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Abstract

The Right to Explanation is an important regula-
tory principle that allows individuals to request
actionable explanations for algorithmic decisions.
However, several technical challenges arise when
providing such actionable explanations in practice.
For instance, models are periodically retrained to
handle dataset shifts. This process may invalidate
some of the previously prescribed explanations,
thus rendering them unactionable. But, it is un-
clear if and when such invalidations occur, and
what factors determine explanation stability i.e., if
an explanation remains unchanged amidst model
retraining due to dataset shifts. In this paper, we ad-
dress the aforementioned gaps and provide one of
the first theoretical and empirical characterizations
of the factors influencing explanation stability. To
this end, we conduct rigorous theoretical analysis
to demonstrate that model curvature, weight de-
cay parameters while training, and the magnitude
of the dataset shift are key factors that determine
the extent of explanation (in)stability. Extensive
experimentation with real-world datasets not only
validates our theoretical results, but also demon-
strates that the aforementioned factors dramatically
impact the stability of explanations produced by
various state-of-the-art methods.

1 INTRODUCTION

2 INTRODUCTION

Machine learning (ML) models have recently witnessed in-
creased utility in critical real-world applications. This, in
turn, led to the introduction of several regulatory principles
that aim to safeguard the practice of algorithmic decision
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making in such settings [13, 32]. The Right to Explanation
is one such important regulatory principle that allows indi-
viduals to request actionable explanations for algorithmic
decisions that adversely impact them. Post-hoc explanation
methods such as LIME, SHAP, input gradients, and Smooth-
grad [27, 37, 40, 42] have commonly been employed in
practice to operationalize this principle. These methods ex-
plain complex model predictions by assigning importance
scores to input features, typically via learning local linear
approximations of the underlying functions [18].

Providing actionable explanations to end-users is often hin-
dered by operational challenges in practice. For instance,
models are periodically retrained to handle dataset shifts,
and the original explanations may no longer be valid under
the new model. If so, the original explanations do not re-
main actionable. For example, a user may be informed that
their low salary was the primary reason for the rejection of
their loan application, thus prompting them to increase their
income. However, an update to the model could result in a
shift of model internals such that the user’s credit score, and
not their income, is now the primary factor for the rejection.
In this case, the user’s action of increasing their income
would be less likely to result in a positive outcome once the
updated model was deployed.

The aforementioned scenario could have been avoided if
the underlying model and its explanations remained (rel-
atively) unchanged after model retraining due to dataset
shifts. Such explanation stability implies actionability be-
cause if explanations remain (relatively) unchanged despite
model retraining, they are likely to be actionable over an ex-
tended period of time. Therefore, it is necessary to develop
a systematic understanding of explanation stability in the
face of dataset shifts, characterize the conditions that lead
to unstable explanations, and find ways to mitigate expla-
nation instability after retraining. Despite its significance,
there is little to no research on characterizing the factors that
influence explanation stability.

Our work addresses the aforementioned critical gaps by
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providing one of the first theoretical and empirical charac-
terizations of the factors influencing explanation stability
after dataset shifts. To this end, we conduct rigorous theo-
retical analysis to demonstrate that model curvature, weight
decay parameters while training, and the magnitude of the
dataset shift are key factors that determine the extent of ex-
planation (in)stability. Our theoretical analysis emphasizes
how seemingly inconsequential modeling decisions that may
not impact predictive accuracy can heavily influence other
critical aspects such as explanation stability. We also con-
duct extensive experimentation with real-world datasets to
validate our theoretical insights with various state-of-the-art
explanation methods (e.g., gradient and perturbation based
methods such as LIME, SHAP, SmoothGrad etc.) and ex-
planation stability metrics (e.g., `2, top-k consistency). We
also empirically analyze how other training decisions (e.g.,
learning rate and number of training epochs) impact expla-
nation stability. In summary, our work makes the following
key contributions:

1. We provide one of the first theoretical and empirical
characterizations of the factors influencing explanation
stability in the face of dataset shifts.

2. We conduct a rigorous theoretical analysis to demon-
strate that model curvature, weight decay parameters
during training, and the magnitude of the dataset shift
are key factors influencing the extent of explanation
(in)stability (§4).

3. We carry out extensive experimentation with multiple
real-world datasets to validate our theoretical results
(§5.1). Our empirical findings suggest that standard
neural network training pipelines exhibit low explana-
tion stability, and confirm that our theoretical results
are valid even when some of the underlying assump-
tions do not hold in practice (§5.2).

4. We empirically analyze the impact of other training hy-
perparameters such as learning rate, batch size, and
number of training epochs on explanation stability
(§5.3).

3 RELATED WORK

Explanation Methods A variety of post-hoc techniques
have been proposed to explain complex models [10, 23,
38]. These techniques differ in their access to the complex
model (i.e., black box vs. access to internals), scope of
approximation (e.g., global vs. local), search technique (e.g.,
perturbation-based vs. gradient-based), explanation families
(e.g., linear vs. non-linear), etc. For instance, LIME [37]
and SHAP [27] are perturbation-based, local explanation
approaches that learn a linear model locally around each
prediction. Other local explanation methods capture feature
importances by computing the gradient with respect to the
input [39, 40, 42, 44]. Counterfactual explanation methods,

on the other hand, capture the changes that need to be made
to a given instance in order to flip its prediction [21, 22,
26, 34, 46, 47, 48]. In this work, we focus on analyzing the
stability of explanations output by perturbation-based and
gradient-based local explanation methods.

Explanation Stability and Robustness Various notions
of explanation stability and robustness have been suggested
in the literature.1 One line of work shows that explana-
tions are not robust by crafting adversarial manipulations
of test inputs that change their explanations but not predic-
tions [8, 17]. Another set of approaches studies explanation
stability by altering the underlying model to maintain accu-
racy, but change explanations to a desired target [1, 20, 41].
Multiple works suggest using smooth or low-curvature mod-
els to improve both model and explanation stability [8, 43].
However, all of these works focus on adversarial manipu-
lations of either the model or the input, while we are inter-
ested in more realistic model shifts occurring due to natu-
ral dataset shifts. In contrast, other works have proposed
algorithmic techniques to generate counterfactual explana-
tions or algorithmic recourses that are stable under model
shifts [6, 12, 16, 30, 31, 36, 45]. However, these works
differ from ours in three ways: first, we focus on feature
attribution-based explanations that highlight influential fea-
tures, while the existing work focuses on counterfactual
explanations or algorithmic recourse. Second, we adapt the
model to yield more stable explanations after retraining due
to dataset shifts, whereas most of the existing work aims to
adapt the explanation method. And finally, we theoretically
characterize the factors that impact explanation stability.

More generally, neural networks are known to be non-robust
to small training modifications, e.g., different random ini-
tializations or alternate model selection due to underspeci-
fication [2, 7, 25, 28]. However, relatively few works have
studied how explanations change in the same setting. These
works only show empirically that explanations are not sta-
ble with respect to underspecification [5] or random model
initializations [3]. These works are orthogonal to ours, as
we focus on theoretically and empirically characterizing
specific properties of models and datasets that impact expla-
nation stability.

Algorithmic Stability Algorithmic stability is a classical
learning-theoretic framework that characterizes the consis-
tency of outputs of learning algorithms when trained on
different but similarly distributed data [4]. In contrast, our
study does not make the assumption that the shifted data is
similarly distributed. [19] studied the hypothesis stability of
stochastic gradient descent (SGD) and showed that practical
choices such as learning rate and number of epochs of train-

1The literature is inconsistent on the distinction between ex-
planation robustness and stability; for clarity we use “robustness”
when the model is fixed (e.g., robustness to input perturbations)
and “stability” when the model is changing.
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ing can impact the stability of model parameters. Recent
work has applied the algorithmic stability perspective to
post-hoc explanations [14] by requiring that feature attribu-
tions be stable to a re-sampling of the underlying dataset.
However, none of these prior works study realistic model
shifts occurring due to natural dataset shifts or characterize
the factors influencing explanation stability, which is the
main focus of our work.

4 THEORETICAL ANALYSIS

In this section, we provide an analytical characteriza-
tion of explanation shifts e1 → e2 and model shifts
f1 → f2 that happen due to underlying dataset shifts
D1 → D2. Concretely, we address the following question:
How much do the explanations for a model f1 trained on
dataset D1 change when fine-tuning2on a slightly shifted
dataset D2, resulting in a new model f2?

Let the dataset D1 be composed of input-output pairs (x, y),
where x ∈ Rd, and y is either a real value or a one-hot
vector depending on the task (regression or classification).
For simplicity of analysis, in this section we shall focus
on gradient explanations e = ∇xf ∈ Rd, where f is a
scalar-valued neural network function f(·, θ) : Rd → R
mappingD-dimensional inputs to scalar outputs. Let `(·, θ) :
Rd → R denote f composed with a loss function such as
cross-entropy loss. Here, θ represents the parameters of the
function being minimized, e.g., a deep neural network.

Our goal here is to relate the explanation shift to the dataset
shift (i.e., d(D1,D2), for some distance measure d) and the
learning algorithm. To this end, our overall strategy is:

1. In §4.1, we bound the parameter shift ‖θ2 − θ1‖2 in
terms of the dataset shift d(D1,D2).

2. In §4.2, we bound the explanation shift ‖∇xf(x, θ2)−
∇xf(x, θ1)‖2 in terms of the parameter shift ‖θ2 −
θ1‖2 derived above.

While the existence of these shifts are qualitatively evident,
we make novel contributions in that (a) we quantify the
parameter and gradient changes and (b) we show that these
changes are affected by factors in the modelling process.

4.1 BOUNDING THE PARAMETER SHIFT

We begin by defining the distance between datasets
d(D1,D2) using Hungarian distance, as defined in Defn. 1.
The idea behind the Hungarian distance is simple: we find
the "alignment" between data points of two datasets that

2Here, fine-tuning refers to initializing model parameters of
f2 with those of f1, and then training f2 using D2 until its loss
converges. We provide practical details of this in §5.1.

minimizes the average `2 distance between a point in D1

and its counterpart in D2.

Definition 1. Given datasets D1 = {(xi, yi)i=1,...,N} and
D2 = {(x′i, y′i)i=1,...,N}, their Hungarian distance is

d(D1,D2) = min
P (D2)

N∑
i=1

‖xi − x′i‖2

where the minimum is taken over P (D2), all permutations
on the data points of D2.

Using this distance metric, we derive an expression for
the parameter change ‖θ2 − θ1‖2 in terms of the dataset
distance d(D1,D2). We use the following assumptions to
derive this result: (1) we minimize a regularized loss `reg
that involves weight decay, i.e, `reg(θ) = `(θ) + γ‖θ‖22; (2)
` is locally quadratic; (3) the learning algorithm returns a
unique minimum θ given a dataset D.

Theorem 1. Given the assumptions stated above, and that
Lx(θ1) is the Lipschitz constant of the model with parame-
ters θ1, we have

‖θ2 − θ1‖2 ≤

√
Lx(θ1)d(D1,D2)

γ
+ C

where γ is the weight decay regularization constant, and C
is a small problem-dependent constant.

Proof Idea. The idea of the proof is to first estimate
`D2(θ1), i.e., the initial loss of the model θ1, before fine-
tuning on D2. Assuming, for the sake of explanation, that
the optimal loss value obtained by θ2 onD2 is zero, we have
obtained the change in loss value from θ1 → θ2. To derive
the change in parameters from the change in loss derived
above, we use a second order Taylor series expansion (with
the assumption that the loss is locally quadratic). In particu-
lar, we lower bound the Hessian with its lowest eigenvalue
using the weight decay term γ. The “problem-dependent
constant” C arises from deviating from the assumption that
the optimal loss value is zero. The complete proof is pro-
vided in the supplementary material.

The above theorem achieves our first goal of relating pa-
rameter change to dataset shift. Intuitively, this tells us that
parameter shift depends directly on dataset shift (as ex-
pected), directly on the Lipschitz constant (which depends
on the model’s robustness), and inversely on the weight
decay parameter.

4.2 BOUNDING THE EXPLANATION SHIFT

We now consider the problem of bounding the explanation
shift ‖∇xf(·, θ2)−∇xf(·, θ1)‖2 given an estimate of the
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parameter shift ‖θ2 − θ1‖2. To this end, we first define a
quantity called the gradient-parameter Lipschitz constant,
defined in Defn. 2. To the best of our knowledge, this quan-
tity has not been considered in previous works.

Definition 2. We define the “gradient-parameter Lipschitz
constant” LΘ,D w.r.t. an input distribution D, and parame-
ter set Θ as follows:

LΘ,D = Eθ∈ΘEx∼D‖∇θ∇xf(x; θ)‖2

Intuitively, this quantity captures the sensitivity of gradient
explanations to small changes in the parameter θ. In contrast
to usual definitions of Lipschitz constants, this is defined (1)
locally with respect a particular distribution and parameter
set, and (2) using the mean instead of the sup. This allows
us to derive the following relationship between average
gradient difference and parameter shift.

Lemma 1. The gradient-parameter Lipschitz has the fol-
lowing property:

Ex∼D‖∇xf(x; θ1)−∇xf(x; θ2)‖2 ≤ LΘ,D × ‖θ2 − θ1‖2

where Θ = {λθ1 + (1− λ)θ2 | λ ∈ [0, 1]}.

This relation follows immediately from the fundamental
theorem of integral calculus, and the full proof is given in the
supplementary material. This result reveals an intuitive fact
that larger parameter shifts lead to larger gradient shifts, but
mediated by the gradient-parameter Lipschitz. This quantity
is difficult to analyse for general neural networks, and we
provide below an analysis for the case of 1-hidden layer
neural networks, with a specific simplifying assumption on
the data distribution.

Theorem 2. Assume that we have a 1-hidden layer neural
network with weights θ, and random inputs x ∼ N (0, I)3.
Further assume that we use an activation function σ with
well-defined second derivatives (e.g: softplus). For this case,
the gradient-parameter Lipschitz constant is

Ex,θ‖∇θ∇xf(x, θ)‖2 ≤ (Eθ‖θ‖2) + β (Eθφ(θ))

where β is the maximum curvature of activation function σ,
and φ(θ) is the path-norm [29] of the model.

Proof Idea. The proof involves computing the gradient-
parameter derivatives for the 1-hidden layer neural network
case. Our assumption regarding smoothness of activation

3Covariance of I is chosen for notational brevity

function ensures that σ′′ ≤ β, i.e., that the second deriva-
tive of the activation function is upper bounded, which is
true for smooth non-linearities like softplus. Another sim-
plifying assumption regarding the distribution of the inputs
(x ∼ N (0, I)) helps us dramatically simplify the expression
for the expected value of the gradient norm terms.

The path-norm for a 1-hidden layer neural network (for

weights W2,W1) is given by φ(θ) =
√∑

i,j(W
j
2W

i,j
1 )2

and has been linked to model generalization [29]. The com-
plete proof is provided in the supplementary material.

These results achieve our goal of relating the change in gra-
dients to parameter change. Taken together with the results
in §4.1, this achieves our overall goal of relating gradient
change to dataset shift. Intuitively, this tells us the following
regarding gradient shift:

1. It depends directly on the dataset distance d(D2,D1),
which is as expected: the larger the dataset shift, the
larger can be the parameter shift, and explanation shift.

2. It depends inversely on the weight decay parameter γ,
and directly on the norm of weights ‖θ‖2. Intuitively,
large weight decay shifts the optima to be closer to
zero, reducing the norm of weights, which makes all
optima closer to each other.

3. It depends directly on the Lipschitz constant of the first
model, which is connected to the model’s robustness.
Intuitively, if the model is already robust to small input
changes, we don’t expect it to shift too much upon
fine-tuning on slightly shifted data.

4. It depends directly on the smoothness constant β of the
activation function used in the model. The smoother
the model, the smaller are its second derivatives, and
thus its gradient-input Lipschitz.

These insights motivate the core thesis of the paper, i.e., that
explanation stability depends on properties beyond predic-
tive performance. Specifically, we see that specific algorithm
choices that do not necessarily improve accuracy, such as
weight decay, smoothness constant and robustness-inducing
losses, affect explanation and model stability to data shifts.

We conclude by making two remarks regarding the theory.
First, it only highlights sufficient conditions for explanation
stability, not necessary conditions. Meaning, there can be
ways to achieve gradient stability without the parameters
θ1, θ2 being close, or without neural nets being Lipschitz,
or when ReLU or weight decay are not used, but these lie
outside the scope of this theory. Second, the focus of these
bounds is not to produce numerically tight estimates for
explanation stability, rather, it is intended as a tool to make
qualitative predictions regarding specific modelling inter-
ventions that can improve explanation stability in practice.
Section 5 explores this in more detail.
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5 EXPERIMENTAL EVALUATION

In this section, we describe our general evaluation setup.
In §5.1, we experimentally validate that the modeling in-
terventions identified in §4 improve explanation stability.
Next, in §5.2, we show that these relationships extend to
realistic training setups and more-sophisticated explanation
techniques (i.e., top-K feature attributions of techniques like
SmoothGrad, LIME, and SHAP). Finally, in §5.3, we show
that other hyperparameters not discussed in our theory – e.g.,
learning rate, learning rate decay, batch size, and number of
training epochs – also impact gradient stability.

Datasets We evaluate explanation stability on three binary
datasets with continuous features. We use the WHO life
expectancy dataset (n=2928, number of features d=18) [35],
which evaluates whether a country’s life expectancy is above
the global median based on health and economic factors;
the HELOC dataset (n=9871, d=23) [15], which evaluates
loan acceptance given the applicant’s financial information;
and the Adult Income dataset (n=32561, d=6) [11], which
evaluates whether a person’s income is above $50,000. We
model dataset shifts in two ways:

• Synthetic Noise. We add Gaussian N (0, σ2) noise to
all training samples, with varying levels of noise σ.

• Temporal Shift. We create a temporal shift dataset from
the WHO data by using pre-2012 data as the “original”
dataset and the full dataset as the “shifted” dataset.

Models We evaluate the stability of medium-sized neural
networks containing 5 layers of 50 nodes. By default, we
use ReLU activation; however, to see the effects of model
curvature on explanation stability, we use softplus (SP) for
some experiments. For the experiments using SP, we vary
the parameter β from 2 to 10 depending on the dataset and
the experiment’s goals. Smaller values of β correspond to
lower-curvature models, while SP with β =∞ is equivalent
to ReLU. Unless otherwise specified, all models we compare
within each section achieve similar predictive accuracy.

Experimental procedure For each experiment, we aver-
age over 10 trials to reduce the impact that random seeds
have on the outcomes. Each trial in the synthetic noise ex-
periments consists of training one “base” model plus 10
“noisy” models, each corresponding to a different random
perturbation of the data. In the temporal shift experiments,
each trial compares the base model (trained on the partial
dataset) to a new model (trained on the full dataset). We
compute explanation stability for all test samples, except for
LIME and SHAP results, where we limit computations to
100 randomly-chosen test samples. In the results, we display
the mean of all trials along with the middle 50% of values.

Figure 1: Effect of weight decay value on the mean gradient
and parameter changes for HELOC after fine-tuning on a shifted
dataset. All models use ReLU activation. The x-axis is the size of
the data shift, represented by the standard deviation of noise, σ.

Table 1: Effect of weight decay (γ) on WHO (with fine-tuning).

γ = 0 0.001 0.01

‖θ1 − θ2‖2 1.69±0.09 1.53±0.03 0.95±0.02
‖g1 − g2‖2 0.201±0.065 0.122±0.034 0.010±0.002

5.1 VALIDATING OUR THEORETICAL RESULTS

Experiment setup In this section, we test our theoretical
results from §4 by evaluating the impact of weight decay,
model curvature, and size of the data shift on explanation
stability. To ensure that our analysis is sound, we adhere to
the theoretical assumptions as closely as possible. In partic-
ular, we focus on model parameters (θ) and gradients (g)
rather than top-K feature attributions, since top-K explana-
tions are not differentiable. We train each base model for a
large number of epochs to ensure convergence of the train-
ing loss to a minimum (i.e., we ignore overfitting on the test
set). To fine-tune, we copy the parameters of the base model
and then train on the shifted data. Also, we start fine-tuning
with a lower learning rate and train for fewer epochs, given
that the initial loss is already close to a minimum.

For brevity, we omit similar results from the Adult dataset,
with complete results in the appendix. We also provide the
training hyperparameters for each dataset in the appendix.

Weight decay results Figure 1 and Table 1 show the effect
of weight decay for the synthetically and naturally-shifted
datasets, respectively. We see that larger weight decay values
correspond to orders of magnitude smaller mean gradient
and parameter changes, which is in line with the theoret-
ical relationship between weight decay and stability. As
the amount of synthetic noise grows, we observe that both
parameters and gradients diverge more between the base
model and fine-tuned model. This pattern supports our hy-
potheses that (a) the loss landscape changes more with larger
data shift and (b) a larger change in model parameters is
correlated with a larger change in test sample gradients.
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Figure 2: Effect of model curvature on the mean gradient and
parameter changes for the HELOC dataset after fine-tuning on a
shifted dataset. The x-axis is the size of the data shift, represented
by the standard deviation of noise, σ.

Table 2: Effect of curvature on WHO (with fine-tuning).

ReLU SP (β = 10) SP (β = 5)

‖θ1 − θ2‖2 1.53±0.03 1.37±0.05 1.23±0.02
‖g1 − g2‖2 0.122±0.034 0.096±0.026 0.070±0.024

Curvature results Figure 2 and Table 2 show that using
low-curvature training techniques increases gradient stabil-
ity. In particular, SP does better than ReLU, particularly with
smaller values of β. For both the real-world and synthetic
shifts, the gradient changes are less distinct (i.e., the confi-
dence intervals overlap more) than the parameter changes,
but still show a trend in the predicted direction.

5.2 GOING BEYOND THEORETICAL RESULTS

In this section, we evaluate whether our theoretical pre-
dictions still hold if we deviate from the theoretical as-
sumptions, namely: fine-tuning, exactly reaching a local
minimum, and using non-differentiable top-K feature attri-
bution metrics rather than gradients `2 distance. The top-K
features for a model’s predictions are the k features with
attribution values (e.g., gradients or functions of gradients
for gradient-based methods; weights of linear models for
LIME and SHAP) of highest magnitude. For example, if an
instance x comprises of four features indexed by [1 · · · 4],
and the gradient (feature attribution) of a given model w.r.t.
x is [−0.1,−0.4, 0.2, 0.3], then the top-2 features are fea-
tures 2 and 4 since their corresponding feature attribution
magnitudes -0.4 and 0.3 are the highest.

Experiment setup We maintain our experimental setup
from §5.1, except that we train each model for a smaller
number of epochs (until accuracy stabilizes), before retrain-
ing a model from scratch on the shifted data, rather than
fine-tuning (hyperparameters are located in the appendix).
We use the same random network initialization for both
training and retraining, as prior work has shown that feature
attributions are not stable to changes in random seed [3].

Figure 3: Effect of weight decay on parameter stability when
retraining on HELOC and Adult datasets. The x-axis is the size
of the data shift, represented by the standard deviation of noise, σ.

Table 3: Effect of weight decay (γ) on WHO (with retraining).

γ = 0 0.001 0.01

‖θ1 − θ2‖2 3.97±0.13 3.50±0.19 1.79±0.17
‖g1 − g2‖2 0.295±0.075 0.150±0.034 0.003±0.001

To complete the analysis, we consider four feature attri-
bution techniques: input gradients, input gradients with
SmoothGrad, LIME, and kernel SHAP [27, 37, 42, 40].
We use three top-K stability metrics adapted from Brunet
et al. [5]. They each take in a pair of top-K feature sets
corresponding to two models. Sign Agreement (SA) returns
the fraction of top-K features that appear in both models’
top-K features and have the same signed value. Consistent
Direction of Contribution (CDC) is binary (per-sample) and
measures whether all features in the top-K (for either model)
have the same signed value in the other model. Signed-Set
Agreement (SSA) is also binary (per-sample) and is 1 if the
two model’s top-K feature sets contain the same features
and the features have the same signed value (the order of
the top-K features does not matter).

Relaxing Training Assumptions From Table 3, we see
that increasing the algorithm’s weight decay significantly
decreases both parameters and gradients. Figure 3 confirms
that a larger weight decay during training also increases gra-
dient stability for models with synthetic noise (analogous
results for parameter stability are included in the appendix).
Figure 4 and Table 4 show that the curvature trends discov-
ered in §5.1 still hold, i.e., lower model curvature induces
higher gradient stability.

Although curvature and weight decay increase explanation
stability upon retraining, we note parameter stability scores
are much lower for retraining than for fine-tuning given
fixed curvatures and weight decays. For example, the mean
change in parameters when using ReLU with a weight decay
of 0.001 is 1.53±0.03 when fine-tuning, versus 3.50±0.19
when retraining. The difference in gradient change between
the two techniques is less stark, however, suggesting that
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Table 4: Effect of curvature on WHO (with retraining).

ReLU SP (β = 10) SP (β = 5)

‖θ1 − θ2‖2 3.50±0.19 2.60±0.05 1.97±0.12
‖g1 − g2‖2 0.150±0.034 0.102±0.040 0.076±0.024

Figure 4: Effect of model curvature on gradient stability when
retraining on HELOC and Adult datasets. The x-axis is the size
of the data shift, represented by the standard deviation of noise, σ.

even though the fine-tuned models are more similar to each
other overall, the retrained models are sufficiently similar
on the parts of the input domain represented in the test set.

Using Diverse Explanation Techniques Figure 5 shows
Top-5 SA stability for two popular explanation techniques,
namely, Saliency (input gradients) and SmoothGrad [24].
As in the previous experiments, models with low curvature
and large weight decay are more effective at preserving
explanation stability. In case of saliency, the explanation
stability starts to decrease sharply for shift magnitudes larger
than N (0, 0.12). For SmoothGrad, the noise has less of an
effect, which we hypothesize is because SmoothGrad is
more stable overall as it computes an averaged gradient over
a small local neighborhood of a given instance (see Table 5).
Lowering the model’s curvature and increasing the weight
decay similarly improve explanation stability under data
shifts for the other metrics and explanation techniques (see
the appendix for a full set of graphs).

Table 5 gives a more detailed breakdown of top-K feature
attribution stability across all datasets and explanation tech-
niques. The table corresponds to a single modeling choice –
ReLU with weight decay 0.001. We notice trends based on
the explanation technique, explanation metric, and dataset.

The different explanation techniques exhibit vastly different
stabilities under dataset shifts. Notably, SmoothGrad outper-
forms all other explanation techniques, obtaining scores of
over 90% for both Top-3 and Top-5 explanation stability for
all of the metrics we used. That is, over 90% of test samples’
attributions had the same signs for all of each model’s top-K
features (CDC), over 90% of test samples’ attributions had
the same signed features in the top-K (SSA), and on aver-
age, over 90% of the top-K features for each test sample

appeared in the other model’s top-K features (SA).

To compare the explanation metrics, we look at the relative
difference between SSA and each of SA and CDC (since
SSA is strictly stronger than either of the other metrics). We
see that neither SA nor CDC is consistently more stable,
suggesting that the failure to have identical top-K feature
sets stems both from different features ranking as the most
influential (i.e., what SA captures) and also whether the top
features have the same sign in the other model (i.e., CDC).

We also see that different datasets exhibit different levels
of explanation stability. The top-3 and top-5 scores for the
Adult datasets are very high; however, this dataset only has
six features, so there are fewer possible feature combina-
tions. We see that SSA scores for Adult are much lower than
the SA scores, indicating that even with only 6 features, the
learnt models often disagree on different features’ impacts.

5.3 SENSITIVITY ANALYSIS

In this section, we analyze the impact of other training
hyperparameters on explanation stability, epoch-by-epoch
throughout the entire training process.

Given our observation that parameter stability promotes ex-
planation stability, we expect a lower number of epochs and
a lower learning rate to both increase explanation stability
under dataset shift by decreasing the divergence between
optimization paths in parameter space. Based on the geome-
try of two divergent optimization paths, we anticipate that
if the base model is trained for a long period of time, the
retrained model’s parameters that are most similar to the
base model will occur relatively sooner in the retraining
process. This emphasizes the challenge of retraining models
that both perform well and remain close to the base model.

We track explanations during each epoch of retraining, mea-
suring similarity using gradient `2 distance and top-K SA
consistency. Each trial consists of varying a single hyper-
parameter while keeping all others fixed. For each value
of the varied hyperparameter, we compare one base model
with 10 models retrained on synthetically shifted HELOC
data ∼ N (0, 0.12). Recall that [19] studied the hypothesis
stability of stochastic gradient descent (SGD) and showed
that practical choices such as learning rate and number of
epochs of training can impact the stability of model param-
eters; the following experiments confirm these findings in
the context of explanation stability.

Learning Rate We verify in Figure 6a that increasing the
learning rate of all models effectively worsens gradient sta-
bility. We observe that the maximal gradient stability occurs
sooner when the learning rate is higher. We hypothesize that
this is because a high learning rate stretches the optimiza-
tion path of the base model, taking it further away from the
initialization in parameter space. Since the retrained models
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Figure 5: Top-5 SA for the HELOC dataset under model retraining. The left two graphs show the effect of weight decay and the right two
graphs show the effect of curvature. Graphs 1 and 3 show Top-5 SA for saliency, while graphs 2 and 4 show Top-5 SA for SmoothGrad.
Confidence intervals represent the middle 50% of values. See the appendix for other datasets and explanation techniques.

Table 5: Explanation stability scores for all datasets. The synthetically-shifted datasets (HELOC and Adult) are modified byN (0, 0.12)
noise. Models use ReLU activation and weight decay γ = 0.001. All values averaged across all test samples and then across all trials.
Error bounds are such that the lower and upper bound values represent the 25th and 75th percentile respectively.

Explanation Top-3 Top-5
Dataset technique SA CDC SSA SA CDC SSA

WHO

Saliency 0.63±0.01 0.83±0.03 0.18±0.03 0.61±0.03 0.61±0.10 0.03±0.01
SmoothGrad 0.94±0.00 0.94±0.01 0.91±0.00 0.94±0.00 0.92±0.00 0.90±0.00
LIME 0.69±0.09 0.35±0.24 0.27±0.20 0.59±0.57 0.08±0.05 0.06±0.05
K.SHAP 0.58±0.10 0.60±0.39 0.13±0.08 0.61±0.10 0.41±0.31 0.05±0.05

HELOC

Saliency 0.51±0.02 0.88±0.03 0.07±0.01 0.55±0.02 0.71±0.05 0.01±0.00
SmoothGrad 0.94±0.00 0.96±0.00 0.90±0.00 0.94±0.00 0.94±0.00 0.90±0.00
LIME 0.63±0.02 0.45±0.04 0.18±0.03 0.66±0.02 0.16±0.03 0.07±0.02
K.SHAP 0.64±0.02 0.91±0.03 0.19±0.03 0.70±0.02 0.79±0.05 0.09±0.02

Adult

Saliency 0.87±0.01 0.92±0.01 0.62±0.04 0.85±0.01 0.57±0.04 0.38±0.03
SmoothGrad 0.98±0.00 0.98±0.00 0.96±0.00 0.98±0.00 0.96±0.00 0.94±0.00
LIME 0.95±0.00 0.86±0.02 0.86±0.02 0.97±0.00 0.84±0.02 0.84±0.02
K.SHAP 0.88±0.01 0.88±0.04 0.65±0.04 0.84±0.02 0.47±0.10 0.32±0.08

take divergent paths from the base model (due to the dataset
shifts), the likelihood that they achieve similar parameters
decreases as learning rate increases.

Learning Rate Decay Building upon the understanding
of the effect of learning rate on gradient stability, we delve
into its counterpart, learning rate decay, and its influence, as
depicted in Figure 6b. The results are as expected: decreas-
ing the decay value, i.e. increasing the amount of decay,
shows similar behaviour to decreasing the learning rate.
Namely, the optimization trajectories have less chance to
diverge, and the resultant base model and retrained models
are thus more likely to have similar parameters. While a
higher amount of decay (lower decay value) is preferable,
this can inhibit the training process (notice how a decay
value of 0.9 causes training to stop after around 20 epochs).

Batch Size In Figure 6c, we see that decreasing batch
size worsens gradient stability. We hypothesize that this
behaviour is because there are a greater number of steps
in each epoch, inducing a higher level of randomness in

the optimization trajectory. Each step adds an opportunity
for the retrained model’s path to deviate from the initial
base model’s path, due to the dataset shifts. As such, the
likelihood of achieving similar parameters between the re-
trained models and the base models decreases with smaller
batch sizes. Additionally, the points at which explanation
stability is maximized occur after fewer epochs for smaller
batch sizes, since those correspond to both longer and more
divergent optimization trajectories.

Base Model Epochs Figure 6d verifies that as the number
of base model epochs is increased, explanation stability
suffers, with significantly larger gradient changes and lower
top-5 consistency scores. For a sufficiently small base model
epoch of 20, we observe that similarity also peaks at around
20 training epochs. However, if we were to increase the base
model epoch to 60, as shown in green, we observe that the
peak still occurs at around the same value. This means that,
after just 20 epochs, the optimization path of the retrained
model must have diverged so much from the base model
that any further training leads only to a decrease in stability.
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(a) Sensitivity to learning rate. (b) Sensitivity to learning rate decay.

(c) Sensitivity to batch size. (d) Sensitivity to the base model’s number of epochs.

Figure 6: Raw gradient similarity (y-axis) of retrained models are shown per epoch of training (x-axis). For gradient norm, lower values
are better, while for top-5 SA, higher values (closer to 1) are better. Default values are: learning rate of 0.2; learning rate decay of 1.0 (no
decay); batch size of 128; base models are trained for 30 epochs (besides the bottom right); and synthetic noise, σ = 0.1.

6 CONCLUSIONS

In this paper, we theoretically and empirically characterize
how modelling choices impact model explanations’ stability
to retraining under data shifts. Our formal results suggest,
and our experimental results confirm, that model explana-
tions can be made more stable to retraining after data shifts
by using low-curvature activation functions and large weight
decay values. We also took a first step towards empirically
characterizing how different explanation techniques yield
variable explanation stabilities under dataset shifts, noting
that SmoothGrad outperforms other methods.

The message for ML practitioners is clear: in order to pre-
serve explanations upon model retraining due to data shifts
at little cost to accuracy, use softplus with the lowest pos-
sible β, and the largest weight decay that does not affect
predictive accuracy. If possible, practitioners should fine-
tune the model (§5.1) rather than retrain from scratch to
avoid instability due to the multiplicity of optimal solutions.
However, as shown in §5.3, training hyperparameters can
also play a large role in explanation stability, so care must
be taken to choose hyperparameters in a way that balances
accuracy and explanation stability.

There are several directions for future work. First, our theo-
retical results are only applicable to differentiable models.
In the appendix, we empirically evaluate explanation sta-
bility when retraining decision trees, random forests, and
XGBoost models, but additional work is needed to formalize

explanation stability to retraining for these and other classes
of models. Second, while we do perform experiments with
a temporal dataset shift, we do not evaluate other types
of naturally-occurring data shifts like geographic shifts or
data corrections (e.g., as with the German Credit Statlog
dataset [11]). Future work should focus on understanding
explanation stability for various types of real-world data
shifts. Third, we limit our evaluation to tabular datasets due
to the commonality of these datasets where laws like a Right
to Explanation are relevant. However, other sources of data
may become more relevant to user explanations in the future
and validating our theoretical results on non-tabular data
is of independent interest. Finally, rather than sticking to
existing explanation techniques, future work can explore
how to develop novel explanation techniques that preserve
explanation stability despite small changes in the underlying
models and data.
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