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Abstract

Significant progress has been made in develop-
ing identification and estimation techniques for
missing data problems where modeling assump-
tions can be described via a directed acyclic graph.
The validity of results using such techniques rely
on the assumptions encoded by the graph hold-
ing true; however, verification of these assump-
tions has not received sufficient attention in prior
work. In this paper, we provide new insights on the
testable implications of three broad classes of miss-
ing data graphical models, and design goodness-of-
fit tests for them. The classes of models explored
are: sequential missing-at-random and missing-not-
at-random models which can be used for modeling
longitudinal studies with dropout/censoring, and a
no self-censoring model which can be applied to
cross-sectional studies and surveys.

1 INTRODUCTION

Missing data is a common issue in applied problems. To
infer a parameter of interest under missingness, often a sta-
tistical model is posed that encodes a set of assumptions on
the missingness mechanisms. These assumptions are com-
monly divided into three main types: missing-completely-at-
random (MCAR) where missingness does not have a cause
and hence complete-case analysis is justifiable, missing-at-
random (MAR) where all causes of missingness are assumed
to be fully observed, and missing-not-at-random (MNAR)
where causes of missingness are either only partially ob-
served and/or fully unobserved [Little and Rubin, 2019].

MNAR models are perhaps the most common form of miss-
ingness in practice, and the most challenging since obser-
vations are systematically missing; yet such models are
underused due to the complexity of the identification and
estimation procedures needed to recover parameters of in-

terest as functions of observed data law. A recent line of
research has proposed to use causal graphical models as
a representation of the statistical models for missing data
[Mohan et al., 2013, Thoemmes and Rose, 2014, Shpitser,
2016, Saadati and Tian, 2019]. A causal graph not only
encodes conditional independence relations between vari-
ables but also depicts the causal mechanisms responsible for
missingness, making it a useful tool for interpretation of the
underlying assumptions [Glymour, 2006, Daniel et al., 2012,
Martel García, 2013, Scharfstein et al., 2021]. Further, just
as in causal inference, graphical representations of missing-
ness allow for the design of algorithms that automate certain
steps of identification and estimation schemes; see Mohan
and Pearl [2021], Nabi et al. [2022] for detailed reviews.

While advances in graphical models of missing data have
yielded useful insights into identifying and estimating pa-
rameters of interest, the validity of any result relies on the
substantive assumptions encoded by the graph holding true.
In order to confirm testability of a restriction in missing data
models, we have to examine its implications on the observed
data distribution; this enables the design of empirical testing
procedures from finite (but partially unobserved) samples.
Unfortunately, we may not always be able to test all the
encoded restrictions. The permutation model, proposed by
Robins [1997], is an example of a graphical MNAR model
that is untestable. Mohan and Pearl [2014] provided exam-
ples of other impediments for testability in graphical missing
data models. For instance, in many cases, the assumption
that no variable influences its own missingness (a.k.a. lack
of self-censoring causes) is untestable.

Nonetheless, there are MAR and MNAR models that entail
empirically testable restrictions [Mohan and Pearl, 2014,
Tian, 2015, Gain and Shpitser, 2018, Tu et al., 2019]. The
contributions of this paper in this regard are two-fold: (i)
We expand on testable implications of missing data models
that resemble ordinary conditional independencies in the
underlying full law, but manifest as generalized a.k.a. Verma
independencies in the observed law; (ii) We design empirical
tests for restrictions in three broad classes of missing data
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models that use ideas from weighted likelihood-ratio tests
and odds-ratio parameterizations of joint distributions. The
model classes are:

1. Sequential MAR models where missingness at each
time step depends only on past observed values,

2. Sequential MNAR models where missingness at each
time step may depend on past observed variables as
well as future unmeasured/missing values, and

3. MNAR models where missingness of each variable
may depend on missing values of any other variable
except itself.

The first two classes are particularly applicable for model-
ing missingness mechanisms in longitudinal studies with
censoring, while the third class is more suitable for survey
studies and situations where there is no inherent time order-
ing in the data collection process. With these insights, we
can use partially observed data to gain information about
the underlying missingness mechanisms and assess the ad-
equacy of our chosen missingness models in our analyses.
Additionally, we explore the extension of our results to sce-
narios where some variables are completely unmeasured or
latent, further broadening the scope of our framework. Our
results are also relevant for discovery and model selection
tasks where the goal is not only to uncover the substantive
relationships between the variables of interest but also to
identify the processes that drive their missingness.
All proofs are deferred to the supplementary materials.

2 NOTATIONS AND PRELIMINARIES

Let X = {X1, . . . , XK} be a set of K random variables
with probability distribution p(X). We denote the values
of Xk ∈ X by lower case letter xk ∈ Xk, where Xk de-
notes the state space of Xk. We assume a sample of n i.i.d
observations with missing values. To locate the missing
cases, we consider a set of binary missingness indicators
R = {R1, . . . , RK},whereRk = 0 when xk is missing and
Rk = 1 when xk is observed. Let X∗ = {X∗1 , . . . , X∗K}
denote the set of proxy random variables that represent the
values of variables in X that we actually observe. Each
X∗k ∈ X∗ is deterministically defined in terms of Rk ∈ R
and Xk ∈ X as follows: if Rk = 1, X∗k = Xk, otherwise
X∗k = “?”. We refer to p(X) as the target law, p(R | X)
as the missingness mechanism, p(X,R) as the full law, and
p(R,X∗) as the observed data law.

A missing data model is a set of distributions defined over
variables in {X,R,X∗}.1 Following the conventions in Mo-
han et al. [2013], we represent the missing data model via
a directed acyclic graph (DAG) G(V ), where vertices V

1For simplicity of notations, we assume all variables have
missing values. All discussions however, can be easily generalized
to scenarios where a subset of variables are fully observed.

correspond to random variables in {X,R,X∗}. In addition
to acyclicity, a missing data DAG (or m-DAG2 for short) im-
poses certain restrictions on the edges: variables inR cannot
point to variables in X, and each X∗k ∈ X∗ has only two
parents: Xk and Rk (due to deterministic relations.) Similar
to Bhattacharya et al. [2019], we also allow for X∗i → Rj

edges. A few examples of m-DAGs are illustrated in Sec-
tions 3 and 4; edges corresponding to deterministic relations
are drawn in gray. A full law p(X,R,X∗) that is Markov
relative to G(V ) factorizes as follows:∏

Vi∈X∪R
p(Vi | paG(Vi))×

∏
X∗

k∈X∗

p(X∗k | Rk, Xk), (1)

where paG(Vi) denotes the parents of Vi in G(V ). For con-
venience, we drop the deterministic terms, p(X∗k |Rk, Xk),
when discussing the factorization of the full law.

The full law p(X,R) is identified (can be expressed as a
function of the observed data) if and only if the missing-
ness mechanism p(R|X) is identified; the target law p(X)
is identified if and only if p(R = 1|X) is identified. Thus,
identification of the full law implies that the target law (and
any function of the full law) is identified, but the reverse is
not true. The missingness mechanism in an m-DAG factor-
izes as

∏
k p(Rk|paG(Rk)), where the conditional density

p(Rk|paG(Rk)) is referred to as the propensity score of
Rk.

Numerous identification strategies in the field of graphical
missing data literature focus on identifying each propensity
score in a specific order, whether it is a total or partial order;
notable works in this area include Shpitser et al. [2015]
and Bhattacharya et al. [2019]. In essence, to identify the
propensity score of Rk, one can verify if Rk, given parents,
is independent of the corresponding missingness indicators
of its parents that are counterfactuals. If this condition holds,
the propensity score can be identified using a simple ar-
gument based on conditional independence (d-separation).
However, if this condition is not satisfied, one needs to ex-
amine whether it holds in post-fixing distributions, which
are obtained through the recursive application of the fix-
ing operator. This operation involves inverse weighting the
current distribution by the propensity score of the variable
being fixed [Bhattacharya et al., 2022, Richardson et al.,
2023]. We employ similar strategies in this work.

Similar to regular DAGs, absence of an edge in a missing
data DAG G(V ) entails conditional independence restric-
tions between the endpoint variables in the underlying dis-
tribution p(V ). These restrictions can be directly read off
from the graph using Markov properties and d-separation
rules [Pearl, 2009] – given disjoint sets U,W,Z ⊂ V, the
global Markov property states that if U ⊥⊥d-sep W | Z in
G(V ), then U ⊥⊥W | Z in p(V ). In this work, we focus on

2The term “mDAG” has also been used by [Evans, 2016] to
denote marginalized DAGs.
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restrictions where all variables are at least partially observed,
which allows us to narrow our focus to testability of ordi-
nary conditional independence restrictions in the full law.
However, as we will see, even ordinary restrictions in the
full law may manifest as generalized equality restrictions in
the observed law. Testability of generalized equality restric-
tions induced by latent variables in m-DAGs is a challenging
problem left for future work; see Tian and Pearl [2002], Sh-
pitser and Pearl [2006], Bhattacharya et al. [2022] for more
details on such restrictions when there is no missingness.

Unlike regular DAGs where the independence constraints
can be tested using observed samples from the joint distri-
bution, a conditional independence restriction in an m-DAG
might be empirically untestable, or may manifest as more
complex restrictions on the observed data law. If all the
restrictions encoded in an m-DAG are provably untestable
(i.e., no restriction on the observed data law), the full law
Markov relative to the m-DAG is said to be nonparamet-
ric saturated (as defined by Robins [1997]). Nonetheless,
submodels of saturated missing data models may still be
testable. In this paper, we discuss testability of assumptions
in the three aforementioned classes of missing data models
as submodels of two known saturated models: the permuta-
tion model and the no self-censoring model.

Robins [1997] introduced the permutation model as fol-
lows: given an ordering on variables in X, indexed by
k ∈ {1, . . . ,K}, each missingness indicator Rk is inde-
pendent of the current and past variables in X given the
past observed variables in R,X∗ and future variables in
X. Formally, the model is defined via the following set of
conditional independence restrictions:

Rk ⊥⊥ X≺k+1 | R≺k, X∗≺k, X�k, ∀k (permutation) (2)

where V≺k = {V1, . . . , Vk−1}, V�k = {Vk+1, . . . , VK}.
Robins [1997] showed that the full law in this model is iden-
tified and is nonparametrically saturated. An m-DAG repre-
sentation of the permutation model with K = 2 variables
is shown in Fig. 1(b). For a discussion on the substantive
distinctions between X∗1 → R2 and X1 → R2 edges, refer
to Appendix A.3.

The no self-censoring model was introduced by Shpitser
[2016], Sadinle and Reiter [2017].3 The central assumption
in this model is that no variable directly causes its own
missingness status. Formally, the model is defined by the
following set of conditional independence restrictions:

Rk ⊥⊥ Xk | R−k, X−k, ∀k (no self-censoring) (3)

where V−k = V \ Vk. Malinsky et al. [2021] showed that
this model is nonparametrically saturated and identified via
an odds-ratio parameterization of the missingness mech-
anism; a description of this parameterization, which was

3In Sadinle and Reiter [2017], the model is referred to as
itemwise conditionally independent nonresponse model.

proposed by Chen [2007], is provided in Appendix A.1. The
graphical representation of this model relies on a general-
ization of m-DAGs to allow for undirected edges between
all pairs of R vertices – a graph with both directed and
undirected edges is called a chain graph [Lauritzen, 1996,
Shpitser, 2016]. An example of this model with K = 2
variables is shown in Fig. 4(b). The assumptions of the no
self-censoring model are encoded in this chain graph by the
following local Markov property: each missingness indica-
tor Ri is independent of all other variables on the graph
given its neighboring missingness indicators (joined via an
undirected edge Ri −Rj) and its parents (Xj → Ri).

We now explore how one can select an appropriate m-DAG
representation based on intuitive explanations of the miss-
ing data generation process. To illustrate this, imagine an
investigator who is analyzing a large observational database
that contains information on smoking habits and diagnostic
test results for bronchitis among individuals in a city. In this
scenario, let’s consider X1 as the true smoking status of an
individual and X2 as their bronchitis diagnosis. However,
the investigator notices that there are missing entries in the
database, which are indicated by the missingness indicators
R1 and R2. If we choose the permutation model depicted
in Figure 1(b) to explain the missingness mechanism, it im-
plies the following two processes: (i) R1 ← X2 suggesting
that the measurement of an individual’s smoking status de-
pends on the counterfactual value of their bronchitis status;
this may occur for example when a patient’s smoking status
is inquired on a suspected diagnosis of bronchitis before
administering the test., and (ii) R1 → R2 ← X∗1 suggest-
ing that whether the true bronchitis status is measured via
a diagnostic test depends on the doctor’s awareness of the
individual’s smoking status (R1) and their observed value
of smoking (X∗1 ). On the other hand, the no self-censoring
model shown in Fig. 4(b) explains the missingness mecha-
nism via the following three processes: (i) R1 ← X2 sug-
gesting that a suspected diagnosis of bronchitis is likely to
lead to an inquiry about the smoking status of the patient,
(ii)R2 ← X1 suggesting that smokers are more likely to get
tested for bronchitis, and (iii)R1−R2 suggesting that order-
ing a diagnostic test for bronchitis increases the likelihood
of ordering a test for bronchitis, and vice versa.

3 NEW INSIGHTS INTO TESTABLE
IMPLICATIONS

Although the restrictions we study in this paper can be
phrased in terms of ordinary independence restrictions in
the full law of a missing data DAG model, they may only
manifest in the observed data law via relatively complex
functionals. In this section, we show that a d-separation
statement between missingness indicators and substantive
variables may correspond to generalized equality constraints,
a.k.a. Verma constraints [Verma and Pearl, 1990], in the
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X1 X2

R1 R2

X∗1 X∗2

(a)

X1 X2

R1 R2

X∗1 X∗2

(b)

X1 X2 = X∗2

R1 R2 = 1

X∗1

(c)

Figure 1: (a) Example of a MAR model; (b) Example of a
saturated permutation model; (c) The absence of X2 → R1

edge in (a) can be tested in the intervention distribution
p(V \ R2|do(R2 = 1)) where the dashed edge indicates
whether p(V ) is Markov wrt the MAR model in (a) or the
permutation supermodel in (b).

observed data distribution. This observation extends the
current state of the art on testability in missing data models.

Consider the m-DAG shown in Fig. 1(a): a MAR submodel
of the permutation model in Fig. 1(b) where X2 → R1

is removed. Though the permutation model itself is non-
parametric saturated, it is natural to ask if this MAR sub-
model, which encodes an additional d-separation relation
R1 ⊥⊥ X2, has a testable restriction on the observed data.
To determine testability, we initially apply the criterion pro-
posed by Mohan and Pearl [2014]. According to their cri-
terion, a d-separation condition displayed in an m-DAG G
is testable if the missingness indicators associated with all
partially observed variables involved in the relation are ei-
ther already present in the separating set, or can be added to
the set without spoiling the separation. By applying this cri-
terion, we note that the relation R1 ⊥⊥d-sep X2|R2 does
not hold in G due to the open collider R2 on the path
R1 → R2 ← X∗1 ← X1 → X2. Therefore, one might
conclude that R1 ⊥⊥ X2 is not testable.

Let us momentarily assume that X in Fig. 1(a) consists of
binary variables. We can compare number of parameters in
the full law using (1) against the saturated observed data law
using pattern-mixture factorization Rubin [1976] given by
the marginal distribution ofR and conditional distribution of
X∗ given R. The full law in Fig. 1(a) requires 7 parameters
(3 for p(X), 1 for p(R1), and 3 for p(R2|R1, X

∗
1 )) which is

less than the number of parameters in the saturated observed
law which is 8 (3 for p(R) and 5 for p(X∗|R).) Hence, it
can be inferred that the additional restriction R1 ⊥⊥ X2

(implied by the absence of X2 → R1 edge) imposes con-
straints on the observed data law, at least in the discrete
case.4 Interestingly, this contradicts the conclusion from the
previous paragraph stating that R1 ⊥⊥ X2 is not testable.
Such contradictions are expected, however, as Mohan and
Pearl’s criterion is sufficient but not necessary for testability.

Now, we aim to demonstrate that R1 ⊥⊥ X2 is indeed
testable, not only in discrete cases but also in more gen-
eral nonparametric settings. In Fig. 1(a), conditioning on

4Appendix A.2 contains the parameter counting arguments.

R2 opened up the collider R1 → R2 ← X∗1 on the path
from R1 to X2. From a causal perspective, removal of these
edges corresponds to an intervention in which R2 is set to a
specific value.5 This results in the m-conditional DAG (m-
CDAG), as shown in Fig. 1(c). Due to determinism (alterna-
tively consistency), onceR2 is set to 1, thenX2 = X∗2 form-
ing a single (observed) node. Following standard notation in
Pearl [2009] we denote the intervention where we setR2 to 1
as do(R2 = 1) and the corresponding intervention distribu-
tion as p(X,R \R2, X

∗|do(R2 = 1)), or p(.|do(R2 = 1))
for short. This intervention distribution can be obtained via
truncation of the full law factorization where the propen-
sity score of R2, p(R2|paG(R2)), is dropped. That is,
p(.|do(R2 = 1)) = p(X,R,X∗)/p(R2|R1, X

∗
1 )|R2=1 and

it factorizes according to the m-CDAG shown in Fig. 1(c).
The relation R1 ⊥⊥d-sep X2 holds in the resulting m-CDAG,
and X2 is now fully observed. Further, the propensity score
of R2 that takes us to the intervention distribution is a func-
tion of observed data. These facts combined imply that
R1 ⊥⊥ X2 imposes a restriction on the observed data in the
form of a Verma constraint; i.e., a d-separation statement in
an identified intervention distribution.

The above example illustrates the core idea for essential
extensions of the previous testability criterion [Mohan and
Pearl, 2014, 2021]. We state that a d-separation condition
displayed in an m-DAG is also testable if the missingness
indicators associated with all partially observed variables
involved in the relation can be intervened on (or, in other
words, their corresponding propensity scores are identified)
without spoiling the separation. We formalize this extension
of testable restrictions in the next section (and partly in the
appendix), where we also consider testability of indepen-
dence statements between proxy variables and missingness
indicators, and among missingness indicators themselves.

4 TESTABLE IMPLICATIONS AND
GOODNESS-OF-FIT TESTS

In this section, we investigate independence assumptions in
the full law and their implications on the observed data law
in three broad classes of missing data models, and provide
ways of empirically evaluating these constraints. We formu-
late the testability criteria and goodness-of-fit tests for the
general case of a missing data model withK variables and il-
lustrate the steps via examples. We consider likelihood-ratio
tests for evaluating the independence A ⊥⊥ B | C, which
is typically performed by fitting p(A | C) and p(A | B,C)
and comparing their goodness-of-fit. Under the null hypoth-
esis of independence, both models should fit the data equally
well. In addition to likelihood-ratio tests, we consider evalu-
ating A ⊥⊥ B | C by computing the odds ratio of A and B

5We borrow the notion of intervention from causal inference
by viewing each missingness indicator as a “treatment variable”;
see [Nabi et al., 2022] for details.
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conditioned on C – the independence relation holds if and
only if the odds ratio equals one for all values of A,B,C.
Therefore, if under the alternative hypothesis of dependence,
the odds ratio still equals one (with statistical significance-
level α), then the data agrees with the independence relation.
In the following discussion, we letMo denote the statisti-
cal model where the independence relation holds (the null
hypothesis), and letMa denote the statistical supermodel
where the independence relation does not hold (the alterna-
tive hypothesis).

4.1 SEQUENTIAL MAR MODELS

We call a missing data model a sequential MAR model if
under an ordering≺ that indexes variables by k = 1, . . . ,K,
the following set of independence restrictions hold:

Rk ⊥⊥ X | R≺k, X∗≺k, ∀k (sequential-MAR) (4)

Examples of this model are shown in Fig. 1(a) and Fig. 2(a)
(without the dashed edges). In addition to restrictions of a
permutation model described in (2), the sequential MAR
model assumes Rk ⊥⊥ X�k|R≺k, X∗≺k, ∀k (it is straight-
forward to see this using graphoid axioms; see e.g., [Lau-
ritzen, 1996] for description of the axioms). Thus, we can
view the sequential MAR model as a submodel of the per-
mutation model. Since assumptions imposed by the per-
mutation model alone are untestable, we focus on testable
implications of these extra assumptions and propose ways
to empirically evaluate them.

The independence Rk ⊥⊥ X�k|R≺k, X∗≺k would be easily
testable using observed data if we could addR�k = 1 in the
conditioning set and thus evaluate the restriction using only
observed cases of X�k. Unfortunately, the independence
no longer holds if we condition on R�k (this is easily con-
firmed from discussion in the previous section and Fig. 2(a).)
However, we can instead intervene on R�k and check if the
independence holds in the intervention distribution. The
following theorem formalizes that restrictions in sequen-
tial MAR models defined above can always be tested as
Verma constraints, i.e., (i) the independence holds in the
corresponding m-CDAG, and (ii) the required intervention
distributions are identified from observed data.

Theorem 1. The independence Rk ⊥⊥ X�k|R≺k, X∗≺k
has a testable implication on the observed data dis-
tribution in the form of a Verma constraint: Rk ⊥⊥
X�k|R≺k, X∗≺k, do(R�k = 1), where the intervention dis-
tribution p(X,R \R�k, X∗|do(R�k = 1)) is identified.

The intuition for this result will become clear as we discuss
testing such constraints using n (finite) i.i.d samples (de-
noted byDn). One possibility is to use a likelihood-ratio test
and compare goodness-of-fits between p(Rk|R≺k, X∗≺k)
and p(Rk|R≺k, X∗≺k, X�k) but with respect to a distribu-
tion where R�k are intervened on and set to 1. This inter-

vention distribution is a truncated factorization of the full
law where propensity scores of R�k are dropped, i.e.,

p(. | do(R�k = 1)) =
p(V )∏

j�k p(Rj | paG(Rj))

∣∣∣
R�k=1

.

Let Wk(β
o
k) := p(Rk|R≺k, X∗≺k;βo

k) and Wk(β
a
k) :=

p(Rk|R≺k, X∗≺k, X�k;βa
k) (the null and alternative re-

spectively.) Estimating βo
k is relatively straightforward as

Wk(β
o
k) is a direct function of observed data, but estimating

βa
k is more involved. We propose to estimate βa

k , wrt the
truncated/weighted distribution above. This entails using
a weighted estimating equation where propensity scores
of R�k are used as inverse weights to fit βa

k . It is im-
portant to note however, that a propensity score p(Rj |
R≺j , X

∗
≺j , X�j) for any Rj ∈ R�k, may itself need to be

fitted via a weighted estimating equation, sinceX�j appears
in the conditioning set and Rj 6⊥⊥ R�j |R≺j , X∗≺j , X�j .

As an example, consider the sequential MAR model in
Fig. 2(a) (without the dashed edges). The null hypothe-
sis Mo is the statistical model of this m-DAG and the
alternative Ma is the permutation supermodel with the
dashed edges. We are interested in evaluating the inde-
pendencies R1 ⊥⊥ X2, X3 and R2 ⊥⊥ X3|R1, X

∗
1 , which

given Theorem 1 translates into independence restrictions
in p(.|do(R2 = 1, R3 = 1)) and p(.|do(R3 = 1)), respec-
tively. Testing R1 ⊥⊥ X2, X3 entails fitting Wr1(β

a
r1) :=

p(R1|X2, X3;β
a
r1) wrt the truncated/weighted factoriza-

tion Markov relative to Fig. 2(b) where R2 and R3 are
intervened on and set to 1. Thus, we can use propensity
scores of R2 and R3 as inverse weights to estimate βa

r1 . Let
Pn[U(βa

r1)] = 0 be an unbiased estimating equation for
βa
r1 wrt the full law (Pn[.] =

1
n

∑n
i=1(.)). In other words,

Pn[U(βa
r1)] is any estimating equation that is unbiased for

βa
r1 had there been no missingness. The following weighted

estimating equation then yields an unbiased estimator for
βa
r1 wrt the observed data law:

Pn

[
R2 ×R3

p(R2 | paG(R2))× p(R3 | paG(R3))
× U(βa

r1)

]
= 0,

where propensity score of R3, p(R3|R1, R2, X
∗
1 , X

∗
2 ),

can be fit using just observed data, denote it with
Wr3(β̂r3). However, fitting the propensity score of R2,
p(R2|R1, X

∗
1 , X3), requires an intermediate step involv-

ing the intervention distribution where R3 is intervened on
and set to 1, i.e., p(X,R,X∗)/p(R3|paG(R3)) evaluated
atR3 = 1. Similar to the above logic, this entails a weighted
estimating equation usingWr3(β̂r3) as inverse weights to fit
the propensity score of R2, denoted by Wr2(β̂r2). Now that
we have a way of estimating βa

r1 , we can test R1 ⊥⊥ X2, X3

using a weighted likelihood-ratio by computing

ρ = nPn

[
R2 ×R3

Wr2(β̂r2)×Wr3(β̂r3)
× log

(Wr1(β̂
a
r1)

Wr1(β̂
o
r1)

)]
,

where Wr1(β
o
r1) := p(R1;β

o
r1) and βo

r1 is simply the pro-
portion of complete cases of X1, we can use likelihood chi-
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X1 X2 X3

R1 R2 R3

X∗1 X∗2 X∗3

(a)

X1 X2 = X∗2 X3 = X∗3

R1 R2 = 1 R3 = 1

X∗1

(b)

Figure 2: (a) Example of a sequential MAR model (without
the dashed edges) along with its permutation supermodel
(with the dashed edges); (b) The graph Markov wrt the
intervention distribution p(.|do(R2 = 1, R3 = 1)).

square or Wald tests to compare goodness-of-fits [Robins
and Wasserman, 1997, Agostinelli and Markatou, 2001].

If we start our tests for the sequential MAR model by test-
ing the restriction R2 ⊥⊥ X3|R1, X

∗
1 , there are two possi-

bilities: (i) The null might be rejected which immediately
implies that the missing data model is not sequential MAR;
(ii) The null is accepted which means R2 does not have
X3 as a cause. In future tests, say for R1 ⊥⊥ X2, X3 in
this case, this justifies fitting a simplified propensity score
p(R2|R1, X

∗
1 , X

∗
3 ) that makes use of all the observed data.

This simplified propensity score also corresponds to the
same model we would have already fit for the previous null
hypothesis βo

r2 . This example reveals that there is a natu-
ral way to order the tests. For a model with K variables,
we would proceed backwards by first testing restrictions
involving RK−1, moving to RK−2, and so on. If the cur-
rent test succeeds, the corresponding model for the null can
be re-used to produce weights for future estimating equa-
tions; if the test fails, then the assumptions of sequential
MAR does not hold. Following such a sequence may help
improve the power of each test by using all of the observed
samples to estimate the weights in each step. We formalize
this sequence of goodness-of-fit tests based on weighted
likelihood-ratios in Algorithm 1, which takes an ordering
≺ on the missingness indicators, null and alternative mod-
els as a tuple M, and data samples Dn as input. The kth

iteration of the for loop concerns testing the independence
Rk ⊥⊥ X�k | R≺k, X∗≺k. Note however, that as we proceed
with the tests, we are restricted to fewer and fewer samples
which impacts the power of our tests. Although weighting
approaches are common in missing data models [Li et al.,
2013], an interesting direction for future work is to develop
semiparametric methods to use data more efficiently.

4.2 SEQUENTIAL MNAR MODELS

We call a missing data model a sequential MNAR model if
under an ordering≺ that indexes variables by k = 1, . . . ,K,
the following set of independence restrictions hold:

Rk ⊥⊥ X≺k+1, X
∗
≺k | R≺k, X�k,∀k (sequential-MNAR) (5)

Algorithm 1 TESTING SEQUENTIAL MAR (≺,M,Dn)

1: Let ≺ index variables by k = 1, . . . ,K.

2: Let WK(βo
K) := p(RK |R≺K , X∗≺K ;βo

K).
3: Estimate βo

K (denote it by β̂o
K).

4: for k ∈ {K − 1, . . . , 1} do
5: Let Wk(β

o
k) := p(Rk|R≺k, X∗≺k;βo

k) and
Wk(β

a
k) := p(Rk|R≺k, X∗≺k, X�k;βa

k).

6: Estimate βo
k (denote it by β̂o

k).
7: Estimate βa

k via the weighted estimating equation:

Pn

[
I(R�k = 1)∏K
j�kWj(β̂o

j )
× U(βa

k)

]
= 0,

where Pn

[
U(βa

k)
]
= 0 is an unbiased estimating equa-

tion for βa
k wrt the full law (denote it by β̂a

k ).
8: Compute a weighted likelihood-ratio as follows:

ρ = nPn

[
I(R�k = 1)∏K
j�kWj(β̂o

j )
× log

(Wk(β̂
a
k)

Wk(β̂o
k)

)]
.

9: Test ρ with α significance level.
10: ifMo is rejected (i.e., Rk 6⊥⊥ X�k|R≺k, X

∗
≺k) then

11: return not sequential MAR
12: return sequential MAR

An example of this model is shown in Fig. 3(a) (without the
dashed edges.) We can view the sequential MNAR model as
a submodel of the permutation model since in addition to the
restrictions in (2), it assumes Rk ⊥⊥ X∗≺k | R≺k, X�k,∀k.
Thus, we focus on testable implications of these extra as-
sumptions and propose ways to empirically evaluate them.

Unlike sequential MAR models, the d-separation state-
ments being tested in sequential MNAR models are be-
tween missingness indicators and proxy variables, which
can be viewed as context-specific restrictions. Due to de-
terminism, when Rj = 0, X∗j = “?”, an independence
restriction such as Rk ⊥⊥ X∗j |Rj = 0 becomes a state-
ment of independence between a random variable Rk

and some constant, which is trivially true. Hence, the set
Rk ⊥⊥ X∗≺k|R≺k, X�k,∀k is equivalent to context-specific
restrictions Rk ⊥⊥ X≺k|R≺k = 1, X�k,∀k; note that R≺k
is evaluated at one. Even though, these independences re-
strict us to rows where X≺k is fully observed, we still need
enough assumptions to plug in R�k = 1 in the conditioning
set, since X�k is in the conditioning set. Unfortunately, the
independence between Rk and X∗≺k no longer holds if we
condition on R�k. However, the following theorem formal-
izes that restrictions in sequential MNAR models defined
above can still be tested as Verma constraints in identified
intervention distributions where R�k are intervened and
X�k are fully observed.

Theorem 2. The independence Rk ⊥⊥ X∗≺k|R≺k, X�k
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X1 X2 X3

R1 R2 R3

X∗1 X∗2 X∗3

(a)

X1 X2 X3 = X∗3

R1 R2 R3 = 1

X∗1 X∗2

(b)

Figure 3: (a) Example of a sequential MNAR model (with-
out the dashed edge) along with its permutation supermodel
(with the dashed edge); (b) The graph Markov wrt the inter-
vention distribution p(.|do(R3 = 1)).

has a testable implication on the observed data dis-
tribution in the form of a Verma constraint Rk ⊥⊥
X∗≺k|R≺k, X�k, do(R�k = 1), where the intervention dis-
tribution p(X,R \R�k, X∗|do(R�k = 1)) is identified.

To evaluate these Verma constraints, we use weighted
likelihood-ratio tests again. We explain this via a sequential
MNAR example in Fig. 3(a) (without the dashed edges.)
Mo is the statistical model of this DAG and Ma is the
permutation supermodel with the dashed edges. We are
interested in testing absence of the dashed edges which im-
ply R3 ⊥⊥ X∗1 , X

∗
2 | R1, R2 and R2 ⊥⊥ X∗1 | R1, X3.

To empirically evaluate the first restriction, we need to
compare p(R3 | R1, R2, X

∗
1 , X

∗
2 ) and p(R3 | R1, R2),

which is straightforward since these two models are direct
functions of observed data. To evaluate the second restric-
tion however, we need to compare p(R2|X∗1 , R1, X3) and
p(R2|R1, X3) wrt the intervention distribution p(.|do(R3 =
1), which corresponds to the truncated factorization
p(X,R,X∗)/p(R3|R1, R2, X

∗
1 , X

∗
3 ) (evaluated at R3 =

1) and is Markov relative to the graph in Fig. 3(b). Thus,
we can use p(R3|R1, R2, X

∗
1 , X

∗
2 ) as inverse weights to fit

models wrt this truncated distribution. Let Wr2(β
a
r2) :=

p(R2|R1, X
∗
1 , X3;β

a
r2) and let Pn[U(βa

r2)] = 0 be an un-
biased estimating equation for βa

r2 wrt the full law. We
can estimate βa

r2 using observed data via this weighted es-
timating equation: Pn[{R3/p(R3|R1, R2, X

∗
1 , X

∗
2 ; η̂)} ×

U(βa
r2)] = 0, where η̂ is the estimated parameters for

p(R3|R1, R2, X
∗
1 , X

∗
2 ). Following the same logic, we can

also estimate βo
r2 in Wr2(β̂

o
r2) := p(R2|R1, X3;β

o
r2). Fi-

nally, we use the following statistic in a weighted likelihood-
ratio to test the restriction R2 ⊥⊥ X∗1 | R1, X3:

ρ = nPn

[
R3

p(R3 | R1, R2, X∗1 , X
∗
2 ; η̂)

× log
(Wr2(β̂

a
r2)

Wr2(β̂
o
r2)

)]
.

If we test the restriction R3 ⊥⊥ X∗1 , X
∗
2 |R1, R2 first and

conclude that the independence holds, we can use the
R3 fitted propensity score under the accepted null, that is
p(R3 | R1, R2; β̂

o
r3), in above (without conditioning on

X∗1 , X
∗
2 ). This implies that for testing R2 ⊥⊥ X∗1 | R1, X3,

we do not have to use the full permutation model as a super-
model. Instead, we can use the permutation model where

X1 X2

R1 R2

X∗1 X∗2

(a)

X1 X2

R1 R2

X∗1 X∗2

(b)

X1 X2

R1 R2

X∗1 X∗2

(c)

X1 X2

R1 R2

X∗1 X∗2

(d)

Figure 4: The sequential MNAR model in (a) can be tested
as a submodel of the saturated no self-censoring model
in (b); (c) A criss-cross supermodel of (a) where the test
statistic is not identifiable; (d) Example of a block-parallel
MNAR model which can be tested as a submodel of (b).

the {X∗1 , X∗2} → R3 edges are absent.

Algorithm 1 in Appendix B.1 provides an automated proce-
dure for performing sequential goodness-of-fit tests based
on weighted likelihood-ratios for K>3 variables. The algo-
rithm is similar to testing sequential MAR, but due to space
limits, it is defferred to the supplements.

Remark 1. It is worth pointing out that the sequential
MNAR model is a special case of models Markov relative
to m-DAGs with no colluders studied in Nabi et al. [2020]
– a colluder exists at Rj if there exists Xi ∈ X \Xj such
that Xi → Rj ← Ri. Nabi et al. [2020] showed that under
the absence of colluder structures and self-censoring edges
(Xk → Rk), the full law Markov relative to such an m-DAG
is identified. Further, they showed that such m-DAGs are a
submodel of the saturated no self-censoring model defined
in (3). Thus, it is possible to use the no self-censoring model
as an alternative supermodel to test some of the restrictions
in the sequential MNAR model. Namely, we can empirically
evaluate this set of restrictions: Rk ⊥⊥ X≺k | R−k, X�k.

As an example, consider the absence of an edge between
X1 and R2 in Fig. 4(a) which implies R2 ⊥⊥ X1|R1. The
no self-censoring supermodel is drawn in Fig. 4(b) (with
R1, R2 edge undirected). We can evaluate this independence
by showing p(R2|R1, X1) is not a function of X1. See Ap-
pendix B.2 for details on how to set up such a test.

Remark 2. The m-DAG in Fig. 4(c) is also a supermodel
of Fig. 4(a). However, we cannot use it to evaluate the in-
dependence R2 ⊥⊥ X1 | R1, because p(R2|R1, X1) is not
fully identified under this supermodel, due to the colluder
structure at R2 as shown by Bhattacharya et al. [2019].

We call the m-DAG in Fig. 4(c), the criss-cross structure. In
the following theorem, we show that unlike the permutation
and no self-censoring models, the target law (and thus the
full law) is not identified when such structures are present.

Theorem 3. The target law p(X) is not identified in an
m-DAG model where there exists at least one criss-cross
structure between a pair of variables.

The above result characterizes a novel graphical structure
that impedes target law identification; this may lead to fur-
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ther insights on an open problem regarding the discovery of
a sound and complete algorithm for target law identification.

Remark 3. As an alternative to the likelihood-ratio test, we
can compute odds ratios to perform independence tests. For
instance, in the MAR model of Fig. 1(a), R1 ⊥⊥ X2 trans-
lates into OR(R1, X2) = 1, and in the MNAR model of
Fig. 4(a), R2 ⊥⊥ X∗1 |R1 translates into OR(R2, X1|R1 =
1) = 1, which both can be empirically evaluated. See Ap-
pendices C.2 and C.3 for a generalization of the idea of
using odds ratio for goodness-of-fit tests in the sequential
MAR and MNAR models with K > 2 variables.

4.3 BLOCK PARALLEL MNAR MODELS

We call a missing data model a block-parallel MNAR model6

if it satisfies the following set of independence restrictions:

Rk ⊥⊥ R−k, Xk | X−k,∀k (block-parallel MNAR) (6)

An example of this model is shown in Fig. 4(d). Using
graphoid axioms, it is easy to show that the block-parallel
model assumes Rk ⊥⊥ Rj | X,∀j 6= k on top of what the
no self-censoring model, defined in (3), already assumes.
Thus, we view the block-parallel model (Mo) as a sub-
model of the saturated no self-censoring model (Ma), and
focus on testable implications and empirical evaluations
of these extra assumptions. Unlike the sequential models,
the independence statements here are between missingness
indicators and there is no predefined ordering.

If we were to follow ideas from the previous two subsec-
tions, we would need to intervene on Rk and Rj to test
the independence Rk ⊥⊥ Rj | X as Xk, Xj appear in the
conditioning set. Interventions on Rk and Rj fix them to
constants, which prevent us from evaluating independence.
One might then conclude that such constraints are untestable.
However, we use odds-ratio parameterization of the missing-
ness mechanism to argue that these restrictions are indeed
testable. We formalize the results in the following theorem.

Theorem 4. The independence Rk ⊥⊥ Rj |X ∀j 6= k has
a testable implication on observed data law which can be
stated via OR(Rk, Rj |X−kj , R−kj = 1) = 1.

As an example, consider the m-DAG in Fig. 4(d) and its
supermodel in (b). The absence of an edge between R1, R2

implies R1⊥⊥R2|X. This is equivalent to stating that the
odds ratio between R1 and R2 conditioned on X1, X2 is
one, i.e., OR(R1 = 0, R2 = 0|X) = 1. See Appendix A.1
for a description of the odds ratio parameterization. Let θ
denote the odds ratio. Malinsky et al. [2021] proposed the
following unbiased estimating equation to estimate θ:

Pn

[
R1R2 ×

p(R1 = 0, R2 = 0 | X)

p(R1 = 1, R2 = 1 | X)
− (1−R1)(1−R2)

]
= 0,

6Block-parallel model was introduced in Mohan et al. [2013].

where θ appears in the density ratio since it equals:

p(R1 = 0 | R2 = 1, X2)

p(R1 = 1 | R2 = 1, X2)
× p(R2 = 0 | R1 = 1, X1)

p(R2 = 1 | R1 = 1, X1)
× θ.

See Appendix A.1.1 for detailed derivations. For K > 2
variables, we can test the absence of edges between any two
pairs of missingness indicators by computing pairwise odds
ratios. We formalize the goodness-of-fit tests based on these
calculations in Algorithm 2 outlined in Appendix C.4.

4.4 EXTENSIONS TO SETTINGS WITH
UNMEASURED CONFOUNDERS

We can extend the applicability of our results to scenarios
where not only variables are missing but some are com-
pletely unobserved, by considering hidden variable DAGs
G(V ∪ U), where V = {X,R,X∗} and the variables in U
are unobserved. In such cases, we can obtain a missing data
acyclic directed mixed graph (m-ADMG) G(V ), by apply-
ing the latent projection operator [Verma and Pearl, 1990]
to the hidden variable DAG G(V ∪ U). The full law then
follows the nested Markov factorization [Richardson et al.,
2023] with respect to the m-ADMG G(V ). A m-ADMG ob-
tained through the projection of a hidden variable m-DAG
adheres to the same edge restrictions.

If there is a concern about latent confounding in the target
law, our framework allows for arbitrary confounding among
the X variables without any modifications to the proposed
tests in the previous section. This means we can incorporate
unmeasured confounders of the form Xi ← U → Xj , often
represented as a bidirected edge Xi ↔ Xj between any
pair of variables Xi and Xj . It is important to note that
the missing data mechanism p(R|X) is largely unaffected
by the inclusion of these bidirected edges. For example,
in Fig. 2(a), we can introduce unmeasured confounders
between every pair of variables in X while maintaining the
same testable implications and goodness-of-fit tests.

Unmeasured confounding is also possible in the missing
data mechanism, as long as there are no “colluding paths”
between any Xi and its corresponding missingness indica-
tor Ri. A colluding path is a path where every node on the
path is a collider. The presence of colluding paths leads to
the non-identification of the full law, potentially affecting
the validity of the proposed goodness-of-fit tests. For in-
stance, in Fig. 3(a), we can have unmeasured confounders
between X3 and R2, or between X2 and R1, or between all
variables in X , and so on. For a formal definition of collud-
ing paths and a detailed explanation of why they result in
non-identification, refer to [Nabi et al., 2020].

5 SIMULATIONS

We conduct three sets of simulation analyses to illustrate
the utility of our proposed methods in testing the miss-
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Figure 5: Results on testing sequential MAR models. (top row) The sequential MAR model captures the true underlying
missingness mechanism. (bottom row) The assumptions of sequential MAR model are violated.

ing data restrictions using only partially observed samples.
Each set focuses on a class of m-DAGs that were consid-
ered here. For each simulation, we generate four random
variables from either a multivariate normal distribution or
binomial distribution. We induce missing values in all four
variables according to a missingness mechanism that follows
restrictions of either sequential MAR, sequential MNAR,
block-parallel, or supermodels of them. The exact data gen-
erating mechanism is described in Appendix E. R code
can be found at https://github.com/raziehna/
missing-data-testability.

In the main body, we present results on testing the sequential
MAR model defined via the set of restrictions in (4). We fol-
low Algorithm 1 to test the independence restrictions, which
entails running a total of K − 1 tests. Our test statistic is
2ρ and we use a chi-square distribution with K − k degrees
of freedom to evaluate the goodness-of-fits – the degree
of freedom is chosen as the difference between number of
parameters in Wk(β

a
k) and Wk(β

0
k), as defined in the algo-

rithm. If the p-values are all greater than 0.05, we accept the
sequential MAR model. Results on sequential MNAR and
block-parallel MNAR models are provided in Appendix E.

For a fixed sample size, we simulate 100 different datasets
and calculate the acceptance rate of a sequential MAR
model. The acceptance rate is plotted as a function of sample
size in Fig. 5. The sample size ranges from 1, 000 to 15, 000
with 500 increments. In each panel, there are three plots
that vary in terms of the proportion of complete cases in the
dataset, i.e., 6%, 35%, 80% which is achieved by changing
the range in the uniform distribution where the parameters
are sampled from (the proportion of complete cases is taken
as an average of complete cases over 100 iterations). The top
row of Fig. 5 illustrates the results when the true underlying
missingness mechanism satisfies the assumptions of the se-
quential MAR model, and the bottom row illustrates results
for when the restrictions are no longer valid As seen in the

figure, the acceptance rate is quite high when the sequential
MAR model holds true and it is low when the model does
not hold, even if we have only 6% complete cases which is
impressive performance with small data. The plots at the
bottom row also illustrate that the tests would perform better
in terms of rejecting the sequential MAR model while the
truth is not MAR when the missingness rate decreases; with
80% complete cases the acceptance rate vanishes.

6 CONCLUSIONS

Independence restrictions in a missing data model might
be empirically untestable, or they might translate into more
complex restrictions on the observed data law than ordinary
d-separation statements. In this paper, we considered various
graphical models of missing data and investigated testable
implications of the underlying statistical assumptions on the
observed data law. We have extended the notion of testa-
bility in prior literature by viewing ordinary conditional
independence tests as Verma constraints in intervention dis-
tributions. We have proposed goodness-of-fit tests based on
weighted likelihood-ratio tests and odds-ratio parameteri-
zations. Our results are essential in validating the assumed
statistical missing data models in practice and discovering
the mechanisms that drive the missingness of variables. A
potential future direction is to develop estimation methods
that would complement our proposals by allowing a more
efficient use of data in performing goodness-of-fit tests.
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