
Simple Transferability Estimation for Regression Tasks
(Supplementary Material)

Cuong N. Nguyen1 Phong Tran2,3 Lam Si Tung Ho4 Vu Dinh5

Anh T. Tran2 Tal Hassner6 Cuong V. Nguyen1

1Florida International University, USA 2VinAI Research, Vietnam 3MBZUAI, UAE
4Dalhousie University, Canada 5University of Delaware, USA 6Meta AI, USA

The contents of this supplementary include:

1. Appendix A.1: Proof of Lemma 5.1 in the main paper.
2. Appendix A.2: Proof of Theorem 5.2 in the main paper.
3. Appendix A.3: Proof of Lemma 5.3 in the main paper.
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5. Appendix B.1: More details for the experiment settings in Sections 6.1–6.6 of the main paper.
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7. Appendix C.1: An additional experiment to show the usefulness of our theoretical bounds.
8. Appendix C.2: Additional experiment results for Section 6.1 of the main paper.
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A MATHEMATICAL PROOFS

A.1 PROOF OF LEMMA 5.1
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By choosing k(·) = A∗h∗(·) + b∗, the second term in the above inequality becomes 0. This implies
√
L(w∗, k∗;Dt) ≤√

−T lab
λ (Ds,Dt) and thus the lemma.

A.2 PROOF OF THEOREM 5.2

First, we need to define the notion of expected (true) risk. Given any model (w, k) for the target task, the expected risk of
(w, k) is defined as:

R(w, k) := E(xt,yt)∼Pt

{
∥yt − k(w(xt))∥2

}
. (1)

Note that Tr(Ds,Pt) = −R(w∗, k∗). We prove the uniform bound in Lemma A.1 below that can help us prove Theorem 5.2.

Lemma A.1. For any δ > 0, with probability at least 1− δ, for all ReLU feed-forward neural network (w, k) of the target
task, we have:

|R(w, k)− L(w, k;Dt)| ≤ C(d, dt,M,H,L, δ)/
√
nt.

Proof. We recall the definition of Rademacher complexity. Given a real-valued function class G and a set of data points
D = {ui}ni=1, the (empirical) Rademacher complexity R̂D(G) is defined as:

R̂D(G) = Eϵ

[
sup
g∈G

1

n

n∑
i=1

ϵig(ui)

]
,

where ϵ = (ϵ1, ϵ2, . . . , ϵn) is a vector uniformly distributed in {−1,+1}n .

In our setting, the hypothesis space Φ is the class of L-layer ReLU feed-forward neural networks whose number of hidden
nodes and parameters in each layer are bounded from above by H and M ≥ 1 respectively. For all (w, k) ∈ Φ and x such
that ∥x∥∞≤ 1, we have:

∥k(w(x))∥∞≤ dML+1HL.

Define fw,k(x, y) = y − k(w(x)) and note that fw,k(x, y) ∈ Rdt . For any j = 1, 2, . . . , dt, let [·]j be the projection map to
the j-th coordinate. We consider the following real-valued function classes:

F = {∥fw,k∥2: (w, k) ∈ Φ},
Fj = {[fw,k]j : (w, k) ∈ Φ},
Φj = {[k(w(·)]j : (w, k) ∈ Φ},

where each element of F or Fj is a function with variables (x, y), and each element of Φj is a function with variable x. Let
Dx

t = {xt
i}

nt
i=1 be the set of target inputs. By Theorem 2 of Golowich et al. [2018], for all j = 1, 2, . . . , dt, we have:

R̂Dx
t
(Φj) ≤ 2dtM
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√
L+ 1 + ln d

nt
.

We note that for any i = 1, 2, . . . , nt, the function ri(a) = (a − yti)
2 mapping from a ∈ [−dML+1HL, dML+1HL] to

R is Lipschitz with constant 4dML+1HL. Thus, applying the Contraction Lemma (Lemma 26.9 in Shalev-Shwartz and
Ben-David [2014]), we obtain:
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.

Using this inequality, the result of Lemma A.1 follows from Theorem 26.5 in Shalev-Shwartz and Ben-David [2014].



To prove Theorem 5.2, we apply Lemma 5.1 in the main paper and Lemma A.1 above for the transferred target model
(w∗, k∗). Thus, for any λ ≥ 0 and δ > 0, with probability at least 1− δ, we have:

T lab
λ (Ds,Dt) ≤ −L(w∗, k∗;Dt)

≤ −R(w∗, k∗) + C(d, dt,M,H,L, δ)/
√
nt

= Tr(Ds,Pt) + C(d, dt,M,H,L, δ)/
√
nt.

Therefore, Theorem 5.2 holds.

A.3 PROOF OF LEMMA 5.3

Note that A∗
λ, b

∗
λ = argmin

A,b

{
1

n

n∑
i=1

∥yti −Aysi − b∥2+λ∥A∥2F

}
.

For all k, we have:√
L(w∗, k∗;Dt) ≤

√
L(w∗, k;Dt) (definition of k∗)

=

[
1

n

n∑
i=1

∥yti − k(w∗(xi))∥2
]1/2

(definition of L)

≤

[
1

n

n∑
i=1

∥yti −A∗
λy

s
i − b∗λ∥2

]1/2

+

[
1

n

n∑
i=1

∥A∗
λy

s
i + b∗λ − k(w∗(xi))∥2

]1/2

(triangle inequality)

≤
√

−T̂ lab
λ (Ds,Dt) +

[
1

n

n∑
i=1

∥A∗
λy

s
i + b∗λ − k(w∗(xi))∥2

]1/2

. (definition of T̂ lab
λ )

Picking k(·) = A∗
λh

∗(·) + b∗λ, this inequality becomes:
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Note that if a ≤ b+ c, then a2 ≤ 2b2 + 2c2. Applying this fact to the above inequaility, we have:

L(w∗, k∗;Dt) ≤ −2T̂ lab
λ (Ds,Dt) + 2∥A∗

λ∥2FL(w∗, h∗;Ds).

Thus, Lemma 5.3 holds.

A.4 PROOF OF THEOREM 5.4

For any λ ≥ 0 and δ > 0, applying Lemma A.1 for (w∗, k∗) and Lemma 5.3, with probability at least 1− δ:

R(w∗, k∗) ≤ L(w∗, k∗;Dt) + C(d, dt,M,H,L, δ)/
√
n

≤ −2T̂ lab
λ (Ds,Dt) + 2∥A∗

λ∥2F L(w∗, h∗;Ds) + C(d, dt,M,H,L, δ)/
√
n.

Since Tr(Ds,Pt) = −R(w∗, k∗), Theorem 5.4 holds.



B MORE DETAILS FOR EXPERIMENT SETTINGS

B.1 MORE DETAILS FOR SECTIONS 6.1–6.6

For these experiments, we train our source models from scratch using the MSE loss with the AdamW optimizer [Loshchilov
and Hutter, 2019], which we run for 40 epochs with batch size of 64 and the cosine learning rate scheduler. To obtain good
source models, we resize all input images to 256×256 and apply basic image augmentations without horizontal flipping (i.e.,
affine transformation, Gaussian blur, and color jitter). We also scale all labels into [0, 1] using the width and height of the
input images.

For the transfer learning setting with head re-training, we freeze the trained feature extractor and re-train the regression
head on the target dataset using the same setting above, except that we run 15 epochs on the CUB-200-2011 dataset and 30
epochs on the OpenMonkey dataset. For half fine-tuning, we unfreeze the last convolution layer and the head classifier since
the number of trainable parameters is around half of the total number of parameters. For full fine-tuning, we unfreeze the
whole network. In these two fine-tuning settings, we fine-tune for 15 epochs on both datasets. We use PyTorch [Paszke et al.,
2019] for implementation.

B.2 MORE DETAILS FOR SECTION 6.7

For this experiment, we use the following 8 ImageNet pre-trained models as the source models: ResNet50, ResNet101,
ResNet152 [He et al., 2016], DenseNet121, DenseNet169, DenseNet201 [Huang et al., 2017], GoogleNet [Szegedy et al.,
2015], and Inceptionv3 [Szegedy et al., 2016]. These models are taken from the PyTorch Model Zoo.

We use the dSprites dataset [Matthey et al., 2017] for the target task. This dataset contains 737,280 images with 4 outputs
for regression: x and y positions, scale, and orientation. The train-test split is similar to the settings in You et al. [2021]: 60%
for training, 20% for validation, and 20% for testing. The transferred MSE is computed on the test set. We train our models
with 10 epochs using the AdamW optimizer. The initial learning rate is 10−3, which is divided by 10 every 3 epochs.

C ADDITIONAL EXPERIMENT RESULTS

C.1 USEFULNESS OF THEORETICAL BOUNDS

Although the theoretical bounds in Section 5 show the relationships between the transferability of the optimal transferred
model and our transferability estimators, these bounds could be loose in practice unless the number of samples is large. This
is in fact a limitation of this type of generalization bounds. To show the usefulness of our bounds in practice, we conduct an
experiment to investigate the generalization gap using the head re-training setting in Section 6.1.

The generalization gap is defined as the difference between our transferability score and the negative MSE (the transferability)
of the transferred model. According to our theorems, this generalization gap is bounded above by the complexity term. We
will compare the generalization gap with the absolute value of our transferability score and also inspect whether it has any
significant correlation with the actual transferred MSE.

From this experiment, the ratios between the absolute value of transferability score and the generalization gap for our
transferability estimators are: 1.6 (LinMSE0), 2.0 (LinMSE1), 2.3 (LabMSE0), and 2.3 (LabMSE1). These results show that
the transferability scores dominate the generalization gap in practice. More importantly, there is no significant correlation
between the generalization gap and the actual transferred MSE. These findings indicate that the complexity term in our
bounds may have little effects for transferability estimation, as opposed to the transferability score term that has a strong
effect (shown by the high correlations in our main experiments).

C.2 ADDITIONAL RESULTS FOR SECTION 6.1

Detailed correlation plots for Table 1. In Figures C.1, C.2, and C.3, we show the detailed correlation plots and p-values for
our experiment results reported in Table 1 of the main paper. From these plots, all correlations are statistically significant
with p < 0.001, except for TransRate and LabTransRate with head re-training.

Additional results with non-linear correlation metrics. In Tables C.1 and C.2, we report the Kendall’s-τ and Spearman



Table C.1: Kendall’s-τ correlation coefficients when transferring from OpenMonkey to CUB-200-2011. Bold numbers
indicate best results in each row. Asterisks (*) indicate best results among the corresponding label-based or feature-based
methods. Our estimators improve up to 28.4% in comparison with SotA (LogME) while being 13% better on average.

Transfer setting
Label-based method Feature-based method

LabLogME LabTransRate LabMSE0 LabMSE1 LogME TransRate LinMSE0 LinMSE1

Head re-training 0.728 0.028 0.935* 0.924 0.906 0.104 0.896 0.922*
Half fine-tuning 0.525 0.392 0.644 0.646* 0.651 0.291 0.667* 0.646
Full fine-tuning 0.497 0.289 0.606* 0.594 0.611 0.328 0.616* 0.594

Table C.2: Spearman correlation coefficients when transferring from OpenMonkey to CUB-200-2011. Bold numbers
indicate best results in each row. Asterisks (*) indicate best results among the corresponding label-based or feature-based
methods. Our estimators improve up to 19.9% in comparison with SotA (LogME) while being 9.7% better on average.

Transfer setting
Label-based method Feature-based method

LabLogME LabTransRate LabMSE0 LabMSE1 LogME TransRate LinMSE0 LinMSE1

Head re-training 0.857 0.102 0.994* 0.991 0.988 0.215 0.984 0.990*
Half fine-tuning 0.726 0.409 0.857 0.858* 0.857 0.437 0.865* 0.858
Full fine-tuning 0.689 0.433 0.826* 0.823 0.827* 0.474 0.827* 0.823

correlation coefficients to complement the results in Table 1 of the main paper. These coefficients, as described in Bolya
et al. [2021], are used to assess the ranking associations or the monotonic relationships between the transferability measures
and the model performance. Based on the findings presented in these tables, our proposed scores are generally on par with or
outperform the current state-of-the-art (SotA) approach, LogME [You et al., 2021], with an average correlation improvement
of 9.7% and 13% for Spearman and Kendall’s-τ coefficients, respectively. This serves as a strong evidence illustrating the
effectiveness of our proposed measures, not only in the linear relationship assessment, but also in the non-linear one.

Additional result with high-dimensional labels. Using the setting in Section 6.1, we also conducted an additional
experiment where both source and target tasks have 10-dimensional labels. In particular, we train a source model to predict
five OpenMonkey keypoints: right eye, left eye, nose, head, and neck simultaneously (i.e., this source model returns a 10-
dimensional output). The source model is then transferred to a target task that predicts a combination of five CUB-200-2011
keypoints. We consider each combination of 5 keypoints among 10 CUB-200-2011 keypoints as a target task, resulting in
252 target tasks that all have 10-dimensional labels.

We also run 3 transfer learning algorithms: head re-training, half fine-tuning, and full fine-tune, using the same training
settings as in Section 6.1. For TransRate and LabTransRate, we use 2 bins per dimension instead of 5 bins to reduce the
computational costs. The results for this experiment are reported in Table C.3. From these results, our approaches are better
than the baselines for both λ values.

C.3 ADDITIONAL RESULTS FOR SECTION 6.2

Detailed correlation plots for Table 2. In Figures C.4– C.9, we show the detailed correlation plots and p-values for our
experiment results reported in Table 2 of the main paper. From these plots, all correlations are statistically significant with
p < 0.001, except for TransRate and LabTransRate as well as the full fine-tuning setting on the CUB-200-2011 dataset.

Additional result for each individual source task. We report in Tables C.5 and C.6 more comprehensive results for all
source tasks on CUB-200-2011 and OpenMonkey respectively. Each row of the tables corresponds to one source task
and shows the correlation coefficients when transferring to all other tasks in the respective dataset. From the tables, our
transferability estimators are consistently better than LogME, LabLogME, TransRate, and LabTransRate for most source
tasks on both datasets. These results confirm the effectiveness of our proposed methods.

Additional result with high-dimensional labels. In this additional experiment, we further show the effectiveness of our
proposed methods when the target tasks have higher dimensional labels. In particular, we transfer from 4 source tasks on
CUB-200-2011 (back, beak, belly, and breast) to all the combinations of 5 attributes among the remaining tasks (except for
right eye, right leg, and right wing, which may not always be available in the data). In total, we have 224 source-target pairs,



Table C.3: Correlation coefficients when transferring between 10d-output tasks from OpenMonkey to CUB-200-2011.
Bold numbers indicate best results in each row. Asterisks (*) indicate best results among the corresponding label-based or
feature-based methods. All correlations are statistically significant with p < 0.001. Our estimators with both λ values are
better than SotA (LogME).

Transfer setting
Label-based method Feature-based method

LabLogME LabTransRate LabMSE0 LabMSE1 LogME TransRate LinMSE0 LinMSE1

Head re-training 0.970 0.719 0.991* 0.989 0.968 0.656 0.990 0.995*
Half fine-tuning 0.944 0.742 0.963* 0.943 0.954 0.684 0.980* 0.958
Full fine-tuning 0.878 0.736 0.892* 0.863 0.892 0.669 0.916* 0.881

Table C.4: Correlation coefficients when transferring from 2d-output tasks to 10d-output tasks on CUB-200-2011.
Bold numbers indicate best results in each row. Asterisks (*) indicate best results among the corresponding label-based or
feature-based methods. Except for TransRate with half and full fine-tuning, all correlations are statistically significant with
p < 0.001. Our estimators are better than SotA (LogME) in most cases.

Transfer setting
Label-based method Feature-based method

LabLogME LabTransRate LabMSE0 LabMSE1 LogME TransRate LinMSE0 LinMSE1

Head re-training 0.602 0.632 0.868* 0.816 0.885 0.549 0.901 0.973*
Half fine-tuning 0.491 0.645 0.771 0.881* 0.804 0.072 0.913* 0.818
Full fine-tuning 0.397 0.632 0.727 0.888* 0.756 0.050 0.884* 0.833

where the source tasks have 2-dimensional labels and the target tasks have 10-dimensional labels. We use the same training
settings as in Section 6.2 of the main paper, except that we also use 2 bins per dimension when calculating TransRate and
LabTransRate to reduce computational costs. Table C.4 reports the results for this experiment. These results clearly show
that our methods, LinMSE0 and LinMSE1, are better than the LogME and TransRate baselines in most cases.
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Figure C.1: Correlation coefficients and p-values between transferability estimators and negative test MSEs when
transferring with head re-training from OpenMonkey to CUB-200-2011.
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Figure C.2: Correlation coefficients and p-values between transferability estimators and negative test MSEs when
transferring with half fine-tuning from OpenMonkey to CUB-200-2011.
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Figure C.3: Correlation coefficients and p-values between transferability estimators and negative test MSEs when
transferring with full fine-tuning from OpenMonkey to CUB-200-2011.
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Figure C.4: Correlation coefficients and p-values between transferability estimators and negative test MSEs when
transferring with head re-training between any two different keypoints (with shared inputs) on CUB-200-2011.
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Figure C.5: Correlation coefficients and p-values between transferability estimators and negative test MSEs when
transferring with half fine-tuning between any two different keypoints (with shared inputs) on CUB-200-2011.
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Figure C.6: Correlation coefficients and p-values between transferability estimators and negative test MSEs when
transferring with full fine-tuning between any two different keypoints (with shared inputs) on CUB-200-2011.
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Figure C.7: Correlation coefficients and p-values between transferability estimators and negative test MSEs when
transferring with head re-training between any two different keypoints (with shared inputs) on OpenMonkey.
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Figure C.8: Correlation coefficients and p-values between transferability estimators and negative test MSEs when
transferring with half fine-tuning between any two different keypoints (with shared inputs) on OpenMonkey.
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Figure C.9: Correlation coefficients and p-values between transferability estimators and negative test MSEs when
transferring with full fine-tuning between any two different keypoints (with shared inputs) on OpenMonkey.



Table C.5: Correlation coefficients for all source tasks on CUB-200-2011. Bold numbers indicate best results in each row.
Asterisks (*) indicate best results among the corresponding label-based or feature-based methods.

Transfer
setting Source task

Label-based method Feature-based method

LabLogME LabTransRate LabMSE0 LabMSE1 LogME TransRate LinMSE0 LinMSE1

Head re-
training

Back 0.743 0.116 0.956 0.966* 0.920 0.273 0.931 0.964*
Beak 0.863 0.229 0.922* 0.915 0.878 0.158 0.906 0.945*
Belly 0.892 0.097 0.970 0.982* 0.933 0.188 0.932 0.982*
Breast 0.915 0.120 0.935 0.945* 0.903 0.279 0.922 0.961*
Crown 0.917 0.041 0.962 0.966* 0.913 0.251 0.945 0.979*

Forehead 0.888 0.076 0.941* 0.939 0.885 0.221 0.924 0.966*
Left eye 0.035 0.076 0.913 0.964* 0.924 0.289 0.945 0.969*
Left leg 0.261 0.221 0.935 0.975* 0.935 0.223 0.953 0.975*

Left wing 0.260 0.170 0.964 0.994* 0.980 0.173 0.994* 0.994*
Nape 0.889 0.085 0.922 0.942* 0.900 0.300 0.929 0.953*

Right eye 0.625 0.242 0.904 0.974* 0.921 0.244 0.948 0.975*
Right leg 0.508 0.047 0.958 0.989* 0.942 0.217 0.954 0.990*

Right wing 0.521 0.167 0.907 0.979* 0.935 0.270 0.946 0.980*
Tail 0.591 0.392 0.900 0.927* 0.872 0.544 0.880 0.890*

Throat 0.896 0.124 0.938 0.941* 0.890 0.291 0.924 0.956*

Half fine-
tuning

Back 0.714 0.076 0.791 0.814* 0.835 0.168 0.911* 0.873
Beak 0.663 0.160 0.831* 0.772 0.765 0.076 0.883 0.899*
Belly 0.528 0.233 0.655 0.752* 0.758 0.309 0.849* 0.764
Breast 0.730 0.100 0.802* 0.779 0.762 0.152 0.867* 0.850
Crown 0.644 0.068 0.752 0.776* 0.714 0.165 0.832* 0.816

Forehead 0.654 0.032 0.804* 0.786 0.727 0.120 0.859 0.873*
Left eye 0.420 0.046 0.913* 0.853 0.812 0.227 0.892* 0.865
Left leg 0.121 0.095 0.721 0.819* 0.845 0.150 0.893* 0.832

Left wing 0.352 0.150 0.949* 0.918 0.859 0.189 0.919* 0.918
Nape 0.660 0.055 0.705 0.770* 0.751 0.181 0.863* 0.802

Right eye 0.561 0.221 0.911* 0.873 0.786 0.180 0.871 0.890*
Right leg 0.268 0.125 0.690 0.804* 0.810 0.069 0.861* 0.820

Right wing 0.407 0.133 0.495 0.613* 0.516 0.338 0.521 0.617*
Tail 0.801 0.117 0.930* 0.812 0.848 0.285 0.924 0.968*

Throat 0.767 0.013 0.870* 0.810 0.811 0.253 0.900* 0.873

Full fine-
tuning

Back 0.710 0.085 0.785 0.808* 0.829 0.178 0.906* 0.868
Beak 0.659 0.161 0.826* 0.780 0.758 0.073 0.877 0.899*
Belly 0.645 0.273 0.782 0.847* 0.862 0.365 0.926* 0.856
Breast 0.740 0.104 0.811* 0.791 0.768 0.152 0.871* 0.859
Crown 0.647 0.073 0.756 0.784* 0.717 0.157 0.834* 0.821

Forehead 0.648 0.037 0.799* 0.783 0.723 0.111 0.855 0.869*
Left eye 0.224 0.456* 0.297 0.347 0.333* 0.246 0.282 0.326
Left leg 0.057 0.067 0.659 0.769* 0.796 0.146 0.850* 0.783

Left wing 0.342 0.159 0.954* 0.915 0.860 0.195 0.920* 0.914
Nape 0.667 0.041 0.713 0.779* 0.752 0.177 0.864* 0.810

Right eye 0.549 0.213 0.915* 0.876 0.794 0.199 0.877 0.893*
Right leg 0.237 0.377 0.673 0.692* 0.755 0.431 0.766* 0.693

Right wing 0.254* 0.046 0.237 0.223 0.225 0.093 0.227* 0.220
Tail 0.803 0.122 0.930* 0.818 0.846 0.288 0.923 0.969*

Throat 0.665 0.027 0.801* 0.779 0.744 0.256 0.850* 0.834



Table C.6: Correlation coefficients for all source tasks on OpenMonkey. Bold numbers indicate best results in each row.
Asterisks (*) indicate best results among the corresponding label-based or feature-based methods.

Transfer
setting Source task

Label-based method Feature-based method

LabLogME LabTransRate LabMSE0 LabMSE1 LogME TransRate LinMSE0 LinMSE1

Head re-
training

Right eye 0.894 0.859 0.986* 0.835 0.918 0.846 0.978 0.986*
Left eye 0.895 0.854 0.987* 0.838 0.868 0.858 0.981 0.987*

Nose 0.908 0.849 0.988* 0.849 0.818 0.837 0.978 0.989*
Head 0.941 0.881 0.992* 0.821 0.897 0.884 0.983* 0.978
Neck 0.972 0.862 0.998* 0.887 0.932 0.839 0.982 0.987*

Right shoulder 0.977 0.837 0.994* 0.891 0.842 0.811 0.982* 0.980
Right elbow 0.963 0.529 0.994* 0.940 0.469 0.564 0.969 0.990*
Right wrist 0.970 0.753 0.993* 0.939 0.615 0.446 0.963 0.990*

Left shoulder 0.972 0.800 0.997* 0.915 0.823 0.808 0.988* 0.988*
Left elbow 0.960 0.546 0.994* 0.948 0.711 0.572 0.969 0.989*
Left wrist 0.975 0.597 0.993* 0.951 0.964 0.544 0.963 0.993*

Hip 0.922 0.540 0.989* 0.325 0.874 0.557 0.800 0.991*
Right knee 0.925 0.080 0.975* 0.850 0.766 0.331 0.945 0.993*
Right ankle 0.931 0.411 0.989* 0.770 0.737 0.371 0.930 0.997*
Left knee 0.923 0.160 0.978* 0.848 0.692 0.209 0.936 0.994*
Left ankle 0.916 0.416 0.986* 0.775 0.852 0.329 0.925 0.998*

Tail 0.936 0.712 0.993* 0.312 0.821 0.662 0.897 0.990*

Half fine-
tuning

Right eye 0.795 0.734 0.906* 0.883 0.835 0.709 0.963* 0.923
Left eye 0.797 0.731 0.905* 0.879 0.771 0.719 0.960* 0.918

Nose 0.829 0.736 0.914* 0.872 0.649 0.721 0.968* 0.916
Head 0.835 0.759 0.921* 0.882 0.804 0.751 0.964* 0.928
Neck 0.902 0.793 0.929* 0.871 0.745 0.765 0.969* 0.915

Right shoulder 0.887 0.725 0.924* 0.890 0.751 0.758 0.972* 0.924
Right elbow 0.764 0.250 0.806 0.914* 0.048 0.602 0.931* 0.821
Right wrist 0.806 0.501 0.823 0.903* 0.172 0.643 0.929* 0.819

Left shoulder 0.893 0.718 0.927* 0.899 0.702 0.774 0.972* 0.930
Left elbow 0.782 0.369 0.824 0.919* 0.366 0.594 0.946* 0.839
Left wrist 0.822 0.523 0.828 0.902* 0.765 0.663 0.932* 0.824

Hip 0.030 0.487 0.233 0.910* 0.006 0.359 0.800* 0.305
Right knee 0.481 0.429 0.598 0.906* 0.186 0.067 0.831* 0.687
Right ankle 0.357 0.275 0.534 0.910* 0.286 0.226 0.806* 0.632
Left knee 0.467 0.355 0.601 0.899* 0.172 0.215 0.855* 0.692
Left ankle 0.331 0.242 0.530 0.904* 0.197 0.303 0.822* 0.632

Tail 0.231 0.196 0.434 0.829* 0.160 0.121 0.729* 0.494

Full fine-
tuning

Right eye 0.796 0.711 0.905* 0.894 0.821 0.694 0.959* 0.927
Left eye 0.790 0.734 0.904* 0.882 0.763 0.714 0.957* 0.921

Nose 0.810 0.731 0.912* 0.892 0.642 0.709 0.960* 0.932
Head 0.801 0.737 0.900* 0.892 0.772 0.718 0.947* 0.920
Neck 0.893 0.782 0.930* 0.886 0.755 0.743 0.962* 0.926

Right shoulder 0.896 0.722 0.936* 0.908 0.759 0.750 0.975* 0.940
Right elbow 0.689 0.168 0.736 0.878* 0.047 0.562 0.888* 0.761
Right wrist 0.796 0.505 0.805 0.876* 0.199 0.644 0.910* 0.803

Left shoulder 0.872 0.690 0.901* 0.882 0.670 0.762 0.955* 0.903
Left elbow 0.726 0.282 0.774 0.904* 0.326 0.538 0.914* 0.797
Left wrist 0.787 0.488 0.787 0.868* 0.725 0.672 0.903* 0.785

Hip 0.016 0.518 0.173 0.894* 0.038 0.382 0.757* 0.238
Right knee 0.391 0.518 0.516 0.891* 0.096 0.141 0.763* 0.614
Right ankle 0.246 0.396 0.437 0.889* 0.185 0.340 0.726* 0.546
Left knee 0.381 0.448 0.521 0.891* 0.149 0.303 0.789* 0.618
Left ankle 0.244 0.297 0.444 0.871* 0.098 0.357 0.751* 0.551

Tail 0.105 0.299 0.309 0.824* 0.047 0.212 0.628* 0.372
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