
Adaptive Conditional Quantile Neural Processes (Supplementary material)

Peiman Mohseni1 Nick Duffield2 Bani Mallick3 Arman Hasanzadeh4

1Computer Science and Engineering Department, Texas A&M University
2Electrical and Computer Engineering Department, Texas A&M University

3Statistics Department, Texas A&M University
4Google Cloud

1 ADDITIONAL RESULTS

Sa
w

to
ot

h

2 1 0 1 2
x

2

1

0

1

2

y

target
context

2 1 0 1 2
x

2

1

0

1

2

2 1 0 1 2
x

2

1

0

1

2

2 1 0 1 2
x

2

1

0

1

2

2 1 0 1 2
x

2

1

0

1

2

R
B

F

2 1 0 1 2
x

2

1

0

1

2

y

target
context

2 1 0 1 2
x

2

1

0

1

2

2 1 0 1 2
x

2

1

0

1

2

2 1 0 1 2
x

2

1

0

1

2

2 1 0 1 2
x

2

1

0

1

2

M
at

ér
n

5/
2

2 1 0 1 2
x

2

1

0

1

2

y

target
context

2 1 0 1 2
x

2

1

0

1

2

2 1 0 1 2
x

2

1

0

1

2

2 1 0 1 2
x

2

1

0

1

2

2 1 0 1 2
x

2

1

0

1

2

a) Data b) ACQNP c) CQNP d) BNP e) CANP

Figure 1: Examples of predictions made by different methods. For A/CQNP, the mean of the compound predictive distribution,
approximated with Nτ = 10 samples, is plotted. For BNP and CANP, we plot the mean of the Gaussian predictive distribution
as the predictions. For BNP, we plot the predictions obtained from 20 different sets of bootstrap contexts.

We compare A/CQNPs and baselines on data generated from three additional processes described in table 1 with the
following choice of parameters:

• Sawtooth[Gordon et al., 2020]: s ∼ U [−2, 2), α ∼ U [1, 2), ω ∼ [1, 3), δ ∼ U [−2, 2), K ∼ U [10, 20)

• RBF: s ∼ U [−2, 2), ℓ = 0.25, σ = 0.75, δ = 0.02

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<peiman.mohseni@tamu.edu>?Subject=Adaptive Conditional Quantile Neural Processes


• Matérn 5/2: s ∼ U [−2, 2), ℓ = 0.25, σ = 0.75, δ = 0.02

The results are provided in table 2. Figure 1 illustrates examples of predictions made by each method. Note that for A/CQNP,
the predictions correspond to the mean of the conditional distribution p(y |x), not the quantiles. The mean of the uncountable
mixture of AL distributions can be computed as the following:

Ey[p(y |x)] = Ey
[
Eτ ∼U(0,1) [ατ (x)AL (y |µτ (x), στ (x), τ)]

]
= Eτ ∼U(0,1) [Ey [ατ (x)AL (y |µτ (x), στ (x), τ)]]

= Eτ ∼U(0,1) [ατ (x)Ey [AL (y |µτ (x), στ (x), τ)]]

= Eτ ∼U(0,1)

[
ατ (x) (µτ (x) +

1− 2τ

τ(1− τ)
στ (x))

]
.

(1)

Similar to section 3.2, we use Monte Carlo to approximate this expectation. For sawtooth, RBF, and Matérn 5/2, we used
100, 50, and 50 maximum context points, respectively.

Table 1: Synthetic processes used in unimodal 1D regression experiments.

Process g(s) = (gx(s), gy(s))

Sawtooth gx(s) = s , gy(s) =
α
2 − α

π

∑K
k=1(−1)k sin (2πkω(s+δ))

k

GP (RBF) gx(s) = s , gy ∼ GP(0, C) , C(x, x′) = σ2 exp (−∥x−x′∥2

2ℓ ) + δ

GP (Matérn 5/2) gx(s) = s , gy ∼ GP(0, C) , C(x, x′) = σ2(1 +
√
5d
ℓ + 5d2

3ℓ2 ) + δ, d = ∥x− x′∥

Table 2: Context and target log-likelihoods on synthetic 1D regression tasks (6 Seeds).

Sawtooth RBF Matérn 5/2

context target context target context target

CNP 0.937±0.023 0.586±0.038 0.837±0.058 0.100±0.023 0.626±0.056 −0.183±0.013

CANP 1.191±0.190 0.341±0.085 1.269±0.083 0.225±0.052 1.058±0.382 −0.015±0.198

BNP 0.884±0.038 0.769±0.039 1.121±0.008 0.339±0.009 0.879±0.018 −0.048±0.018

CQNP(ours) 1.229±0.031 0.833±0.035 0.947±0.042 0.083±0.037 0.515±0.039 −0.373±0.041

ACQNP(ours) 1.386±0.042 1.026±0.039 1.215±0.027 0.254±0.020 0.912±0.042 −0.117±0.025

2 IMPLEMENTATION DETAILS

This section provides a detailed description of different methods’ implementation mentioned throughout the paper. All
the implementations are based on PyTorch [Paszke et al., 2019]. For CNP and CANP, we closely followed the official
implementation1. Note that the implementation of CANP is identical to ANP, but without the latent path shown in figure
2 of Kim et al. [2019]. For BNP, however, we borrowed the implementation provided by the authors 2, and thus use their
terminology in describing the network architecture. Nonetheless, neural networks used in all models are instances of
multi-layer perceptrons (MLPs) with ReLU activations and the only differences are regarding their depth and width. To
specify the architecture of MLPs, we use the following notation:

[dh0
]× [dh1

, . . . , dhn−1
]× [dhn

],

where dh0
and dhn

denote the dimension of the network’s input and output respectively. Furthermore, [dh1
, . . . , dhn−1

]
shows that the network has n− 1 hidden layers with dhi

as the width of i-th hidden layer. In all the experiments, Adam
[Kingma and Ba, 2015] is used for optimizing the objective function. Other than the learning rate and the ℓ2 regularizer, rest
of the hyper-parameters used with Adam are set to the default values in Pytorch.

1https://github.com/deepmind/neural-processes
2https://github.com/juho-lee/bnp

https://github.com/deepmind/neural-processes
https://github.com/juho-lee/bnp


2.1 SYNTHETIC DATA

For synthetic data, each model is trained for 105 iterations with 128 sampled functions per batch. During training, the tasks
are generated at the moment, i.e. the training data is not fixed across different models and seeds. However, for evaluation, we
generate and save 5× 103 batches, each containing 16 curves. This data is later used to evaluate all the models. Note that in
our implementation, Ntotal is the same across all observations in each batch. More precisely, for a batch E = {Ek}nb

k=1 with
nb as the batch size, all Eks contain the same number of data points. However, Ntotal is not necessarily the same between
two different batches as explained in section 4.1. The same setup holds for Ncontext.

2.1.1 CNP

Table 3 shows the encoder and decoder architectures used in the implementation of CNPs for experiments on synthetic data.
Table 4 summarizes the choice of optimization hyperparameters along with the GPU devices used for training and testing.

Table 3: Architectural details of CNPs for experiments on synthetic data.

Benchmark Encoder Decoder

Sawtooth
RBF

Matérn 5/2
Double Sine

Circle
Lissajous

[2]× [128, 128, 128]× [128] [129]× [128, 128, 128]× [2]

Table 4: Hyper-parameters and GPU devices used for training and testing CNPs on synthetic data.

Benchmark Learning rate L2 regularizer GPU (Training) GPU (Testing)

Sawtooth 5× 10−4 0 Quadro RTX 6000 NVIDIA A100
RBF 5× 10−4 0 NVIDIA A100 Quadro RTX 6000

Matérn 5/2 5× 10−4 0 NVIDIA A100 Quadro RTX 6000
Double Sine 5× 10−4 0 NVIDIA A100 NVIDIA A100

Circle 5× 10−4 10−5 Quadro RTX 6000 NVIDIA A100
Lissajous 5× 10−4 0 Quadro RTX 6000 NVIDIA A100

2.1.2 CANP

Table 5 contains details on the MLP architectures used for modeling the encoder and decoder modules in CANPs. Note that
instead of passing raw context and target inputs as keys and queries to the attention modules, we first pass them through
separate MLPs, namely key encoder and query encoder, and then apply the attention to the obtained embeddings. Here
we work with the same 8-headed attention [Vaswani et al., 2017] mechanism used in the official implementation. Table 6
summarizes the choice of optimization hyperparameters along with the GPU devices used for training and testing.

Table 5: Architectural details of CANPs for experiments on synthetic data.

Benchmark Context Encoder Key Encoder Query Encoder Decoder

Sawtooth
RBF

Matérn 5/2
Double Sine

Circle
Lissajous

[2]× [128, 128, 128]× [128] [1]× [128]× [128] [1]× [128]× [128] [129]× [128, 128, 128]× [2]



Table 6: Hyper-parameters and GPU devices used for training and testing CANPs on synthetic data.

Benchmark Learning rate L2 regularizer GPU (Training) GPU (Testing)

Sawtooth 10−4 0 Quadro RTX 6000 NVIDIA A100
RBF 10−4 0 Quadro RTX 6000 Quadro RTX 6000

Matérn 5/2 10−4 0 Tesla T4 NVIDIA A100
Double Sine 10−4 10−5 NVIDIA A100 NVIDIA A100

Circle 10−4 10−5 Quadro RTX 6000 NVIDIA A100
Lissajous 10−4 10−5 Quadro RTX 6000 NVIDIA A100

2.1.3 BNP

The architecture details for different components of BNPs including the encoder, adaptation layer, and decoder are provided
in table 7. For all the benchmarks, we use k = 4 and k = 50 bootstrap contexts for training and testing, respectively. The
choice of optimization hyperparameters along with the GPU devices used for training and testing are included in table 8.

Table 7: Architectural details of BNPs for experiments on synthetic data.

Benchmark dx dy dh lpre lpost ldec

Sawtooth
RBF

Matérn 5/2
Double Sine

Circle
Lissajous

1 1 128 5 3 5

Table 8: Hyper-parameters and GPU devices used for training and testing BNPs on synthetic data.

Benchmark Learning rate L2 regularizer Scheduler GPU (Training) GPU (Testing)

Sawtooth 5× 10−4 0 cosine annealing Quadro RTX 6000 Quadro RTX 6000
RBF 5× 10−4 0 cosine annealing Quadro RTX 6000 Quadro RTX 6000

Matérn 5/2 5× 10−4 0 cosine annealing Tesla T4 NVIDIA A100
Double Sine 5× 10−4 0 cosine annealing Quadro RTX 6000 Quadro RTX 6000

Circle 5× 10−4 0 cosine annealing Quadro RTX 6000 Quadro RTX 6000
Lissajous 5× 10−4 0 cosine annealing Quadro RTX 6000 Quadro RTX 6000

2.1.4 CQNP

The encoder and decoder architectures used for implementing CQNPs in different benchmarks are shown in table 9. Table
10 summarizes the choice of hyperparameters along with the GPU devices used for training and testing.

Table 9: Architectural details of CQNPs for experiments on synthetic data.

Benchmark Context Encoder Decoder

Sawtooth
RBF

Matérn 5/2
Double Sine

Circle
Lissajous

[2]× [128, 128, 128]× [128] [130]× [128, 128, 128]× [3]



Table 10: Hyper-parameters and GPU devices used for training and testing CQNPs on synthetic data.

Benchmark Learning rate L2 regularizer Nτ (Training) Nτ (Testing) GPU (Training) GPU (Testing)

Sawtooth 5× 10−4 10−5 50 100 Quadro RTX 6000 NVIDIA A100
RBF 10−3 10−5 50 100 Quadro RTX 6000 Quadro RTX 6000

Matérn 5/2 5× 10−3 10−5 50 100 Tesla T4 Tesla T4
Double Sine 10−3 10−5 50 100 NVIDIA A100 Quadro RTX 6000

Circle 10−3 0 50 100 NVIDIA A100 NVIDIA A100
Lissajous 10−3 10−5 50 100 NVIDIA A100 NVIDIA A100

2.1.5 ACQNP

Compared to CQNP, ACQNP has an additional component named the adaptation layer which takes in the raw sample u
together with context representation and target input and maps them to a new set of quantile levels τ that we eventually
approximate. Note that this is different from the adaptation layer used in BNPs. Also, we apply a sigmoid function to the
final outputs of the adaptation layer to make sure that they correspond to valid quantile levels. The depth and width of
the MLPs used for parameterizing the encoder, adaptation layer, and decoder in ACQNPs are presented in table 11. We
summarize the choice of hyperparameters along with the GPU models used for training and testing in table 12.

Table 11: Architectural details of ACQNPs for experiments on synthetic data.

Benchmark Context Encoder Adaptor Decoder

Sawtooth [2]× [128, 128, 128]× [128] [129]× [128, 128, 128]× [1] [130]× [128, 128, 128]× [3]

RBF [2]× [128, 128, 128]× [128] [129]× [128, 128, 128, 128, 128]× [1] [130]× [128, 128, 128]× [3]

Matérn 5/2 [2]× [128, 128, 128]× [128] [129]× [128, 128, 128, 128]× [1] [130]× [128, 128, 128]× [3]

Double Sine
Circle

Lissajous
[2]× [128, 128, 128]× [128] [129]× [128, 128, 128, 128, 128]× [1] [130]× [128, 128, 128]× [3]

Table 12: Hyper-parameters and GPU devices used for training and testing ACQNPs on synthetic data.

Benchmark Learning rate L2 regularizer Nτ (Training) Nτ (Testing) GPU (Training) GPU (Testing)

Sawtooth 5× 10−4 0 50 100 Quadro RTX 6000 NVIDIA A100
RBF 10−3 0 50 100 NVIDIA A100 Quadro RTX 6000

Matérn 5/2 10−3 10−5 50 100 Tesla T4 NVIDIA A100
Double Sine 10−3 10−5 50 100 NVIDIA A100 NVIDIA A100

Circle 10−3 10−5 50 100 Quadro RTX 6000 NVIDIA A100
Lissajous 10−3 10−5 50 100 NVIDIA A100 NVIDIA A100

2.2 SPEED-FLOW

For the speed-flow data, 75% of each lane’s observations (≈ 988) are randomly selected for training and the rest are held out
for testing. The batch size for both training and testing is 2 since we have data from 2 lanes. For the final evaluation of each
method, we take the context and target sets to be the training and testing data, respectively. For training, we generate and
save 104 copies of the training data with random partitioning to context and target sets. This means that we fix the training
curves as well as the evaluation data across all models as the dataset is quite small and does not require a lot of memory for
storage.

2.2.1 CNP

Table 13 shows the encoder and decoder architectures used for implementing CNPs in different benchmarks. Table 14
summarizes the choice of optimization hyperparameters along with the GPU devices used for training and testing.



Table 13: Architectural details of CNPs for experiments on speed-flow data.

Benchmark Encoder Decoder

Speed-Flow [2]× [64, 64]× [64] [65]× [64, 64]× [2]

Table 14: Hyper-parameters and GPU devices used for training and testing CNPs on speed-flow data.

Benchmark Learning rate L2 regularizer GPU (Training) GPU (Testing)

Speed-Flow 10−4 10−5 Tesla T4 Tesla T4

2.2.2 CANP

Table 15 contains details on the MLP architectures used for modeling the encoder and decoder modules in CANPs. Note
that instead of passing raw context and target inputs as keys and queries to the attention modules, we first pass them
through separate MLPs, namely the key encoder and query encoder, and then apply the attention mechanism to the obtained
embedding. Here we work with the same 8-headed attention mechanism used in the official implementation. Table 16
summarizes the choice of optimization hyperparameters along with the GPU devices used for training and testing.

Table 15: Architectural details of CANPs for experiments on speed-flow data.

Benchmark Context Encoder Key Encoder Query Encoder Decoder

Speed-Flow [2]× [64, 64]× [64] [1]× [64]× [64] [1]× [64]× [64] [65]× [64, 64]× [2]

Table 16: Hyper-parameters and GPU devices used for training and testing CANPs on speed-flow data.

Benchmark Learning rate L2 regularizer GPU (Training) GPU (Testing)

Speed-Flow 10−4 10−5 Tesla T4 Tesla T4

2.2.3 BNP

The architecture details for different components of the BNPs including the encoder, adaptation layer, and decoder are
provided in table 17. For all the benchmarks, we use k = 4 and k = 50 bootstrap contexts for training and testing,
respectively. The choice of optimization hyperparameters along with the GPU devices used for training and testing are
included in table 18.

Table 17: Architectural details of BNPs for experiments on speed-flow data.

Benchmark dx dy dh lpre lpost ldec

Speed-Flow 1 1 64 4 3 4

Table 18: Hyper-parameters and GPU devices used for training and testing BNPs on speed-flow data.

Benchmark Learning rate L2 regularizer Scheduler GPU (Training) GPU (Testing)

Speed-Flow 5× 10−4 10−5 None Tesla T4 Tesla T4

2.2.4 CQNP

The encoder and decoder architectures used for implementing CQNPs in different benchmarks are shown in table 19. Table
20 summarizes the choice of hyperparameters along with the GPU devices used for training and testing.



Table 19: Architectural details of CQNPs for experiments on speed-flow data.

Benchmark Context Encoder Decoder

Speed-Flow [2]× [64, 64]× [64] [66]× [64, 64]× [3]

Table 20: Hyper-parameters and GPU devices used for training and testing CQNPs on speed-flow data.

Benchmark Learning rate L2 regularizer Nτ (Training) Nτ (Testing) GPU (Training) GPU (Testing)

Speed-Flow 5× 10−3 10−5 100 50 Tesla T4 Quadro RTX 6000

2.2.5 ACQNP

Compared to CQNP, ACQNP has an additional component named the adaptation layer which takes in the raw sample of u
together with context representation and target inputs and maps them to a new set of quantile levels τ that we eventually
approximate. Note that this is different from the adaptation layer used in BNPs. Also, we apply a sigmoid function to the
outputs of the adaptation layer to make sure that they correspond to valid quantile levels. The depth and width of the MLPs
used for parameterizing the encoder, adaptation layer, and decoder in ACQNPs are presented in table 21. We summarize the
choice of hyperparameters along with the GPU models used in training and testing in table 22.

Table 21: Architectural details of ACQNPs for experiments on speed-flow data.

Benchmark Context Encoder Adaptor Decoder

Speed-Flow [2]× [64, 64]× [64] [65]× [64, 64]× [1] [66]× [64, 64]× [3]

Table 22: Hyper-parameters and GPU devices used for training and testing ACQNPs on speed-flow data.

Benchmark Learning rate L2 regularizer Nτ (Training) Nτ (Testing) GPU (Training) GPU (Testing)

Speed-Flow 5× 10−3 10−5 100 50 Tesla T4 Quadro RTX 6000

2.3 IMAGE COMPLETION

In image completion experiments on MNIST, Fashion-MNIST, SVHN, and Omniglot, we use the default train/test split of
the data. For FreyFace, however, we randomly select 75% of the images for training and keep the rest for testing. Similar to
the experiments on synthetic data, the partitioning of image pixels to context and target sets is done randomly and during
training, i.e. context and target sets are not fixed across different models and seeds. For evaluation, however, we saved the
generated batches from test images. In the case of FreyFace, we repeat this process 4 more times so that each test image has
5 copies with different context/target splits in the stored evaluation batches. Note that the number of context points across
different tasks in a batch is the same, but might change from one batch to another. Obviously, the union of context and target
sets which comprises all pixels of an image is the same in all cases as the image size is fixed in each dataset. All the models
were trained for 100 epochs with 16 images per batch. The same batch size is used for testing.

2.3.1 CNP

Table 23 shows the encoder and decoder architectures used for implementing CNPs in different benchmarks. Table 24
summarizes the choice of optimization hyperparameters along with the GPU devices used for training and testing.

2.3.2 CANP

Table 25 contains details on the MLP architectures used for modeling the encoder and decoder modules in CANPs. Note
that instead of passing raw context and target inputs as keys and queries to the attention modules, we first pass them through
separate MLPs, namely the key encoder and query encoder, and then apply attention to the obtained embedding. Here we



Table 23: Architectural details of CNPs for image completion tasks.

Benchmark Encoder Decoder

MNIST
Fashion MNIST

Omniglot
FreyFace

[3]× [128, 128, 128]× [128] [130]× [128, 128, 128]× [2]

SVHN [5]× [128, 128, 128]× [128] [130]× [128, 128, 128]× [6]

Table 24: Hyper-parameters and GPU devices used for training and testing CNPs on image completion tasks.

Benchmark Learning rate L2 regularizer GPU (Training) GPU (Testing)

MNIST 5× 10−4 0 Quadro RTX 6000 Quadro RTX 6000
Fashion MNIST 5× 10−4 0 Tesla T4 Quadro RTX 6000

Omniglot 5× 10−4 0 Quadro RTX 6000 Quadro RTX 6000
FreyFace 5× 10−4 0 Quadro RTX 6000 NVIDIA A100
SVHN 5× 10−4 0 Tesla T4 Quadro RTX 6000

work with the same 8-headed attention mechanism used in the official implementation. Table 26 summarizes the choice of
optimization hyperparameters along with the GPU devices used for training and testing.

Table 25: Architectural details of CANPs for image completion tasks.

Benchmark Context Encoder Key Encoder Query Encoder Decoder

MNIST
Fashion MNIST

Omniglot
FreyFace

[3]× [128, 128, 128]× [128] [1]× [128]× [128] [1]× [128]× [128] [130]× [128, 128, 128]× [2]

SVHN [5]× [128, 128, 128]× [128] [2]× [128]× [128] [2]× [128]× [128] [130]× [128, 128, 128]× [6]

Table 26: Hyper-parameters and GPU devices used for training and testing CANPs on image completion tasks.

Benchmark Learning rate L2 regularizer GPU (Training) GPU (Testing)

MNIST 5× 10−4 0 Quadro RTX 6000 Quadro RTX 6000
Fashion MNIST 5× 10−4 0 Quadro RTX 6000 Quadro RTX 6000

Omniglot 5× 10−4 0 Quadro RTX 6000 Quadro RTX 6000
FreyFace 5× 10−4 10−5 Quadro RTX 6000 NVIDIA A100
SVHN 5× 10−4 0 Quadro RTX 6000 NVIDIA A100

2.3.3 BNP

The architecture details for different components of the BNPs including the encoder, adaptation layer, and decoder are
provided in table 27. For all the benchmarks, we use k = 4 and k = 50 bootstrap contexts for training and testing,
respectively. The choice of optimization hyperparameters along with the GPU devices used for training and testing are
included in table 28.

2.3.4 CQNP

The encoder and decoder architectures used for implementing CQNPs in different benchmarks are shown in table 29. Table
30 summarizes the choice of hyperparameters along with the GPU devices used for training and testing.



Table 27: Architectural details of BNPs for image completion tasks.

Benchmark dx dy dh lpre lpost ldec

MNIST
Fashion MNIST

Omniglot
FreyFace

2 1 128 5 3 5

SVHN 2 3 128 5 3 5

Table 28: Hyper-parameters and GPU devices used for training and testing BNPs on image completion tasks.

Benchmark Learning rate L2 regularizer Scheduler GPU (Training) GPU (Testing)

MNIST 5× 10−4 0 cosine annealing NVIDIA A100 Quadro RTX 6000
Fashion MNIST 5× 10−4 0 cosine annealing NVIDIA A100 Quadro RTX 6000

Omniglot 5× 10−4 0 cosine annealing Tesla T4 Quadro RTX 6000
FreyFace 5× 10−4 0 cosine annealing Quadro RTX 6000 Quadro RTX 6000
SVHN 5× 10−4 0 cosine annealing NVIDIA A100 Quadro RTX 6000

Table 29: Architectural details of CQNPs for image completion tasks.

Benchmark Context Encoder Decoder

MNIST
Fashion MNIST

Omniglot
FreyFace

[3]× [128, 128, 128]× [128] [131]× [128, 128, 128]× [3]

SVHN [5]× [128, 128, 128]× [128] [131]× [128, 128, 128]× [9]

Table 30: Hyper-parameters and GPU devices used for training and testing CQNPs on image completion tasks.

Benchmark Learning rate L2 regularizer Nτ (Training) Nτ (Testing) GPU (Training) GPU (Testing)

MNIST 5× 10−4 0 25 50 NVIDIA A100 NVIDIA A100
Fashion MNIST 10−3 10−5 25 50 NVIDIA A100 NVIDIA A100

Omniglot 10−3 10−5 25 50 Quadro RTX 6000 NVIDIA A100
FreyFace 10−3 0 25 50 Quadro RTX 6000 NVIDIA A100
SVHN 10−3 10−5 25 50 Quadro RTX 6000 NVIDIA A100

2.3.5 ACQNP

Compared to CQNP, ACQNP has an additional component named the adaptation layer which takes in the raw sample of u
together with context representation and target inputs and maps them to a new set of quantile levels τ that we eventually
approximate. Note that this is different from the adaptation layer used in BNPs. Also, we apply a sigmoid function to the
outputs of the adaptation layer to make sure that they correspond to valid quantile levels. The depth and width of the MLPs
used for parameterizing the encoder, adaptation layer, and decoder in ACQNPs are presented in table 31. We summarize the
choice of hyperparameters along with the GPU models used in training and testing in table 32.

Table 31: Architectural details of ACQNPs for image completion tasks.

Benchmark Context Encoder Adaptor Decoder

MNIST
Fashion MNIST

Omniglot
FreyFace

[3]× [128, 128, 128]× [128] [129]× [128, 128, 128, 128, 128]× [1] [130]× [128, 128, 128]× [3]

SVHN [5]× [128, 128, 128]× [128] [129]× [128, 128, 128, 128, 128]× [1] [130]× [128, 128, 128]× [9]



Table 32: Hyper-parameters and GPU devices used for training and testing ACQNPs on image completion tasks.

Benchmark Learning rate L2 regularizer Nτ (Training) Nτ (Testing) GPU (Training) GPU (Testing)

MNIST 10−3 10−5 25 50 NVIDIA A100 NVIDIA A100
Fashion MNIST 10−3 10−5 25 50 NVIDIA A100 NVIDIA A100

Omniglot 10−3 10−5 25 50 NVIDIA A100 NVIDIA A100
FreyFace 10−3 10−5 25 50 NVIDIA A100 Tesla T4
SVHN 10−3 10−5 25 50 NVIDIA A100 NVIDIA A100

References

Jonathan Gordon, Wessel P. Bruinsma, Andrew Y. K. Foong, James Requeima, Yann Dubois, and Richard E. Turner.
Convolutional conditional neural processes. In International Conference on Learning Representations, 2020.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol Vinyals, and Yee Whye
Teh. Attentive neural processes. In International Conference on Learning Representations, 2019.

Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. International Conference on Learning
Representations, 2015.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,
Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems, 32, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.


	Additional Results
	Implementation details
	Synthetic Data
	CNP
	CANP
	BNP
	CQNP
	ACQNP

	Speed-Flow
	CNP
	CANP
	BNP
	CQNP
	ACQNP

	Image completion
	CNP
	CANP
	BNP
	CQNP
	ACQNP



