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A NOTATION AND ACRONYMS

Table 5: Notation and acronyms

symbol/acronym meaning
X , x instance space, instance
Y , y output space, outcome
Xp, Y k feature, class variable
K, Q number of class variables, number of features
J·K indicator function
[n] set {1, . . . , n} of natural numbers
p(y |x) probability of outcome y given x
p(yk |x) marginal probability of relevance for outcome Y k = yk given x
D training data
ℓ, ℓS , ℓL MDC loss function, Subset 0/1 loss, Hamming loss
G, θ Structure (i.e., a DAG) of a BN, Parameter set of a BN
∆Y

G Parent set of Y in G
ΠY

d Set with all possible configurations of the discrete parents of Y
π Configuration of the parents of a variable, stored as pairs (variable, value)
G Set of the R(K +Q) possible DAGs
G1 Set of the R(K)2KQR(Q) DAGs which contain no edge of the form Y −→ X
G2 Set of the R(K)2KQ DAGs, whose elements contain no edge between features
G3 Set of the R(K)2K|Xd|) DAGs such that, ∀G ∈ G3 and ∀Y ∈ Y, we have Xc ⊂ ∆Y

DAG Directed acyclic graph
MDC Multi-dimensional classification
BN Bayesian network
BOP Bayes-optimal prediction
CP class powerset
CCs classifier chains
BR binary relevance

*These authors contributed equally to this work.

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<vu-linh.nguyen@hds.utc.fr>?Subject=Probabilistic Multi-Dimensional Classification
mailto:<yang.yang@kuleuven.be>?Subject=Probabilistic Multi-Dimensional Classification
mailto:<c.decampos@tue.nl>?: Subject=Probabilistic Multi-Dimensional Classification


B PROOFS OF PROPOSITIONS

This section presents proofs for the propositions stated in the main paper. When it is necessary, we recall related notions and
results in the literature before presenting proofs.

B.1 PROPOSITION 3.1

We first present Lemmas which are necessary to complete the proof of Proposition 3.1.

Lemma B.1. Assume there is a G′ ∈ G such that G′ is an I-map for p ∈ P0. All the I-maps G of p induce the same CLL
score (4).

Proof. Reminding that conditional joint probability distribution is

p(y |x) ..=
p(x,y)∑

y∈Y p(x,y)
,∀(x,y) ∈ X × Y . (29)

Assume G ∈ G is an I-map of p. Because of that, we have p(x,y) = pG
θ (x,y) for a certain θ, with factorization respecting

G. This implies

p(y |x) = p(x,y)∑
y′∈Y p(x,y′)

=
pG
θ (x,y)∑

y′∈Y pG
θ (x,y

′)
= pG

θ (y |x) ,∀(x,y) ∈ X × Y . (30)

Then it is clear that

C(p | D) = log

N∏
n=1

p(yn |xn) = log

N∏
n=1

pG
θ (yn |xn) = C(pG

θ | D) .

Thus, all the I-maps G of p have the same CLL score on D.

Lemma B.2. Assume elements of X are always made available. Assume there is a G ∈ G such that G is an I-map for
p ∈ P0. Then, there is at least one G′ ∈ G1 which is an I-map for p.

Proof. As long as the chain rule of probability is valid, we can lazily pick up any topological ordering t′(1), . . . , t′(K +Q)
on Z = X ∪Y in which the Q features occupy the first Q places (and the K class variables occupy the next K places) and
add arcs from each feature/variable to the ones succeed it until having a fully connected DAG G′. It is clear that G′ ∈ G1

because we never add any arc of the form Y −→ X . Moreover, G′ is an I-map1 of G (and p) because I(G′) = ∅.

In the following, we present a proof of Proposition 3.1.

Proof. There is always an I-map G ∈ G of p ∈ P0 which maximizes the CLL function (4) on D (if chain rule of probability
applies, as we can use a full graph). Lemma B.1 tells us that all the I-maps G of p maximize the CLL function. Lemma B.2
tells us that at least one of the I-maps belongs to G1. Hence, there is at least one I-map G′ ∈ G1 which maximizes the CLL
function (4) on D. Or, equivalently, the relation (8) holds.

1While this is already enough to complete the proof, fully connected DAGs are not really the goal of learning BNs. Sparser I-maps
can be easily constructed by only adding arcs which preserve conditional dependencies when following the ordering. Also, during the
execution of the main algorithms that we use, we naturally find small graphs because of the penalizations that are used (similar guarantees
as those that exist for learning BNs).



B.2 PROPOSITION 3.2

Proof. The fact that, for any G ∈ G1, the joint conditional distribution (1) can be factorized as

pG
θ (y |x) =

∏
Y ∈Y

pθ (y |πy) ,∀(x,y) ∈ X × Y .

can be checked easily. Since Y /∈ ∆X , for any Y ∈ Y and for any X ∈ X, we have

pG
θ (y |x) = pG

θ (x,y)∑
y′∈Y pG

θ (x,y
′)

=

∏
X∈X pθ(x |πx)

∏
Y ∈Y pθ(y |πy)∑

y′
∏

X∈X pθ(x |πx)
∏

Y ∈Y pθ(y
′ |πy′)

=

∏
X∈X pθ(x |πx)

∏
Y ∈Y pθ(y |πy)∏

X∈X pθ(x |πx)
∑

y′
∏

Y ∈Y pθ(y
′ |πy′)

=

∏
Y ∈Y pθ(y |πy)∑

y′
∏

Y ∈Y pθ(y
′ |πy′)

(31)

=
∏
Y ∈Y

pθ(y |πy) . (32)

The transition from (31) to (32) is straightforward because, by the definition of BNs, we have∑
y′

∏
Y ∈Y

pθ(y
′ |πy′) = 1 . (33)

We now prove that following relation holds:

max
(G,θ)∈P1

C(pG
θ | D) = max

(G,θ)∈P2
C(pG

θ | D) ,

We first partition G1 into R(K)2KQ groups where each group consists of R(Q) DAGs whose edges among Y and edges
from features to class variables are the same. The relation

pG
θ (y |x) =

∏
Y ∈Y

pθ (y |πy) ,∀(x,y) ∈ X × Y

ensures that all the members of each group have the same CLL score. Moreover, each group contains exactly one member of
G2, i.e., the DAG with no edge among features. Therefore, the maximal CLL score attained over G1 equals the maximal
score attained over G2.

B.3 PROPOSITION 3.3

Proof of Proposition 3.3 is trivial and is written down for completeness.

Proof. For any G ∈ P2, there is at least one I-map G′ ∈ P3 (to see that, simply add the extra arcs to G to complete the
parent sets of any class variable with all the continuous feature variables, leading to a graph G′ ∈ P3 – adding arcs will
keep the I-map property). Thus, Proposition 3.3 comes as a consequence of Proposition 3.2.

B.4 COROLLARY 3.4

We would like to re-emphasize that our assumptions of having the optimality of learned parameters in the local models are
not too strong. These are much weaker assumptions than those one finds in the literature when investigating the optimality
of PGM learning frameworks: that is typically the assumption that the hypothesis space contains the possible distributions
from some given family and the best estimate(s) converge to the optimal distribution(s) asymptotically.

We do not require any asymptotic results, and the requirement of optimally learned parameters (given data) can be met by
many standard estimation methods. Yet, this cannot be always guaranteed in practice, in particular if someone decides to use
complicated models connecting the input feature variables and class variables, so our assumption is necessary for the proof
of global optimality of the framework (which is a strong result and obviously cannot be achieved if base local models are
not optimal themselves).

With this in mind, the following (short) proof would satisfactorily inform readers of the significance of the proposed
framework regarding the optimality.



Proof. Assume the chain rule of probability holds (which is arguably a mild assumption) and the parameter learning problem
is optimally solved. As a combination of Proposition 3.1, Proposition 3.2 and Proposition 3.3, we have

max
p∈P0

C(p | D) = max
(G,θ)∈P

C(pG
θ | D) = max

(G,θ)∈P1
C(pG

θ | D) = max
(G,θ)∈P2

C(pG
θ | D) = max

(G,θ)∈P3
C(pG

θ | D) .

Thus, algorithm 1 should return an I-map of the optimal distribution in P0. In other words, the learning procedure is
universal, as (G∗, θ∗) is optimal with respect to P , and with enough data would match the true conditional p(Y|X) for p in
P0.

B.5 PROPOSITION 3.5

Enlarging parent sets (with discrete features) in our setting is analogous to further partitioning the input space in local
supervised learning parts [Wang and Saligrama, 2012]. A representative of such approaches is the top-down construction
of decision trees [Landwehr et al., 2005, Rokach and Maimon, 2005]. In such approaches, it is well-known that further
partitioning the input space leads to higher predictive performance on the training data sets [Landwehr et al., 2005, Rokach
and Maimon, 2005], as long as they are optimally learned. We can expect a similar phenomenon in our setting because CLL
(4) is indeed a performance measure for our probabilistic classifiers, and the way we encode each local distribution using
|ΠY

d | distributions pθ (Y |π,Xc), ∀π ∈ ΠY
d , makes our approach an input space partitioning approach, where π ∈ ΠY

d are
used to partition the space formed by Xc.

We now present a proof for Proposition 3.5.

Proof. Let pY,π be the local models used for Y with parent set ∆, for π ∈ ΠY
d , and p′

Y,π′ be the local models for parent set
∆′ ⊃ ∆ such that π ⊂ π′. Let θ be the optimal parameters used by pY,π. Because the local models remain as models from
continuous features Xc to the class variable Y , θ is still a valid solution (albeit non optimal) of the parameter learning of
p′
Y,π′ , for each π′ extending π. If we use such a θ and sum together the CLL of all p′

Y,π′ with π′ ⊃ π (that is, the extended
parent set configurations that are compatible with π over the variables they have in common), then we achieve the very same
score (4). Repeating this for all extension of all π ∈ ΠY

d , the same overall CLL score is reached. This means that the CLL
obtained after the added parents in ∆′ \∆ has to be equal or larger (as it is assumed to be optimally learned) than before
adding the parents. This proves Inequality (21). Now, (21) guarantees that enlarging parent sets cannot decrease the CLL
score (4). This ensures that at least one solution of the Algorithm 1 is a fully connected BN in the sense that the DAG over
the class variables induced by its structure G is fully connected. Such a solution can be found by finding a topological order
of a solution G from Algorithm 1 and then adding arcs to G (respecting that topological order) until the DAG over the class
variables induced by the structure G is fully connected (side comment: obviously it is not our goal to have fully connected
networks, this is just to proof the theoretical results).

C DETAILED ALGORITHMS

C.1 ALGORITHM 1

In this section, we show that Algorithm 1 can be revised to find a GBNC (G∗, θ∗) ∈ P3 of any regularized variant (22) of
the CLL function. We first compute C(pθ∗

Y,π
|Y, π,D) from D by solving (17) in line 5 of Algorithm 1, which can be done

by extracting the data set

Dπ
..= {(xn,yn) ∈ D |πyn = π} (34)

and calling any base learner to learn the optimal parameter set of pθ (Y |π,Xc) on Dπ with respect to (17).

For any given regularized variant (22) of the CLL function, we denote by

S(Y,∆Y
d ) = C(Y,∆Y

d )− pen(∆Y
d , |D|) . (35)



Clearly, the problem of learning a best G ∈ G3 can be re-expressed as an Integer Programming (IP):

Maximize
∑
Y ∈Y

∑
∆Y

d ∈FY

γ(∆Y
d ) · S(Y,∆Y

d ) , (36)

Subject to
∑

∆Y
d ∈FY

γ(∆Y
d ) = 1 ,∀Y ∈ Y ,

∑
Y ∈Y′

∑
∆Y

d ∈FY

∆Y
d ∩Y′=∅

γ(∆Y
d ) > 1 ,∀Y′ ⊆ Y , |Y′| > 1 ,

γ(∆Y
d ) ∈ {0, 1} ,∀Y ∈ Y,∀,∆Y

d ∈ FY .

Altogether, we end up with the implementation given in Algorithm 2, which returns a GBNC (G∗, θ∗) ∈ P3 of (12).

Algorithm 2 Learning a GBNC of (12) under the presence of regularization

1: Input: Data D, Probabilistic hypothesis spaces encoding pθ (Y |π,Xc), ∀π ∈ ΠY
d , ∀∆Y

d ∈ FY , ∀Y ∈ Y
2: for Y ∈ Y do
3: for ∆Y

d ∈ FY do
4: for π ∈ ΠY

d do
5: Solve (17) and store it in a proper data structure
6: end for
7: Compute S(Y,∆Y

d ) by (35) using stored values
8: end for
9: end for

10: Find a best collection {∆Y
d |Y ∈ Y} which optimizes (36) using GOBNILP

11: Output: A GBNC (G∗, θ∗) ∈ P3 of (12)

C.2 A REFINEMENT OF ALGORITHM 1

In this section, we show how pruning rules [de Campos et al., 2018] can be employed to find GBNCs which optimize
regularized variants (22) without losing any optimality.

We first generalize the pruning rule [de Campos et al., 2018][Lemma 3] for any regularized variant of the form (22).

Lemma C.1. Let Y ∈ Y be a node in G ∈ G3 with ∆ ⊂ ∆′ ∈ FY , such that

S(Y,∆) ≥ −pen(∆′, |D|) . (37)

Then ∆′ and all its supersets can be safely discarded from FY without decreasing the maximum score of (12).

Proof. Using the shorthand notation (35), a regularized variant of the CLL function can be rewritten as

S(pG
θ∗ | D) =

∑
Y ∈Y

S(Y,∆Y
d ) =

∑
Y ∈Y

(
C(Y,∆Y

d )− pen(∆Y
d , |D|)

)
.

For any G,G′ ∈ G3 such that ∆ and ∆′ are respectively the parent set of Y in G and G′, and the parent sets of all Y ′ ̸= Y
are the same, we have the relation

S(pG
θ∗ | D)− S(pG′

θ∗ | D) = S(Y,∆)− S(Y,∆′) = S(Y,∆)− C(Y,∆) + pen(∆′, |D|)
≥ −pen(∆′, |D|)− C(Y,∆) + pen(∆′, |D|) = −C(Y,∆) ≥ 0 .

Thus, we can safely discard ∆′ from FY without decreasing the maximum score of (12).

Because for any ∆′ ⊂ ∆′′ ∈ FY , we have −pen(∆′, |D|) ≥ −pen(∆′′, |D|) and assumption (21) ensures that C(Y,∆) ≤
C(Y,∆′′). Thus, we have the relation

S(Y,∆) ≥ −pen(∆′, |D|) ≥ −pen(∆′′, |D|) .

which ensures that we can also safely discard ∆′′ from FY .



Intuitively, Lemma C.1 provides us a "stopping criterion" for enlarging parent sets by exploiting the fact that regularized
variants (22) of the CLL (4) seek for a trade-off between the predictive performance provided by more complex classifiers
and the simplicity of classifiers. More precisely, condition (37) allows one to safely discard (some/many large) possible
parent set ∆′ and its supersets ∆′′ without the need of learning local probabilistic classifiers (15) for these parent sets. It is
very beneficial, because if we do not have such a stopping criterion, we will need to evaluate all the possible parent sets and
evaluating each ∆Y ∈ FY requires one to the learning a possibly large number of local probabilistic classifiers (15) which
is exponential in the cardinality of ∆Y .

Ideally, we would expect that enlarging the parent sets (or increasing the model complexity) gives us a better score S(Y,∆Y ),
i.e., assumption (21) should hold. However, in practice, it may happen that the learning algorithm fails to converge and
returns unreliable (and inaccurate) local probabilistic classifiers (15). In such a case, we would keep adding redundant
parents and end up with unreliable local probabilistic classifiers (15) in the final GBNC. In other words, we pick up an
unnecessary complex GBNC which contains unreliable local probabilistic classifiers (15). To avoid this unexpected behavior,
we propose a variant of the pruning rule (37).

Definition C.2. Let Y ∈ Y be a node in G ∈ G3 with ∆ ⊂ ∆′ ∈ FY , such that

max
∆′′⊂∆

S(Y,∆′′) ≥ −pen(∆′, |D|) . (38)

Then all the ∆ ⊃ ∆∗, where

∆∗ = argmax
∆′′⊂∆

S(Y,∆′′) , (39)

will be discarded from FY .

Intuitively, the pruning rule (38) –(39) allows us to prune all the supersets of ∆∗. For example, if ∆∗ ⊊ ∆, we discard all of
its supersets, such as ∆, ∆′ and their supersets. Adopting the pruning rule (38) –(39), we propose a refinement of Algorithm
1 which is summarized in Algorithm 3. To simplify Pseudocode, for any Y ∈ Y, we denote by

FY
k =

{
∆ ∈ FY | |∆| = k

}
,∀k = |Xc|, . . . , Q+K . (40)

Algorithm 3 only learns a local classifier which estimates the local distributions pθ (Y |π,Xc), π ∈ Π, if ∆ is still included
in FY and its complexity is not so high according to (38). In practice, we observed that large ∆ ∈ FY are usually discarded.

Algorithm 3 Learning a GBNC of (12) under the presence of regularization

1: Input: Data D, Probabilistic hypothesis spaces encoding pθ (Y |π,Xc), ∀π ∈ ΠY
d , ∀∆Y

d ∈ FY , ∀Y ∈ Y
2: for Y ∈ Y do
3: for k = |Yc|, . . . , Q+K do
4: for ∆Y

d ∈ FY
k do

5: if Condition (38) holds then
6: Determine ∆∗ using (39); Discard all the ∆Y

d ⊃ ∆∗ from FY

7: else
8: Compute S(Y,∆Y

d ) defined in (35); Store pθ∗ (Y |π,Xc), ∀π ∈ ΠY
d in a proper data structure

9: end if
10: end for
11: end for
12: end for
13: Find a best collection {∆Y

d |Y ∈ Y} which optimizes (36) using GOBNILP
14: Output: A GBNC (G, θ) ∈ P3 of (12)

C.3 INFERENCE ALGORITHMS

Practical procedures for finding BOPs of ℓS (27) and ℓH (26) are presented in Algorithm 4 and Algorithm 5, respectively.



Algorithm 4 Find a BOP of the Subset 0/1 loss (27)

1: Input: A GBNC (G∗, θ∗) ∈ P3 of (12): pθ∗ (Y |π,Xc), ∀π ∈ ΠY
d , ∀∆Y

d ∈ FY , ∀Y ∈ Y, a test instance x
2: Extract the sub-DAG K over Y from G
3: for Y ∈ Y do
4: Extract parent set of Y in K: ∆Y

Y = ∆Y
d ∩Y; Form the set ΠY

Y of the possible configurations of ∆Y
Y

5: for πY
Y ∈ ΠY

Y do
6: Predict pK

θ∗

(
Y |πY

Y

)
using pθ∗ (Y |π,Xc) which are specified by xd

7: end for
8: end for
9: Find a MPE ŷ ∈ Y given K and pK

θ∗

(
Y |πY

Y

)
, ∀πY

Y ∈ ΠY
Y, ∀Y ∈ Y

10: Output: A BOP ŷ of the Subset 0/1 loss (27)

Algorithm 5 Find a BOP of the Hamming loss (26)

1: Input: A GBNC (G∗, θ∗) ∈ P3 of (12): pθ∗ (Y |π,Xc), ∀π ∈ ΠY
d , ∀∆Y

d ∈ FY , ∀Y ∈ Y, a test instance x
2: Extract the sub-DAG K over Y from G
3: for Y ∈ Y do
4: Extract parent set of Y in K: ∆Y

Y = ∆Y
d ∩Y; Form the set ΠY

Y of the possible configurations of ∆Y
Y

5: for πY
Y ∈ ΠY

Y do
6: Predict pK

θ∗

(
Y |πY

Y

)
using pθ∗ (Y |π,Xc) which are specified by xd

7: end for
8: end for
9: Find K marginals ŷ1, . . . , ŷK given K and pK

θ∗

(
Y |πY

Y

)
, ∀πY

Y ∈ ΠY
Y, ∀Y ∈ Y

10: Output: A BOP ŷ ..= (ŷ1, . . . , ŷK) of the Hamming loss (26)

D THE CASE OF PARTIAL/MISSING DATA

The structural Expectation-Maximization (structural EM) approach has been used in different works in BN learning from
missing data [Adel and de Campos, 2017, Rancoita et al., 2016, Friedman, 1998]. Reminding that, in BN learning with
an incomplete training data, the structural EM approach [Friedman, 1998] can be employed to find a pair of a possible
precise/complete data set and a possible BN, which optimizes some given target function.

The structural EM approach can be implemented as a two-step algorithm, which should be iterated until either the algorithm
converges or some stopping criterion is met.

• Expectation step (E): we complete the data by imputing partial/missing data from a fitted BN;

• Maximization step (M): we learn a BN by optimizing given target function over the completed data.

Yet, we can in principle adapt the M step of the structural EM approach to the setting of probabilistic MDC straightforwardly.

However, depending on the concrete type of missing data we are dealing with, handling the E step may require more attention.
In the case of partially specified class variables and precise features [Wang et al., 2021], GBNCs given by Algorithm 1 and 2
are estimates of p(Y|X ) and can be used to impute partial/missing data during the E step. In the general case where both
the features and class variables can be partially specified [Hüllermeier, 2014, Nguyen et al., 2021], estimates of p(Y|X )
itself seems to be inadequate, because estimates of p(X ,Y) may be needed for doing imputation if one wishes to use
exact/approximate inference. We however leave this problem as a future work because it is beyond the scope of this paper.

E EXPERIMENTS

E.1 EXPERIMENTAL SETTING

We evaluate our approaches on both tabular and image data sets. Table 6 summarizes the detailed statistics of all tabular data
sets, which are originally collected by [Jia and Zhang, 2021]. From left to right, the meaning of each column is the number
of class variables (#CV), the number of samples (#Samples), and the number of states of each class variable. (#States/CV)



and the number of features (#Features), respectively. Among the 20 tabular data sets, there are three data sets (Adult, Default
and Thyroid) which contain mixed features. If all class variables contain the same number of states, only this number is
reported. For example, the Flickr data set has five class variables, which have 3, 4, 3, 4, and 4 states, respectively.

Table 6: Statistics of the tabular benchmark data sets.

Data Set #CV #States/CV #Samples #Features
Edm 2 3 154 16n
Jura 2 4,5 359 9n
Enb 2 2,4 768 6n
Voice 2 4,2 3136 19n
Song 3 3 785 98n
Adult 4 7, 7, 5, 2 18419 5n, 5x
Default 4 2, 7, 4, 2 28779 14n, 6x
Flickr 5 3, 4, 3, 4, 4 12198 1536n
Fera 5 6 14052 136n
WQplants 7 4 1060 16n
WQanimals 7 4 1060 16n
Thyroid 7 5, 5, 3, 2, 4, 4, 3 9172 7n, 22x
Rf1 8 4, 4, 3, 4, 4, 3, 4, 3 8987 64n
Pain 10 2, 5, 4, 2, 2, 5, 2, 5, 2, 2 9734 136n
Disfa 12 5, 5, 6, 3, 4, 4, 5, 4, 4, 4, 6, 4 13095 136n
WaterQuality 14 4 1060 16n
Oes97 16 3 334 263n
Oes10 16 3 403 298n
Scm20d 16 4 8966 61n
Scm1d 16 4 9803 280n

We compare two instantiations of GBNCs (GBNC-S which optimizes (22) and produces BOP (27) of ℓS , and GBNC-H
which optimizes (22) and produces BOP (26) of ℓH ) with BR, CP, and CCs [Jia and Zhang, 2021][Section II–III]. Reminding
that pen(∆Y

d , |D|) is the penalty term of the Bayesian Information Criterion (BIC) [Schwarz, 1978] in our experiments.

It is known that the chain order of CCs can (significantly) affect its performance and choosing the best order is one of
the toughest problems in learning CCs [Read et al., 2021]. Although choosing good orders of CCs is not a focus of our
work, randomly choosing orders would make CCs too weak. We thus sample 11 orders (which are the original order of
the class variables from the data source and 10 other orders generated randomly) and pick the best chain order in terms of
validation performance, i.e., we use 80% of the training data to learn CCs and pick up the most promising order with the
highest performance on the validation set consists of 20% of training data, and report its test performance. When running
the experiments, we observed that this often improves the performance of CCs, compared to randomly choosing one chain
order. We follow the suggestion of [Jia and Zhang, 2021] and convert discrete features/variables into continuous variables
using one-hot encoding whenever they appear as parts of input of local classifiers of BR, CP and CCs. While there are
other multi-dimensional classifiers with promising predictive performances, such as [Jia and Zhang, 2021] and [Jia and
Zhang, 2023], we find it hard to interpret such classifiers as probabilistic classifiers. Thus, we do not include them in our
experimental comparison, which specifically focuses on probabilistic classifiers.

For each tabular data set, we do a 10-fold cross-validation, and report the mean and standard deviation of the performance of
the classifiers. For the image data set, we do a 3-fold cross-validation, and report the mean and standard deviation of the
performance of the classifiers.

We implement all approaches in Python and use the pgmpy framework [Ankan and Panda, 2015]. We use the PyTorch frame-
work [Paszke et al., 2019] to implement neural networks. The source code to replicate experiments is provided as supplemen-
tary materials and has been made made public at https://github.com/yangyang-pro/probabilistic-mdc.

E.2 RESULTS

This appendix provides detailed experimental results which are summarized in section 5 of the main text.

https://github.com/yangyang-pro/probabilistic-mdc


Hamming losses and their ranks provided by the classifiers are given in table 7 and 8. Subset 0/1 losses and their ranks
provided by the classifiers are given in table 9 and 10. Scatter plots for the losses provided by pairs of classifiers are given in
Figure 2–5. Each black point illustrates losses provided by the classifiers labeled on the horizontal axis and the vertical axis
on one data set. The differences provided by pairs of classifiers are illustrated by the horizontal distances between (black)
points and the blue line y = x. Points lie on the left side of y = x indicate that classifiers labeled on the horizontal axis are
better than ones labeled on the vertical axis, and points lie on the right side of y = x indicate that classifiers labeled on the
vertical axis are better than ones labeled in the horizontal axis. Points lie far away from y = x suggest visible differences.

Table 7: Hamming loss (mean ± std.) of each MDC approach (base learner: logisitic regression).

Data Set Hamming loss (in %)

BNCH BR CC CP
Edm 26.54 ± 9.57 (1.0) 27.65 ± 7.95 (3.0) 27.23 ± 6.95 (2.0) 28.23 ± 8.10 (4.0)
Jura 37.32 ± 4.48 (2.0) 35.51 ± 5.06 (1.0) 39.81 ± 8.10 (3.0) 67.84 ± 7.23 (4.0)
Enb 22.20 ± 4.59 (1.5) 24.16 ± 4.44 (3.0) 22.20 ± 5.29 (1.5) 31.77 ± 1.89 (4.0)
Voice 8.21 ± 1.18 (3.0) 8.08 ± 1.05 (1.5) 8.08 ± 0.67 (1.5) 41.69 ± 1.30 (4.0)
Song 24.33 ± 2.35 (1.0) 25.74 ± 2.86 (2.0) 26.46 ± 5.49 (3.0) 49.30 ± 3.32 (4.0)
Adult 32.46 ± 0.77 (3.0) 28.26 ± 0.47 (1.0) 28.46 ± 0.42 (2.0) 41.40 ± 0.61 (4.0)
Default 33.29 ± 0.42 (1.0) 33.48 ± 0.59 (3.0) 33.39 ± 0.42 (2.0) 43.94 ± 0.31 (4.0)
Flickr 21.74 ± 0.57 (3.0) 20.22 ± 0.69 (1.0) 20.46 ± 0.47 (2.0) 49.21 ± 0.72 (4.0)
Fera 37.76 ± 0.64 (1.0) 38.82 ± 0.96 (2.0) 39.23 ± 0.70 (3.00) 52.97 ± 2.41 (4.0)
WQplants 34.61 ± 1.67 (1.0) 34.65 ± 2.18 (2.0) 35.42 ± 2.02 (3.0) 38.06 ± 3.05 (4.0)
WQanimals 36.85 ± 1.35 (1.0) 36.98 ± 1.97 (2.0) 38.23 ± 0.87 (3.0) 43.07 ± 2.68 (4.0)
Thyroid 3.38 ± 0.14 (1.0) 3.52 ± 0.19 (3.0) 3.44 ± 0.17 (2.0) 3.89 ± 0.16 (4.0)
Rf1 9.53 ± 0.65 (1.0) 16.10 ± 0.67 (2.0) 16.33 ± 0.42 (3.0) 36.49 ± 0.79 (4.0)
Pain 4.70 ± 0.33 (1.0) 4.74 ± 0.32 (2.0) 4.91 ± 0.37 (3.0) 5.24 ± 0.46 (4.0)
Disfa 10.30 ± 0.36 (1.0) 10.58 ± 0.37 (2.0) 10.63 ± 0.30 (3.0) 13.08 ± 0.60 (4.0)
WaterQuality 35.53 ± 1.24 (1.0) 36.10 ± 1.12 (2.0) 36.50 ± 0.95 (3.0) 40.92 ± 1.58 (4.0)
Oes97 27.61 ± 1.41 (1.0) 28.24 ± 1.68 (2.0) 29.35 ± 1.78 (3.0) 45.59 ± 3.36 (4.0)
Oes10 19.55 ± 1.80 (2.0) 19.21 ± 1.98 (1.0) 20.80 ± 1.73 (3.0) 38.40 ± 3.30 (4.0)
Scm20d 31.45 ± 0.84 (1.0) 36.04 ± 0.71 (2.0) 38.15 ± 0.96 (3.0) 57.87 ± 0.65 (4.0)
Scm1d 18.07 ± 0.38 (1.0) 23.42 ± 0.79 (2.0) 25.63 ± 0.95 (3.0) 55.59 ± 0.80 (4.0)
Ave. rank 1.43 1.98 2.60 4.00
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Table 8: Hamming loss (mean ± std.) of each MDC approach (base learner: Naive Bayes).

Data Set Hamming loss (in %)

BNCH BR CC CP
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Rf1 17.10 ± 0.60 (1.0) 23.39 ± 0.40 (2.0) 23.51 ± 0.39 (3.0) 37.69 ± 0.90 (4.0)
Pain 22.53 ± 0.49 (2.0) 34.52 ± 1.03 (3.0) 39.71 ± 2.07 (4.0) 18.61 ± 0.54 (1.0)
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Table 9: Subset 0/1 loss (mean ± std.) of each MDC approach (base learner: logisitic regression).

Data Set Subset 0/1 loss (in %)

BNCS BR CC CP
Edm 40.83 ± 11.73 (1.0) 47.54 ± 12.49 (2.0) 50.54 ± 15.58 (3.0) 55.17 ± 14.99 (4.0)
Jura 60.71 ± 5.75 (2.0) 59.05 ± 5.86 (1.0) 63.45 ± 8.29 (3.0) 98.33 ± 4.16 (4.0)
Enb 44.27 ± 8.86 (2.0) 48.32 ± 8.88 (3.0) 42.96 ± 6.33 (1.0) 63.54 ± 3.78 (4.0)
Voice 16.07 ± 1.81 (3.0) 15.69 ± 1.98 (1.0) 15.85 ± 1.61 (2.0) 81.44 ± 2.32 (4.0)
Song 57.57 ± 4.27 (1.0) 60.38 ± 4.93 (3.0) 58.98 ± 5.67 (2.0) 94.26 ± 2.09 (4.0)
Adult 75.67 ± 0.99 (3.0) 72.91 ± 1.33 (2.0) 71.76 ± 0.84 (1.0) 86.40 ± 0.95 (4.0)
Default 81.23 ± 0.61 (1.0) 82.43 ± 0.79 (3.0) 82.31 ± 1.00 (2.0) 94.01 ± 0.33 (4.0)
Flickr 70.93 ± 1.03 (3.0) 67.74 ± 1.33 (2.0) 67.40 ± 1.14 (1.0) 95.97 ± 0.54 (4.0)
Fera 80.15 ± 0.92 (1.0) 80.72 ± 1.09 (2.0) 80.86 ± 1.03 (3.0) 83.56 ± 2.56 (4.0)
WQplants 90.75 ± 2.86 (1.0) 90.85 ± 2.27 (2.0) 91.79 ± 2.83 (3.0) 92.36 ± 3.88 (4.0)
WQanimals 95.19 ± 2.62 (2.0) 95.47 ± 2.22 (3.0) 95.09 ± 3.01 (1.0) 97.83 ± 2.15 (4.0)
Thyroid 21.63 ± 0.94 (1.0) 22.76 ± 1.32 (2.0) 23.15 ± 1.41 (3.0) 25.29 ± 1.16 (4.0)
Rf1 47.51 ± 2.11 (1.0) 70.88 ± 1.69 (2.0) 72.36 ± 1.92 (3.0) 93.58 ± 0.81 (4.0)
Pain 24.07 ± 1.50 (1.0) 24.74 ± 1.41 (2.0) 24.76 ± 1.40 (3.0) 24.86 ± 1.55 (4.0)
Disfa 60.24 ± 1.42 (1.0) 60.96 ± 1.15 (3.0) 60.51 ± 1.50 (2.0) 63.40 ± 1.62 (4.0)
WaterQuality 99.43 ± 0.46 (2.0) 99.06 ± 0.60 (1.0) 99.72 ± 0.43 (3.5) 99.72 ± 0.43 (3.5)
Oes97 95.24 ± 4.02 (1.0) 95.84 ± 3.53 (2.0) 97.03 ± 3.73 (3.0) 100 ± 0.00 (4.0)
Oes10 90.58 ± 3.45 (2.0) 90.33 ± 4.62 (1.0) 92.30 ± 3.26 (3.0) 100 ± 0.00 (4.0)
Scm20d 87.79 ± 1.25 (1.0) 95.46 ± 0.96 (4.0) 93.89 ± 1.29 (3.0) 92.58 ± 0.98 (2.0)
Scm1d 80.75 ± 1.02 (1.0) 89.86 ± 2.17 (3.0) 88.81 ± 0.88 (2.0) 90.81 ± 1.01 (4.0)
Ave. rank 1.55 2.20 2.38 3.88

Table 10: Subset 0/1 loss (mean ± std.) of each MDC approach (base learner: Naive Bayes).

Data Set Subset 0/1 loss (in %)

BNCS BR CC CP
Edm 48.79 ± 8.25 (1.0) 57.12 ± 4.34 (4.0) 52.13 ± 9.22 (2.0) 55.08 ± 15.36 (3.0)
Jura 65.44 ± 7.07 (2.0) 69.33 ± 5.45 (3.0) 64.05 ± 6.26 (1.0) 98.89 ± 1.36 (4.0)
Enb 45.20 ± 4.43 (1.0) 59.25 ± 5.62 (3.0) 58.99 ± 6.36 (2.0) 62.51 ± 5.81 (4.0)
Voice 17.92 ± 1.23 (1.0) 21.62 ± 2.46 (2.0) 22.71 ± 2.94 (3.0) 84.82 ± 2.11 (4.0)
Song 70.72 ± 4.57 (1.0) 78.60 ± 4.13 (3.0) 77.71 ± 3.23 (2.0) 93.63 ± 3.26 (4.0)
Adult 92.75 ± 0.68 (3.0) 76.69 ± 3.14 (2.0) 74.65 ± 2.80 (1.0) 98.46 ± 0.35 (4.0)
Default 92.11 ± 1.89 (1.0) 96.10 ± 2.23 (2.0) 96.47 ± 1.91 (3.0) 99.94 ± 0.03 (4.0)
Flickr 82.94 ± 1.33 (1.0) 86.03 ± 1.11 (3.0) 85.89 ± 1.08 (2.0) 96.56 ± 0.55 (4.0)
Fera 93.34 ± 0.37 (1.0) 97.94 ± 0.35 (3.0) 98.04 ± 0.31 (4.0) 95.69 ± 0.53 (2.0)
WQplants 99.15 ± 0.66 (1.5) 100 ± 0.00 (4.0) 99.91 ± 0.28 (3.0) 99.15 ± 0.89 (1.5)
WQanimals 99.15 ± 0.66 (1.0) 99.62 ± 0.86 (3.5) 99.43 ± 0.96 (2.0) 99.62 ± 0.63 (3.5)
Thyroid 20.39 ± 1.92 (1.0) 90.96 ± 0.95 (4.0) 88.79 ± 1.15 (3.0) 47.24 ± 2.33 (2.0)
Rf1 69.12 ± 1.09 (1.0) 83.82 ± 0.97 (2.5) 83.82 ± 0.65 (2.5) 93.05 ± 0.60 (4.0)
Pain 89.14 ± 0.77 (2.0) 93.08 ± 0.80 (3.0) 87.49 ± 1.38 (1.0) 91.56 ± 1.10 (4.0)
Disfa 88.62 ± 2.03 (1.0) 99.66 ± 0.14 (4.0) 99.47 ± 0.17 (3.0) 94.58 ± 1.02 (2.0)
WaterQuality 100 ± 0.00 (3.0) 100 ± 0.00 (3.0) 100 ± 0.00 (3.0) 99.72 ± 0.43 (1.0)
Oes97 96.69 ± 3.12 (3.0) 94.30 ± 4.50 (1.0) 94.60 ± 4.36 (2.0) 100 ± 0.00 (4.0)
Oes10 91.79 ± 3.91 (2.0) 91.54 ± 4.09 (1.0) 92.53 ± 4.21 (3.0) 99.01 ± 1.22 (4.0)
Scm20d 98.63 ± 0.32 (4.0) 98.27 ± 0.30 (3.0) 97.60 ± 0.43 (2.0) 96.07 ± 0.43 (1.0)
Scm1d 95.54 ± 1.25 (3.0) 91.66 ± 0.70 (2.0) 91.03 ± 0.91 (1.0) 96.59 ± 0.58 (4.0)
Ave. rank 1.73 2.80 2.28 3.20
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Figure 2: Hamming loss (base learner: Logistic regression)
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Figure 3: Subset 0/1 loss (base learner: Logistic regression)
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Figure 4: Hamming loss (base learner: Naive Bayes)
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Figure 5: Subset 0/1 loss (base learner: Naive Bayes)
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