 90, 123, 222, 343, 404, 452, 542, 875, 943, 999

• max iters: 500

• policy: linear

• policy init: zeros

• capacity: 1

• inner: 1

• variance init: -1

• step size: 1 / gradient norm

• penalization: True

• delta: 0.75

• max offline iters: 10

Mountain Car

• seeds: 0, 3, 11, 16, 19, 42, 66, 72, 84, 87, 90, 123, 222, 343, 404, 452, 542, 875, 943, 999

• max iters: 500

• policy: linear

• policy init: zeros

• capacity: 1

• inner: 1

• variance init: -1

• step size: 2 / gradient norm

• penalization: True

• delta: 0.9

• max offline iters: 10

• shift return: True

Inverted Double Pendulum

• seeds: 0, 3, 11, 16, 19, 42, 66, 72, 84, 87, 90, 123, 222, 343, 404, 452, 542, 875, 943, 999

• max iters: 500

• policy: linear

• policy init: zeros

• capacity: 1

• inner: 1

• variance init: -1



• step size: 2 / gradient norm

• penalization: True

• delta: 0.99

• max offline iters: 10

Swimmer

• seeds: 0, 3, 11, 16, 19, 42, 66, 72, 84, 87, 90, 123, 222, 343, 404, 452, 542, 875, 943, 999

• max iters: 500

• policy: linear

• policy init: zeros

• capacity: 1

• inner: 1

• log-std init: -0.6

• step size: 1 / gradient norm

• penalization: True

• delta: 0.99

• max offline iters: 10

• shift return: True

For POIS (both AB and PB) and TRPO, the same hyperparameter value have been used, except for the algorithm-specific
ones that have been tuned with the same protocol discussed above (δKL P t0.001, 0.01, 0.1, 1u). In particular, for POIS, we
employ the line search procedure presented in the original paper for setting the step-size. The following table summarizes
the algorithm-specific hyperparameter values for the different algorithms and environments.

Environment / Algorithm MBPExPI (delta) AB-POIS (delta) TRPO (max kl)

Cartpole 0.75 0.4 0.01
Mountain Car 0.9 0.9 0.01
Inverted Double Pendulum 0.99 0.1 0.001
Swimmer 0.99 0.8 0.01

Environment / Algorithm PB-POIS (delta) PB-MBPExPI (delta)

Cartpole 0.4 0.6
Mountain Car 1 0.00001
Inverted Double Pendulum 0.1 0.999999
Swimmer 0.4 0.4

4.1 NOISE ROBUSTNESS

As we have already observed, using the trajectory return Rpτq as function f does no longer allow to provide performance
improvement guarantees. Nevertheless, we conjecture that the loss of this property is compensated by the variance reduction
implicit in our approach. In the direction of empirically showing this aspect, we tested the parameter-based version
of MBPExPI in the Inverted Double Pendulum environment, with forced stochasticity in the environment. Specifically,
whenever an action is prescribed by the policy the actual action to be executed is obtained by adding while Gaussian noise
with standard deviation σ. The results are shown in Figure 1. We observe that our algorithm is overall competitive with
PB-POIS and, in the case of σ “ 1, significantly outperforms PB-POIS.
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Figure 1: Learning curves comparing PB-POIS and PB-MBPExPI with increasing magnitude of the noise (20 runs, 95%
c.i.).

4.2 ABOUT RETURN TRANSLATION

Our approach can be employed for non-negative functions f . Since in the PO experimental evaluation we employ f “ Rpτq.
Under the assumption that the immediate reward is bounded Rps, aq P rRmin, Rmaxs for all ps, aq P S ˆA, we can make
the return function with a simple translation and preserving the optimality of policies:

Rpτq “ Rpτq ´Rmin
1´ γH

1´ γ
loooooomoooooon

´cmin

,

where Rmin
1´γH

1´γ is the minimum achievable return. Of course, we can perform the translation even by using a constant

c ě cmin “ ´Rmin
1´γH

1´γ and still obtain a translated return that remains positive. It is worth noting, from Theorem 4.3 that
the size of the trust region is larger as the constant approaches the its minimum possible value.

For instance, we consider α “ 2, f ě 0 , and we apply a further translation with c ě 0. From Theorem 4.3, we have:

D2pI`c˝f rP s}P q “ log
Ex„P rpfpxq ` cq2s
Ex„P rfpxq ` cs2

“ log
Ex„P rfpxq2s ` c2 ` 2cEx„P rfpxqs
Ex„P rfpxqs2 ` c2 ` 2cEx„P rfpxqs

.

Since Ex„P rfpxq2s ě Ex„P rfpxqs2, we have that this expression is maximized with the smallest value of c, i.e., c “ 0.
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