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In Appendix A, we cover additional preliminaries: (i) we present the odds-ratio parameterization of a missing data process
and demonstrate the estimation of an odds ratio through a straightforward example, (ii) we elaborate more on parameter
counting in discrete models to assess whether the assumptions in a full law impose restrictions on observed data law, and
(iii) we provide additional details on substantive edge distinctions between {V ∗i , Rj} vs {Vi, Rj} in the permutation model.
Appendix B contains additional discussions on the goodness-of-fit tests in the sequential MNAR model using likelihood
approaches. It also includes an automated algorithm for performing a sequential goodness-of-fit tests based on weighted
likelihood-ratios. Appendix C contains additional discussions on the use of odds-ratio parameterization in the sequential
MAR and sequential MNAR models, as well as a formalization of the goodness-of-fit tests in block-parallel MNAR models
based on odds ratio calculations. Appendix D contains the proofs. Appendix E contains simulation details and additional
empirical analyses.

A PRELIMINARIES

A.1 ODDS-RATIO PARAMETERIZATION

The odds-ratio parameterization of joint distributions p(R|X) was introduced in Chen [2007]. Assuming we have K
missingness indicators, p(R | X) can be expressed as follows:

p(R | X) =
1

Z
×

K∏
k=1

p(Rk | R−k = 1, X)×
K∏

k=2

OR(Rk, R≺k | R�k = 1, X), (1)

where R−k = R \Rk, R≺k = {R1, . . . , Rk−1}, R�k = {Rk+1, . . . , RK}, and

OR(Rk, R≺k | R�k = 1, X) =
p(Rk | R�k = 1, R≺k, X)

p(Rk = 1 | R�k = 1, R≺k, X)
× p(Rk = 1 | R−k = 1, X)

p(Rk | R−k = 1, X)
.

Z in Eq. (1) is the normalizing term and is equal to
∑

r

{∏K
k=1 p(rk | R−k = 1, X)×

∏K
k=2 OR(rk, r≺k | R�k = 1, X)

}
.

Estimating equations for computing odds ratios.

Consider the no self-censoring model with two variables, shown in Fig. 4(b). Let θ(r1, r2) = OR(R1 = r1, R2 = r2 |
X1, X2). We can estimate θ(r1 = 0, r2 = 0) with the following unbiased estimating equation where an odds-ratio
parameterization of p(R|X) is used in place. We have:

p(R1 = r1, R2 = r2 | X) =
1

Z
× p(R1 = r1|R2 = 1, X2)× p(R2 = r2|R1 = 1, X1)× θ(r1, r2).
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Therefore,

Pn

[
R1R2 ×

p(R1 = 0, R2 = 0 | X)

p(R1 = 1, R2 = 1 | X)
− (1−R1)(1−R2)

]
= Pn

[
R1R2 ×

p(R1 = 0|R2 = 1, X2)× p(R2 = 0|R1 = 1, X1)× θ(R1 = 0, R2 = 0)

p(R1 = 1|R2 = 1, X2)× p(R2 = 1|R1 = 1, X1)× θ(R1 = 1, R2 = 1)
− (1−R1)(1−R2)

]
= Pn

[
R1R2 ×

p(R1 = 0|R2 = 1, X2)× p(R2 = 0|R1 = 1, X1)

p(R1 = 1|R2 = 1, X2)× p(R2 = 1|R1 = 1, X1)
× θ(R1 = 0, R2 = 0)− (1−R1)(1−R2)

]
= 0.

The first equality holds by definition, the second equality holds because OR(R1 = 1, R2 = 1) = 1, and the third
equality can be simply proved with tower laws of expectations. Given the above, we can find a closed form estimator for
θ(R1 = 0, R2 = 0):

θ(R1 = 0, R2 = 0) =
Pn

[
(1−R1)× (1−R2)

]
Pn

[
R1 ×R2 ×

p(R1 = 0|R2 = 1, X2)× p(R2 = 0|R1 = 1, X1)

p(R1 = 1|R2 = 1, X2)× p(R2 = 1|R1 = 1, X1)

] .

For K > 2, we need to compute odds ratio terms of the form θ(Rk = 0, Rj = 0) := OR(Rk = 0, Rj = 0|R−kj = 1, X).
The following unbiased estimating equation that incorporates R−kj can be used to estimate θ(Rk = 0, Rj = 0):

Pn

[ K∏
i=1

Ri ×
p(Rk = 0|R−k = 1, X−k)× p(Rj = 0|R−j = 1, X−j)

p(Rk = 1|R−k = 1, X−k)× p(Rj = 1|R−j = 1, X−j)
× θ(Rk = 0, Rj = 0)−

∏
i 6={j,k}

Ri(1−Rk)(1−Rj)

]
= 0.

Using the tower laws of expectations, it is easy to show why the above estimating equation holds.

A.2 PARAMETER COUNTING ARGUMENT

How does one know that a missing data DAG imposes restrictions that are testable from the observed data distribution?
When all substantive variables take on values in a finite discrete state space, one simple check is to compare the number of
parameters in the full law using the DAG factorization in (1) and the saturated observed data law using the pattern-mixture
factorization [Rubin, 1976]. The pattern-mixture factorization is given by the marginal distribution of R and the conditional
distribution of X∗ given R. If a missing data DAG with an identified full law can be described with fewer parameters than
the saturated pattern-mixture model, we may conclude that the restrictions on full law impose constraints on the observed
data distribution. Shpitser [2016] has used parameter counting to give an intuition for why the no self-censoring model is
identified. Nabi et al. [2020] also have relied on a parameter counting argument to prove the completeness of their results for
full law identification in missing data DAG models.

As an example, consider a missing data model with two substantive binary variables X1 and X2. Assume the full law
satisfies the assumptions of the permutation model in (2), which are R1 ⊥⊥ X1|X2 and R2 ⊥⊥ X1, X2 | R1, X

∗
1 . The full

law then factorizes as p(X1, X2) × p(R1|X2) × p(R2|R1, X
∗
1 ). We need 3 parameters for parameterizing p(X1, X2), 2

parameters for p(R1 | X2), and 3 parameters for p(R2|R1, X
∗
1 ); thus a total of 8 parameters. (We excluded the deterministic

terms p(X∗1 |R1, X1) and p(X∗2 |R2, X2) as they do not add any parameters.) On the other hand, the pattern-mixture
factorization of the observed data law p(R,X∗) can be written as p(R1, R2)× p(X∗1 , X∗2 |R1, R2). Since R1 and R2 are
binary, it requires at most 3 parameters to parameterize p(R1, R2). Using chain rule factorization, we have p(X∗|R) =
p(X∗1 |R1, R2)× p(X∗2 |R1, R2, X

∗
1 ). Due to the deterministic relations, if R1 = 0 then X∗1 = “?”, thus we need at most 2

parameters to parameterize p(X∗1 |R1, R2). Similarly, we need at most 3 parameters to parameterize p(X∗2 |R1, R2, X
∗
1 ). In

total, 8 parameters are required to encode a saturated observed data law. As expected, the number of parameters in the full
law of the permutation model (which is proven to be identified as a function of observed data) and the saturated observed
data law are the same, reaffirming the fact that permutation model is saturated and places no restrictions on the observed
data distribution.

As another example of a saturated model, consider the no self-censoring model in Fig. 4(b). The odds-ratio parameterization



of the missingness mechanism p(R|X) is as follows:

p(R1 = r1, R2 = r2 | X1, X2) (2)

=
1

Z
× p(R1 = r1 | R2 = 1, X1, X2)× p(R2 = r2 | R1 = 1, X1, X2)× OR(R1 = r1, R2 = r2 | X1, X2)

=
1

Z
× p(R1 = r1 | R2 = 1, X2)× p(R2 = r2 | R1 = 1, X1)× f(R1 = r1, R2 = r2),

where Z =
∑
r1,r2

p(R1 = r1 | R2 = 1, X2)× p(R2 = r2 | R1 = 1, X1, )×OR(R1 = r1, R2 = r2|X1, X2). The second
equality in (2) holds because R1 ⊥⊥ X1|R2, X2 and R2 ⊥⊥ X2|R1, X1. Further, OR(R1 = r1, R2 = r2 | X1, X2) is just a
function of R1 and R2 because:

OR(R1 = r1, R2 = r2 | X1, X2) =
p(R1 = r1 | R2 = r2, X2)

p(R1 = 1 | R2 = r2, X2)
× p(R1 = 1 | R2 = 1, X2)

p(R1 = r1 | R2 = 1, X2)

=
p(R2 = r2 | R1 = r1, X1)

p(R2 = 1 | R1 = r1, X1)
× p(R2 = 1 | R1 = 1, X1)

p(R2 = r2 | R1 = 1, X1)

= f(R1, R2).

The first equality holds because R1 ⊥⊥ X1 | R2, X2, the second equality holds because R2 ⊥⊥ X2 | R1, X1, and together
they imply the last equality which means OR(R1, R2 | X1, X2) is a function of R1, R2 (all observed data). In the above
argument, we have used the fact that odds ratios is symmetric (i.e., OR(A,B|Z) = OR(B,A|Z)). Assuming X1 and X2

are binary, the full law in a no self-censoring model would have 8 parameters (same number as in a saturated observed
data law). Those parameters are as follows: 3 parameters for p(X1, X2), 1 parameter for OR(R1 = 0, R2 = 0|X1, X2) =
f(R1, R2) (since the OR evaluated at other levels of R1 and R2, i.e., the reference values, is always one), 2 parameters for
p(R1 = 1|R2 = 1, X2), and 2 parameters for p(R2 = 1|R1 = 1, X1.)

Examples of the three class of missing data models that we are interested in are provided in Fig. 1(a), 4(a), and 4(d),
where X = {X1, X2}. Here, we compare the full law parameterization of each example against the pattern-mixture
parameterization as an illustrative step to show that the conditional independence restrictions on the full law impose
restrictions on the observed data law. Given the MAR model in Fig. 1(a), the full law factorizes as p(X1, X2)×p(R1)×p(R2 |
R1, X

∗
1 ). Given the MNAR model in Fig. 4(a) (without the dashed edge), the full law factorizes as p(X1, X2) × p(R1 |

X2)×p(R2 | R1). Given the MNAR model in Fig 4(d), the full law factorizes as p(X1, X2)×p(R1 | X2)×p(R2 | X1). In
all the three examples, the full law requires 7 parameters to encode the independencies (less than the number of parameters
in the saturated observed data law). The above implies that there must be a testable implication, at least in the binary case,
on the observed data laws of the three classes of missing data models that we consider. The parameter counting argument
can be simply generalized to discrete data. Results in the main draft confirm that this generalizes to situations where no
distributional assumptions are made.

A.3 ON EDGES FROM PROXY VARIABLES TO MISSINGNESS INDICATORS

The convention in previous work on missing data DAGs (e.g., Mohan et al. [2013] and Mohan and Pearl [2021]) has often
been to avoid including edges from proxy variables to missingness indicators. However, allowing for X∗i → Rj edges
enables exploration of a broader class of missing data DAG models and MNAR mechanisms. For instance, the permutation
MNAR model introduced by Robins [1997] can only be represented graphically if we permit proxy variables to point to
missingness indicators. Without such edges, this model would lack a graphical characterization. A more comprehensive
discussion on this topic can be found in [Nabi et al., 2022]. Models like the permutation model are particularly interesting as
they represent nonparametrically saturated models with nonparametrically identified full laws. Thus, incorporating these
edges allows our work to have a broader scope and naturally builds upon the foundations laid out in earlier research on
testability in missing data DAGs, including the framework proposed by Mohan and Pearl [2014].

Here, we explore the substantive distinctions between models with edgesX∗i → Rj (as in the permutation model) and models
with edges Xi → Rj . To illustrate the dissimilarities between these two models, let us assume that Xi is a binary variable,
and we consider two structures: (1) Ri → Rj ← Xi and (2) Ri → Rj ← X∗i . In the first structure, p(Rj = 1 | Ri, Xi) has
four parameters, with each parameter corresponding to a specific combination of values for Xi and Ri. On the other hand,
in the second structure, p(Rj = 1 | Ri, X∗i ) only has three parameters due to the deterministic relationship between Ri and
X∗i . These structural differences indicate qualitative differences as well. An Xi → Rj edge implies that the missing variable
Xi might have an impact on Rj . Conversely, an X∗i → Rj edge suggests that the variable affects Rj when it is observed,



but when it is missing, its absence influences future missingness rather than its actual unobserved value. These differences
have implications for identification. If we change the edges in Fig. 3(a) to be Xi → Rj , neither the full law nor the target
law is identifiable. However, if we retain the edges as they are, the models are identifiable, as they represent the permutation
model. Identifiability also plays a crucial role in determining testability, as discussed in the main manuscript.

Finally we note that testing the absence of dashed edges involving proxy variables in Fig 3(a) is not entirely equivalent to
testing edges involving their counterfactual counterparts. In other words, if for instance R2 ⊥⊥ X1|R1 = 1 or equivalently
R2 ⊥⊥ X∗1 |R1 = 1 holds in the observed data, there is no guarantee that R2 and counterfactual X1 are independent in the
full law; because for the the independence in the full law to hold, we must show that R2 ⊥⊥ X1 even among rows where
R1 = 0. This may be possible under a further assumption like faithful observability used by Tu et al. [2019] (which is a
stronger assumption than standard faithfulness) where independences in the observed data “do not lie” about independences
in the full data. But in the case where the full/target law is not identified, an assumption like this could be misleading –
in this case p(R2|R1 = 0, X1) is not identified and there is no way to confirm the validity of the test in the full data law.
However, this was not a particular issue for the method proposed in [Tu et al., 2019], as they consider a subclass of MNAR
models where the full law is always identified. In future research, it would be interesting to explore the additional constraints
imposed by assumptions like faithful observability, which may lead to Xi → Rj edges resembling edges from a proxy
variable rather than the actual underlying counterfactual.

B MORE ON GOODNESS-OF-FIT TESTS IN THE SEQUENTIAL MNAR MODEL

B.1 GENERAL ALGORITHM FOR GOODNESS-OF-FIT TESTS USING LIKELIHOOD APPROACHES

Algorithm 1 illustrates how to perform a sequential goodness-of-fit tests based on weighted likelihood-ratios for K greater
than 3 variable in sequential MNAR models.

Algorithm 1 TESTING SEQUENTIAL MNAR (≺,M,Dn)

1: Let ≺ index variables by k = 1, . . . ,K.

2: Let ΩK+1 = 1.

3: for k ∈ {K, . . . , 2} do
4: Let Wk(βo

k) := p(Rk|R≺k, X�k;βo
k) and

Wk(βa
k) := p(Rk|R≺k, X�k, X

∗
≺k;βa

k).
5: Estimate βok and βak via the following:

Pn

[
Ωk+1 × U(βo

k)
]

= 0, Pn

[
Ωk+1 × U(βa

k)
]

= 0,

where Pn
[
U(βok)

]
= 0 and Pn

[
U(βak)

]
= 0 are estimating equations for βok and βak wrt the full law.

6: Compute a weighted likelihood-ratio as follows:

ρ = nPn

[
Ωk+1 × log

(Wk(β̂a
k)

Wk(β̂o
k)

)]
.

7: Test ρ with α significance level.
8: ifMo is rejected (i.e., Rk 6⊥⊥ X∗≺k|R≺k, X�k) then
9: return not sequential MNAR

10: else Ωk+1 = I(R�k=1)∏K
j�kWj(β̂o

j )
.

11: return sequential MNAR

B.2 ALTERNATIVE SUPERMODELS IN THE SEQUENTIAL MNAR MODEL

Consider the m-DAG in Fig. 4(a). We are interested in the absence of an edge between X1 and R2 which implies
R2 ⊥⊥ X1|R1. The no self-censoring supermodel is drawn in Fig. 4(b) (with R1, R2 edge undirected). We can evaluate this
independence by showing p(R2|R1, X1) is not a function of X1. See Appendix B.2 for details on how to set up such a test.



For this, we use the following odds-ratio factorization of p(R|X) [Chen, 2007]:

p(R | X) =
1

Z(X)
× p(R1 | R2 = 1, X2) (3)

× p(R2 | R1 = 1, X1)× OR(R1, R2|X),

where Z(X) is a normalizing term and OR(R1, R2|X) is the conditional odds ratio between R1 and R2. Since the no
self-censoring model is identified, each piece above must be a function of observed data. This is trivial for the univariate
conditionals, however, it can also be shown that OR(R1, R2|X) = f(R1, R2), i.e., is not a function of X (see Appendix A,
Eq. 2.) By definition p(R2|R1, X1) = p(R|X)/

∑
R2
p(R|X); to show p(R2|R1, X1) is not a function of X1, it suffices to

show p(R|X) is not a function of X1 which using (3) only requires us to show p(R2|R1 = 1, X1) is not a function of X1

which is easy to evaluate. This can be generalized to K > 2, but it involves higher order interactions terms in the odds-ratio
parameterization, which is why we prefer the permutation model as our supermodel choice; see Appendix C.1 for more
details.

C MORE ON GOODNESS-OF-FIT TESTS WITH ODDS RATIOS

C.1 SEQUENTIAL MNAR MODEL AS A SUBMODEL OF NO SELF-CENSORING MODEL

As mentioned in Remark 1, the sequential MNAR model can be viewed as a submodel of the no self-censoring model.
This provides a way to test independence restrictions of the form Rk ⊥⊥ X≺k | R−k, X�k. We provided an example
with two variables using the m-DAG in Fig. 4(a) and showed how to use odds-ratio parameterization of the missingness
mechanism to test the absence of an edge between X1 and R2 which implied R2 ⊥⊥ X1|R1. Extending the idea to
sequential MNAR models with K > 2 involves higher order interaction terms in the odds-ratio parameterization. We use the
sequential MNAR model with three variables, shown in Fig. 1(a), to illustrate this point. The no self-censoring supermodel
is shown in Fig. 1(b). We are interested in testing the absence of X1 → R2, X1 → R3, X2 → R3 edges which implies
the independence restrictions: R3 ⊥⊥ X1, X2|R1, R2 and R2 ⊥⊥ X1|R1, R3, X3. Let us focus on the former independence,
i.e, R3 ⊥⊥ X1, X2|R1, R2 which entails showing that p(R3|R1, R2, X1, X2) is not a function of X1 and X2. Note that
p(R3|R1, R2, X1, X2) = p(R|X)/

∑
R3
p(R|X). The odds-ratio parameterization of p(R|X) is as follows:

p(R | X) =
1

Z
× p(R1|R2 = R3 = 1, X)× p(R2|R1 = R3 = 1, X)× p(R3|R1 = R2 = 1, X)

× OR(R2, R1|R3 = 1, X1, X2, X3)× OR(R3, R1, R2|X)

= p(R1|R2 = R3 = 1, X2, X3)× p(R2|R1 = R3 = 1, X1, X2)× p(R3|R1 = R2 = 1, X1, X2)

× f(R2, R1, X3)× OR(R3, R1, R2|X).

The equality uses assumptions in the no self-censoring supermodel: Rk ⊥⊥ Xk|R−k, X−k,∀k and the symmetry of the odds
ratio to show OR(R2, R1|R3 = 1, X1, X2, X3) = f(R1, R1, X3). Thus, to show p(R3|R1, R2, X1, X2) is not a function
of X1 and X2, it suffices to show that p(R3|R1 = 1, R2 = 1, X1, X2)× OR(R3, R1, R2|X) is not a function of X1, X2.
Here, we see the higher order interaction term OR(R3, R1, R2|X) appearing. Even though estimating equations have been
discussed in Malinsky et al. [2021] to estimate these higher order terms, they make the tests more challenging.

X1 X2 X3

R1 R2 R3

X∗1 X∗2 X∗3

(a)

X1 X2 X3

R1 R2 R3

X∗1 X∗2 X∗3

(b)

Figure 1: (a) Example of a sequential MNAR model; (b) The permutation supermodel.

The above representation becomes more complex as the number of variables increase. This makes it clear why using the
saturated permutation model is relatively easier to test the sequential MNAR models.



C.2 SEQUENTIAL MAR MODEL AS A SUBMODEL OF PERMUTATION MODEL

Here, we discuss odds ratio independence test as an alternative to likelihood-ratio goodness-of-fit test in sequential
MAR models (as submodels of permutation model). The independence restrictions we would like to test are: Rk ⊥⊥
X�k|R≺k, X∗≺k,∀k. We break down the independencies involving Rk into K − k individual tests, i.e., we would like to test
Rk ⊥⊥ Xj |R≺k, X∗≺k, X�k,≺j ,∀Xj ∈ X�k, where X�k,≺j denotes {Xk+1, . . . , Xj−1}. As mentioned in the main draft,
the conditional independence A ⊥⊥ B|C holds if and only if OR(A,B|C) = 1 for all values of A,B,C. Therefore, to show
the independence between Rk and Xj , we need to show that the following odds ratio is one for all levels of Rk, Xj with
statistical significance-level α:

OR(Rk = rk, Xj = xj | R≺k, X
∗
≺k, X�k,≺j)

=
p(Rk = rk | Xj = xj , R≺k, X

∗
≺k, X�k,≺j ;β

a
k)

p(Rk = 1 | Xj = xj , R≺k, X∗≺k, X�k,≺j ;βa
k)
× p(Rk = 1 | Xj = 1, R≺k, X

∗
≺k, X�k,≺j ;β

a
k)

p(Rk = rk | Xj = 1, R≺k, X∗≺k, X�k,≺j ;βa
k)
.

To estimate the odds ratio, we need an estimate of βak parameters. We use weighted estimating equations to estimate βak . The
intuition is as follows. Given that we have the permutation model as the supermodel, the independence restriction involving
Rk and Xj is equivalent to the following Verma constraint:

Rk ⊥⊥ Xj | R≺k, X∗≺k, X�k,≺j , do(R�k,≺j+1 = 1), ∀Xj ∈ X�k,

where the post intervention distribution is defined as follows:

p(. | do(R�k,≺j+1 = 1)) =
p(V )∏j

i=k+1 p(Ri | paG(Ri))

∣∣∣∣∣
R�k,≺j+1=1

.

Let Wk(βk) := p(Rk|R≺k, X∗≺k, X�k,≺j , Xj ;βk) and let Pn
[
U(βk)

]
= 0 be an unbiased estimating equation for βk wrt

the full law (i.e., had there been no missingness). We can estimate βk via the following weighted estimating equation:

Pn
[
I(R�k,≺j+1 = 1)∏j

i=k+1 ωi(η̂i)
× U(βk)

]
= 0,

where ωi(ηi) := p(Ri | paG(Ri); η), and η̂i denotes an estimate of ηi.

Since we have to evaluate the odds ratio for all values of Xj , the tests can become expensive in discrete cases and even more
challenging in continuous cases, [Chen, 2021]. Hence, the likelihood-ratio test in Algorithm 1 might be preferred over odds
ratio independence tests for larger graphs.

C.3 SEQUENTIAL MNAR MODEL AS A SUBMODEL OF PERMUTATION MODEL

The independence restrictions we would like to test are: Rk ⊥⊥ X∗≺k|R≺k, X�k,∀k. We break down the independencies
involving Rk into k − 1 individual tests, i.e., Rk ⊥⊥ X∗j |R≺k, X�k, X∗≺j ,∀X∗j ∈ X∗≺k. As mentioned in the main draft,
this is a context-specific independence restriction and is equivalent to Rk ⊥⊥ Xj |R≺k \ Rj , Rj = 1, X�k, X

∗
≺j . This

independence holds if and only if the following odds ratio is one for all levels of Xj with statistical significance-level α :

OR(Rk = rk, Xj = xj | R≺k \Rj , Rj = 1, X�k, X
∗
≺j)

=
p(Rk = rk | Xj = xj , R≺k \Rj , Rj = 1, X�k, X

∗
≺j ;β

a
k)

p(Rk = 1 | Xj = xj , R≺k \Rj , Rj = 1, X�k, X∗≺j ;β
a
k)
×

p(Rk = 1 | Xj = 1, R≺k \Rj , Rj = 1, X�k, X
∗
≺j ;β

a
k)

p(Rk = rk | Xj = 1, R≺k \Rj , Rj = 1, X�k, X∗≺j ;β
a
k)
.

We can estimate the odds ratio by estimating the parameters βak . We use weighted estimating equations to estimate the
parameters and the intuition behind the choice of weights is that the restriction between Rk and X∗j can be viewed as the
following Verma constraint (under the permutation supermodel):

Rk ⊥⊥ X∗j |R≺k, X�k, X∗≺j , do(R�k = 1), ∀X∗j ∈ X∗≺k.

Let Wk(βak) := p(Rk|Xj , R≺k \Rj , Rj = 1, X�k, X
∗
≺j ;β

a
k) and let Pn

[
U(βak)

]
= 0 is unbiased estimating equation for

βak wrt the full law (had there been no missingness). We can estimate βak via the following weighted estimating equation:

Pn
[

I(R�k = 1)∏K
j=k+1 p(Rj |paG(Rj); η̂j)

× U(βak)

]
= 0,



where η̂j is an estimate of ηj that parameterize the conditional density of p(Rj |paG(Rj)).

Similar to the sequential MAR model, the goodness-of-fit test based on odds ratio independence test can be rather challenging
with continuous variables. Hence, the weighted likelihood-ratio tests might still be preferred.

C.4 BLOCK-PARALLEL MODEL AS A SUBMODEL OF NO SELF-CENSORING

Algorithm 2 TESTING BLOCK-PARALLEL (M,Dn)

1: for k ∈ {1, . . . ,K − 1} do
2: Let Wk(βk) := p(Rk = 1 | R−k = 1, X−k;βk).

3: Estimate βk (denoted by β̂k).

4: for each pair k, j ∈ {1, . . . ,K} s.t. k 6= j do
5: Let θ(rk, rj) = OR(Rk = Rj = 0 | R−kj = 1, X)

6: Compute θ(Rk = 0, Rj = 0) via the following:

Pn

[∏
i6={k,j} Ri × (1− Rk)× (1− Rj)

]
Pn

[∏K
i=1 Ri ×

(1−Wk(β̂k))× (1−Wj(β̂j))

Wk(β̂k)×Wj(β̂j)

]

7: Test θ(Rk=0,Rj=0)=1 at significance level α

8: if test fails (i.e., Rk 6⊥⊥ Rj |X) then
9: return not block-parallel MNAR

10: return block-parallel MNAR

D PROOFS

Theorem 1. The intervention distribution p(X,R \R�k, X∗|do(R�k = 1)) factorizes wrt a CDAG G∗ where edges into
R�k have been removed from the sequential MAR graph G. Factorization of this intervention distribution wrt a CDAG
preserves the global Markov property, i.e., d-separation can be used to read dormant independencies in the intervention
distribution. In G∗ we haveRk ⊥⊥ X�k|R≺k, X∗≺k by d-separation implying the same independence holds in the intervention
distribution. Finally, testability of this dormant independence from observed data follows from the fact that the propensity
scores p(Rj |paG(Rj)) for each Rj ∈ R�k is identified under the restrictions implied by the graph G (identification is trivial
since the sequential MAR model is a submodel of a permutation model that is fully identified), and upon intervention to
R�k = 1, each previously partially observed variable Xj ∈ X�k is now observed via a consistency argument Xj = X∗j .

Theorem 2. The proof is very similar to the proof of Theorem 1. Interventions on R�k preserve the global Markov
property and propensity scores of R�k are all identified as functions of observed data (since sequential MNAR is a submodel
of fully identified permutation model). The m-CDAG we obtain after intervening on R�k and setting them to 1 is a graph
where all incoming edges intoR�k are removed and allX�k are observed random variables. Thus the dormant independence
are direct functions of observed data.

Theorem 4. Given the restrictions of a block-parallel model, we note that including R−kj in the conditioning set of
independence Rk ⊥⊥ Rj |X does not spoil the independence. Hence, we can equivalently look at Rk ⊥⊥ Rj |X,R−kj = 1.
Further, we know this independence holds if and only if OR(Rk, Rj |X,R−kj = 1) = 1. All we need to show
now is that OR(Rk, Rj |X,R−kj = 1) = OR(Rk, Rj |X−kj , R−kj = 1). Using an odds-ratio parameterization of



p(Rk, Rj |X,R−kj = 1) we have:

OR(Rk = rk, Rj = rj | X,R−kj = 1) =
p(Rk = rk | Rj = rj , X,R−kj = 1)

p(Rk = 1 | Rj = rj , X,R−kj = 1)
× p(Rk = 1 | Rj = 1, X,R−kj = 1)

p(Rk = rk | Rj = 1, X,R−kj = 1)

=
p(Rk = rk | Rj = rj , X−k, R−kj = 1)

p(Rk = 1 | Rj = rj , X−k, R−kj = 1)
× p(Rk = 1 | Rj = 1, X−k, R−kj = 1)

p(Rk = rk | Rj = 1, X−k, R−kj = 1)

= f1(Rk, Rj , X−k, R−kj = 1).

The second equality holds because Rk ⊥⊥ Xk|R−k, X−k, and

OR(Rj = rj , Rk = rk | X,R−kj = 1) =
p(Rj = rj | Rk = rk, X,R−kj = 1)

p(Rj = 1 | Rk = rk, X,R−kj = 1)
× p(Rj = 1 | Rk = 1, X,R−kj = 1)

p(Rj = rj | Rk = 1, X,R−kj = 1)

=
p(Rj = rj | Rk = rk, X−j , R−kj = 1)

p(Rj = 1 | Rk = rk, X−j , R−kj = 1)
× p(Rj = 1 | Rk = 1, X−j , R−kj = 1)

p(Rj = rj | Rk = 1, X−j , R−kj = 1)

= f2(Rk, Rj , X−j , R−kj = 1).

The second equality holds because Rj ⊥⊥ Xj |R−j , X−j . Due to symmetry of odds ratio, f1(Rk, Rj , X−k, R−kj = 1) and
f2(Rk, Rj , X−j , R−kj = 1) must be equal. This implies OR(Rk, Rj |X,R−kj = 1) = OR(Rk, Rj |X−kj , R−kj = 1) (all
a function of observed data).

Even though the odds ratio is a function of observed data, estimation of odds ratio is not straightforward. We rely on the
estimating equations discussed in this Appendix and Malinsky et al. [2021] to estimate the odds ratios.

Theorem 3. To prove this result, it suffices to show that the target law in the criss-cross structure on two variables (drawn
on the right hand side) is not non-parametrically identified. For this purpose, we provide an example of two different full
laws that factorize according to the criss-cross model, but map into the same observed data law.

X1 p(X1)
0 a
1 1− a

X2 X1 p(X2 | X1)
0 0 b
1 0 1− b
0 1 c
1 1 1− c

R1 X2 p(R1 | X2)
0 0 d
1 0 1− d
0 1 e
1 1 1− e

R2 R1 X1 p(R2 | R1, X1)
0 0 0 f
1 0 0 1− f
0 0 1 g
1 0 1 1− g
0 1 0 h
1 1 0 1− h
0 1 1 i
1 1 1 1− i

X1 X2

R1 R2

X∗1 X∗2

R1 R2 X1 X2 p(FULL LAW) X∗1 X∗2 p(OBSERVED LAW)

0 0

0 0 abdf

? ? d
[
abf + (1− a)cg

]
+ e
[
a(1− b)f + (1− a)(1− c)g

]1 0 (1− a)cdg
0 1 a(1− b)ef
1 1 (1− a)(1− c)eg

0 1

0 0 abd(1− f)

?
0 d

[
ab(1− f) + (1− a)c(1− g)

]
1 0 (1− a)cd(1− g)
0 1 a(1− b)e(1− f)

1 e
[
a(1− b)(1− f) + (1− a)(1− c)(1− g)

]
1 1 (1− a)(1− c)e(1− g)

1 0

0 0 ab(1− d)h
0

?
ah
[
b(1− d) + (1− b)(1− e)

]
1 0 (1− a)c(1− d)i
0 1 a(1− b)(1− e)h

1 (1− a)i
[
c(1− d) + (1− c)(1− e)

]
1 1 (1− a)(1− c)(1− e)i

1 1

0 0 ab(1− d)(1− h) 0 0 ab(1− d)(1− h)
1 0 (1− a)c(1− d)(1− i) 1 0 (1− a)c(1− d)(1− i)
0 1 a(1− b)(1− e)(1− h) 0 1 a(1− b)(1− e)(1− h)
1 1 (1− a)(1− c)(1− e)(1− i) 1 1 (1− a)(1− c)(1− e)(1− i)

A concrete example is as follows:



X1
p(X1)

M1 M2

0 7/15 5/11
1 8/15 6/11

X2 X1
p(X2 | X1)
M1 M2

0 0 6/7 4/5
1 0 1/7 1/5
0 1 3/4 2/3
1 1 1/4 1/3

R1 X2
p(R1 | X2)

M1 M2

0 0 19/20 189/200
1 0 1/20 11/200
0 1 85/100 89/100
1 1 15/100 11/100

R2 R1 X1
p(R2| | R1, X1)

M1 M2

0 0 0 268/323 7636/16821
1 0 0 55/323 9185/16821
0 0 1 208/323 16216/16821
1 0 1 115/323 605/16821
0 1 0 1/2 1/2
1 1 0 1/2 1/2
0 1 1 1/2 1/2
1 1 1 1/2 1/2

R1 R2 X1 X2
p(R,X)

X∗1 X∗2
p(R,X∗)

M1 M2 M1 = M2

0 0

0 0 134/425 3818/24475

? ? 68/100
1 0 104/425 8108/24475
0 1 67/1425 1118/30439
1 1 104/1425 8108/51975

0 1

0 0 11/170 167/890

?
0 2/101 0 23/170 11/890

0 1 11/1140 167/3780
1 1/201 1 23/570 11/1890

1 0

0 0 1/100 1/100
0

?
3/2001 0 1/100 1/100

0 1 1/200 1/200
1 2/1001 1 1/100 1/100

1 1

0 0 1/100 1/100 0 0 1/100
1 0 1/100 1/100 1 0 1/100
0 1 1/200 1/200 0 1 1/200
1 1 1/100 1/100 1 1 1/100

From the above example, we see that none of the parameters in red are identified.



E SIMULATIONS

As mentioned in the main draft, we describe three sets of simulations to illustrate the key results and the utility of our
proposed methods – each set focuses on a class of missing data models that we considered in the main draft. For each
simulation, we generate four random variables from either a multivariate normal distribution or binomial distribution.
We induce missing values in all four variables according to a missingness mechanism that follows restrictions of either
sequential MAR, sequential MNAR, block-parallel, or supermodels of them. All code necessary to reproduce our simulations
is included with this submission. The data generating mechanism is described as follows.

Generating X: For Gaussian data, we generate four random variables from multivariate normal distribution with mean
zero and covariance matrix σ where the ij-th entry is σij = 1− |i− j| × 0.25. For binary data, variable Xk is generated
from a binomial distribution with the probability of observing Xk = 1 given X≺k equals to expit

(
a0xk

+
∑
j≺k a

j
xk
×Xj),

where expit(x) = 1/(1 + exp(−x)) and parameters ajxk
(for all k = 1, . . . ,K and j ≺ k) are generated uniformly from the

(−1, 1) interval.

Generating R: In each class of missing data model, we consider generating R according to two scenarios: one where the
restrictions in the missing data model we would like to test hold true (the null hypothesis should be accepted) and one where
the restrictions are violated (the null hypothesis should be rejected in favor of accepting the corresponding supermodel). All
missingness indicators are generated from binomial distributions. The details on missing data parameters are as follows.

p(Rk = 1 | R≺k, X∗≺k, X�k) = expit
(
a0k +

∑
j≺k

bjk ×Rj + cjk ×RjX
∗
j +

∑
i�k

dik ×Xi

)
, k = 1, . . . , 4 (Simulation 1)

p(Rk = 1 | R≺k, X�k, X∗≺k) = expit
(
a0k +

∑
i�k

dik ×Xi +
∑
j≺k

bjk ×Rj + cjk ×RjX
∗
j

)
, k = 1, . . . , 4 (Simulation 2)

p(Rk = 1 | X−k) = expit
(
a0k +

∑
j 6=k

bjk ×Xj), k = 1, . . . , 4 (Simulation 3). (4)

Addition of the blue terms simulate scenarios where the independence assumptions we would like to test are violated. All
the parameters are randomly generated from a uniform distribution. In order to control the proportion of missing values, we
run the experiments with three different ranges for the uniform distribution: (−1, 1), (−0.5, 1.5), and (0, 2).

Generating X∗: For each given sample, if Rk = 1 then X∗k = X , otherwise X∗ = NA.

Our objective is to test the missing data restrictions by relying only on observed data, i.e., (R,X∗) samples.

Simulation 1. In the first set of simulations, we focused on testing the sequential MAR model defined via the set of
restrictions in (4). The results were provided and discussed in the main draft.

We briefly add that when true underlying missingness mechanism satisfies the assumptions of the sequential MAR model,
missingness indicators are generated from (4) without the blue terms. When the restrictions are no longer valid, missingness
indicators are generated from (4) with the blue terms.

Simulation 2. In the second set of simulations we focus on testing the sequential MNAR model defined via the set of
restrictions in (5). We follow Algorithm 1 to test the independence restrictions, which entails running a total of K − 1 tests.
Our test statistic is 2× ρ and we use a chi-square distribution with k− 1 degrees of freedom to evaluate the goodness-of-fits
– the degree of freedom is chosen as the difference between number of parameters in Wk(βak) and Wk(β0

k), as defined in the
algorithm. If the p-values are all greater than 0.05, we accept the sequential MNAR model.

For a fixed sample size, we simulate 100 different datasets and calculate the acceptance rate of a sequential MNAR model.
The acceptance rate is plotted as a function of sample size in Fig. 2. The sample size ranges from 1, 000 to 15, 000 with
500 increments. In each panel, there are three plots that vary in terms of the proportion of complete cases in the dataset, i.e,
6%, 30%, 48%. The top row illustrates the results when the true underlying missingness mechanism satisfies the assumptions
of the sequential MNAR model (missingness indicators are generated from (4) without the blue terms) and the bottom row
illustrates results for when the restrictions are no longer valid (missingness indicators are generated from (4) with the blue
terms). As it is shown, the acceptance rate is quite low when the independence restrictions of a sequential MNAR model
are not valid; even when we only have 6% of complete cases the tests perform well. When the sequential MNAR model
assumptions are true, the acceptance rate increases as missing rate decreases and reaches very close to 1 when we have only
48% complete cases.



Figure 2: Results on testing sequential MNAR models. In the top row, the sequential MNAR model captures the true
underlying missingness mechanism. The assumptions of sequential MNAR model are violated in the bottom row.

Simulation 3. In the third set of simulations we focus on testing independencies between missingness indicators in a
block-parallel MNAR model defined via the set of restrictions in (6). Testing the full model requires following Algorithm 2
which entails running a total of

(
K
2

)
tests (between all distinct pairs of missingness indicators.) For illustration purposes, we

focus on testing only one pair of missingness indicator in two different scenarios: one where the true underlying missingness
mechanism follows the restrictions of a block-parallel model – thus Rk ∈ R is generated using (4), and one where the
missingness mechanism factorizes as

∏K
k=1 p(Rk|R�k, X≺k) which is still a submodel of the no-self censoring model but

violates the assumptions of the block-parallel model. We focus on testing the independence R1 ⊥⊥ R2|X by calculating the
odds ratio θ := OR(R1 = 0, R2 = 0|X) via the following estimating equation and showing that the value is one.

Pn

[
R1 ×R2 ×R3 ×

p(R1 = 0 | R2 = 1, R3 = 1, X2, X3)× p(R2 = 0 | R1 = 1, R3 = 1, X1, X3)

p(R1 = 1 | R2 = 1, R3 = 1, X2, X3)× p(R2 = 1 | R1 = 1, R3 = 1, X1, X3)
× θ

−R3 × (1−R1)× (1−R2)
]

= 0.

For a fixed sample size, we simulate 100 different datasets and calculate the odds ratio via the above estimating equation.
We provide the boxplots in Fig. 3. The x-axis is sample size that ranges from 1, 000 to 10, 000 with 2, 000 increments. The
left panel illustrates the boxplots for binary and Gaussian data when the true missingness mechanism follows the restrictions
of the block-parallel model, and in the right panel it does not. As it is shown, the boxplots are centered around 1 in the left
panel as expected, but move away from 1 when the independence does not hold. To perform a formal test, we can construct
confidence intervals for each sample size via bootstrapping the data generations and odds ratio calculations.



Figure 3: Results on computing (conditional) odds ratio between a pair of missingness indicators to test an independence
restriction between them. On the left panel, the block-parallel MNAR model captures the true underlying missingness
mechanism. The assumptions of block-parallel MNAR model are violated on the right panel.
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