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Abstract

Multi-dimensional classification (MDC) can be
employed in a range of applications where one
needs to predict multiple class variables for each
given instance. Many existing MDC methods suf-
fer from at least one of inaccuracy, scalability, lim-
ited use to certain types of data, hardness of in-
terpretation or lack of probabilistic (uncertainty)
estimations. This paper is an attempt to address
all these disadvantages simultaneously. We pro-
pose a formal framework for probabilistic MDC in
which learning an optimal multi-dimensional clas-
sifier can be decomposed, without loss of general-
ity, into learning a set of (smaller) single-variable
multi-class probabilistic classifiers and a directed
acyclic graph. Current and future developments
of both probabilistic classification and graphical
model learning can directly enhance our frame-
work, which is flexible and provably optimal. A
collection of experiments is conducted to highlight
the usefulness of this MDC framework.

1 INTRODUCTION

In (multi-class) classification, a predictive system makes use
of a training data set (consisting of input-output pairs which
specify individuals of a population) and a hypothesis space
(consisting of the possible classifiers), and seeks for a classi-
fier that optimizes its chance of making accurate predictions
with respect to some given evaluation criterion (such as a
loss function or an accuracy measure). Numerous studies
on classification have been devoted to learning probabilistic
classifiers which predict, for each observation of the input
space, a univariate probability distribution over the output
space. The intention of probabilistic classification is not only
to provide the end user with all necessary information about

*These authors contributed equally to this work.

the optimal predictions of different loss functions [Elkan,
2001, Mortier et al., 2021], but also information about the
uncertainty associated with the possible predictions.

To overcome the assumption that the output space must
be fully characterized by a single class variable, MDC has
been proposed in which the output space is characterized
by multiple class variables which can be correlated. MDC
appears in important applications. An example of MDC is
predicting subtypes/stages of diseases associated with each
patient given his/her medical image and/or demographic
information. Few other examples of MDC tasks are classi-
fication of biomedical text [Shatkay et al., 2008], vehicle
classification [Jia and Zhang, 2021] and beyond [Gil-Begue
et al., 2021, Jia and Zhang, 2022].

Existing multi-dimensional classifiers are non-probabilistic
[Jia and Zhang, 2021], relatively inaccurate [Jia and Zhang,
2021][Section II & III], or unscalable [Gil-Begue et al.,
2021]. To the best of our knowledge, no existing method
specific for MDC is capable of directly handling mixed data,
i.e., continuous and discrete features coexisting (without
preprocessing or other external manipulations). Problem
transformation methods [Jia and Zhang, 2021] which trans-
form the original MDC problem into either a huge multi-
class classification (MCC) problem, for example using the
class powerset (CP) classifier, or a set of independent MCC
problems, for example the Binary relevance (BR) classi-
fier, can be combined with deep multimodal learning [Kline
et al., 2022, Xu et al., 2021] to handle mixed data and other
complex types of input. They suffer from the aforemen-
tioned issues and are arguably hard to interpret. The set of
marginal probability distributions provided by BR can be
associated to (infinitely) many joint distributions over the
class variables1 and does not inform much about the (true)
joint distribution, while the joint distribution provided by
CP contains an exponential number of masses and is not

1Thus, BR can be seen as a credal classifier and would be
useful when targeting reliable set-valued predictions [Augustin
et al., 2014, Jansen et al., 2022, Troffaes, 2007].
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easily interpretable for end users.

We present a framework to learn probabilistic multi-
dimensional classifiers addressing those issues. This formal
framework allows us to learn an optimal multi-dimensional
classifier, without loss of generality/optimality, by decom-
posing the task into learning a set of probabilistic MCC
models plus a directed acyclic graph (DAG). Notably, the
framework inherits the interpretability of Bayesian networks
(BNs) [Atienza et al., 2022, Kitson et al., 2023, Koller and
Friedman, 2009], which is a compact representation of quan-
titative and qualitative probabilistic relationships among
class variables, and the scalability and flexibility of deep
(multimodal) learning [Kline et al., 2022, LeCun et al., 2015,
Xu et al., 2021], i.e., handling complex types of data. More-
over, the probabilistic nature allows the framework, among
other characteristics, to optimize different loss functions
by only learning a single probabilistic model. We prove
that the probabilistic model learned by this framework is
universal and the learning procedure is globally optimal
whenever MCC is universal and can be solved optimally too.
We formalize the probabilistic MDC problem in Section 2,
present formal results on the optimality of the framework in
Section 3, followed by a practical algorithm and properties
of the learning framework in Sections 3.1 to 3.4. Section 4
discusses the inference task, and Section 5 further motivates
the framework by presenting a collection of experiments
indicating the advantages of the framework against existing
MDC approaches. Section 6 concludes this paper. All for-
mal results in this paper (propositions) are stated without
proofs, which are deferred to Appendix B. Some technical
details and experiments were also given in [Yang, 2022].

2 PROBABILISTIC MDC

Let X = {X1, . . . , XQ} be a finite set of features, let
X := X 1 × . . . × XQ denote an input space, and let
Y = {Y 1, . . . , Y K} be a finite set of class variables. Let
Yk = {yk,1, . . . , yk,Mk} be the set of Mk possible out-
comes for the kth class variable Y k, k ∈ [K] ..= {1, . . . ,K}.
We define Z ..= Y ∪X. We denote by Xd and Xc the dis-
crete feature set and continuous feature set, respectively. We
also define Zd ..= Y∪Xd. For each instance x ∈ X , we say
it is associated with a (vector)class y ∈ Y = Y1× . . .×YK .

We assume observations to be realizations of independently
and identically distributed (i.i.d.) random variables gener-
ated according to a probability distribution onX×Y , i.e., an
observation y = (y1, . . . , yK) is the realization of a corre-
sponding random vector Y = (Y 1, . . . , Y K). Let p(X,Y)
be a (mixed) joint density function. We denote by p(Y |x)
the conditional joint distribution of Y given X = x, whose
probability mass function is given by

p(y |x) ..=
p(x,y)∑

y′∈Y p(x,y′)
,∀(x,y) ∈ X × Y . (1)

We assume the denominator to be non-zero whenever
needed. We denote by p(Y k |x), k ∈ [K], the marginal
distribution of Y k, whose probability mass function is

p(yk |x) ..=
∑

y∈Y:Y k=yk

p(y |x) ,∀yk ∈ Yk . (2)

Given training data in the form of a finite set of observations
D =

{
(xn,yn)

}N
n=1
⊂ X×Y drawn independently from a

distribution, MDC aims to learn a predictive classifier model
h : X −→ Y assigning y ∈ Y to each x ∈ X . The output
of h is a vector

ŷ ..= h(x) =
(
h1(x), . . . , hK(x)

)
∈ Y . (3)

In a probabilistic setting, a classification task can be viewed
as a two-stage problem, in which a mapping h : X −→ Y
is not learned directly, but in a more indirect way. Roughly
speaking, one can split a probabilistic classification into two
tasks: learning a function p : X −→ p(Y|X ) (with abuse
of notation) and constructing an efficient inference operator
o : p(Y|X ) −→ Y (we will deal with o in Section 4).

Motivated by the observations that discriminative models
can perform better than generative models in many classi-
fication tasks [Bouchard and Triggs, 2004, Carvalho et al.,
2011, Ng and Jordan, 2001, Ulusoy and Bishop, 2006], and
by the fact that in M-open cases [Bernardo and Smith, 2000],
maximizing the (log) likelihood function may not converge
to a best possible distribution as maximizing the conditional
(log) likelihood function does [Roos et al., 2005], we learn
a multi-dimensional classifier encoding p which maximizes
the conditional log likelihood (CLL) function C(p | D):

C(p | D) ..= log

N∏
n=1

p(yn |xn) . (4)

This idea has been mentioned before [Benjumeda et al.,
2018], but, to the best of our knowledge, it has been left
open until now. Let P0 be a hypothesis space for p. The
learning problem can be defined as finding

p∗ ∈ arg max
p∈P0

C(p | D) . (5)

To avoid overfitting, the CLL function is often augmented
by a regularization term. We will discuss it later.

3 A LEARNING FRAMEWORK

The optimization problem (5) is very generic and its com-
plexity highly depends on the given hypothesis space P0.
We present reformulations of this problem that are more
suitable to be optimized based on some assumptions about
the hypothesis space. We proceed under the assumption that
the features Xq, q ∈ [Q], are always made available. This
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means we neither admit missing values at the training time
[Nguyen et al., 2021] nor admit missing features at the pre-
diction time [Saar-Tsechansky and Provost, 2007]. This is
not a limitation of the approach and missing data can be
tackled using a variation of structure EM [Friedman, 1998,
Rancoita et al., 2016], but the discussion goes beyond the
scope of this paper (see Appendix D for a quick discussion).

Throughout, we assume the chain rule of probability [Koller
and Friedman, 2009][Section 2.1.3.4] holds 2. Using the
concept of conditional independence, we can assume with-
out loss of generality that any p(X,Y) can be fully encoded
by a DAGG and a parameter set θ inducing the factorization

pGθ (x,y) =
∏
X∈Xc

pθ(x |πx)
∏
Z∈Zd

pθ(z |πz) , (6)

where πx and πz are (with abuse of notation) called con-
figurations (compatible with (x,y)) of the parent sets ∆X

G

and ∆Z
G (for easiness, we assume that discrete parts of con-

figurations are dictionaries with pairs (variable, value), and
continuous parts are given via the appropriate functionals).
The complexity of this factorization depends on G.

Therefore, the hypothesis space of any probabilistic MDC
can be defined as P ..= G × Θ, where G and Θ are re-
spectively the set of possible DAGs and the set of possible
parameter sets, and the problem (5) becomes

pG
∗

θ∗ : (G∗, θ∗) ∈ arg max
(G,θ)∈P

C(pGθ | D) . (7)

A learning procedure is optimal if it can find an optimal pair
(G∗, θ∗). Parameter learning is optimally solved if we can
find θ∗ in (7) for a given G ∈ G. In the following, we show
that the factorization in (6) can lead to a great simplification
of the learning problem (7).

Proposition 3.1. Assume the parameter learning problem
is optimally solved. We have

max
p∈P0

C(p | D) = max
(G,θ)∈P

C(pGθ | D) = max
(G,θ)∈P1

C(pGθ | D) ,

(8)
where P1 ..= G1 ×Θ and G1 ( G is the set of DAGs which
contain no edge of the form3 Y −→ X .

We assume in this document that parameter learning can
be optimally solved. In general, this is a strong assump-
tion. However, we often deal with factorizations of p where
each factor involves a small number of variables. In these
cases, we hope one can learn the parameters well (certainly

2An intensive study on the conditions under which the chain
rule of probability is (in)valid is beyond the scope of this paper.

3To the best of our knowledge, we are the first who ex-
tend/adapt the setting suggested in [Lerner et al., 2001] to do
probabilistic multi-dimensional classification when targeting the
(regularized) joint conditional likelihood function.

much better than in a global model). This is a condition we
expect from local models in the factorization in order to
prove the optimality of the framework. Note that the cardi-
nality |G1| = R(K)2KQR(Q) can be much smaller than
|G| = R(K+Q), whereR(·) is Robinson’s formula [Bielza
et al., 2011]. Thus, looking for the best (G, θ) over P1 can
be much more practical than doing so over P . The next
proposition shows that finding an optimal pair (G, θ) ∈ P1

is equivalent to finding an optimal pair whose G contains
no edge between features.

Proposition 3.2. For any G ∈ G1, the joint conditional
distribution (1) can be factorized (according to G):

pGθ (y |x) =
∏
Y ∈Y

pθ (y |πy) ,∀(x,y) ∈ X × Y , (9)

where πy is the configuration for the parents of Y (accord-
ing to G) that is compatible with (x,y). Moreover, the
following relation holds:

max
(G,θ)∈P1

C(pGθ | D) = max
(G,θ)∈P2

C(pGθ | D) , (10)

where P2 ..= G2 ×Θ and G2 ( G1 consists of R(K)2KQ

DAGs with no edges between any two elements of X.

Thus, we formulate the new optimization problem:

pG
∗

θ∗ : (G∗, θ∗) ∈ arg max
(G,θ)∈P2

log

N∏
n=1

∏
Y ∈Y

pθ (yn |πyn) .

(11)

It is clear that solving (11) may lead to sub-optimal solu-
tions, compared to solving (7) if the assumption that the
parameter learning problem is optimally solved does not
hold, and in that case the relation G2 ( G implies that the
best CLL score attained over G2 is at best the one attained
over G. However, there are strong motivations for why one
should solve (11) in practice, instead of (7).

First, the optimality of (11) can be reachable under milder
conditions, while the optimality of (7) is often unreachable.
In fact, solving (7) is often impractical because optimizing
the CLL function can be impractical even if G ∈ G is
given [Friedman et al., 1997]. However, one can be much
more optimistic about solving (11). As will be shown in
Section 3.1, solving (11) is possible as long as one can
learn a set of (independent) probabilistic classifiers, plus
learning an optimal DAG over the class variables. So one
can use all current/future developments of both probabilistic
classification and graphical model learning towards solving
(11).

Second, as will be shown in Section 3.1, ∀G ∈ G2 and
∀x ∈ X , pGθ (Y |x) can be factorized as a product of con-
ditional probability distributions whose conditional part is
always specified by a multivariate continuous variable. This
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provides us with a rich representational capacity as dis-
cussed in Section 3.2. In particular, any probabilistic classi-
fier can be directly employed to model conditional probabil-
ity distributions without requiring any data preprocessing
transformation, leading to a rich framework for the em-
ployment of sophisticated techniques. The representational
capacity would be much weaker if one had to parameterize
G ∈ G \ G1 ) G \ G2 because it would be needed to find
some parametric model to encode all conditional density
functions pGθ (z |πz) whose conditional part would be spec-
ified by a mixture of discrete and continuous variables. This
would be a challenging problem by itself, especially if one
does not want to use any data preprocessing transformation
either before or during the training phase.

Our final simplification of the optimization problem while
keeping optimality is to realize that we can seek for an opti-
mal G where all continuous variables are parents of every
class variable, that is, Xc ⊂ ∆Y

G, ∀Y ∈ Y. Besides being
non-restrictive (we are forcing arcs to stay put, hence we
can always fit any “simpler” distribution which would have
dropped some connections by the appropriate parameter
learning), this condition has also a positive consequence, as
it allows us to use methods which are not able to handle
mixed setups of continuous and discrete variables.

Therefore, we introduce an updated version of (11) in which
we only force the global learning algorithm to explicitly
handle the discrete features, while assuming all continuous
ones are passed on to the learning of local models. More
formally, let G3 ( G2 be the set of R(K)2K|Xd| DAGs
such that, ∀G ∈ G3 and ∀Y ∈ Y, we have Xc ⊂ ∆Y

G. We
formulate the optimization problem as:

pG
∗

θ∗ : (G∗, θ∗) ∈ arg max
(G,θ)∈P3

log

N∏
n=1

∏
Y ∈Y

pθ (yn |πyn) ,

(12)
where P3 = G3 ×Θ.

Proposition 3.3. Assume the parameter learning problem
is optimally solved. The following relation holds

max
(G,θ)∈P2

C(pGθ | D) = max
(G,θ)∈P3

C(pGθ | D) . (13)

The conclusion here is that we can have a globally optimal
probabilistic MDC whose optimization is done via (12), po-
tentially saving significant time and data requirements for
training. One needs “only” to learn the local conditional
models (factors) of the expression, so long as we have an
efficient solver to find the DAG G inducing a good factor-
ization. Moreover, we hope for a valid (in terms of being an
I-map for the true distribution [Bouckaert, 1994, Koller and
Friedman, 2009]) yet simple G. Hence, in the next section,
we show that solving (12) can be optimally decomposed
into learning a set of probabilistic classifiers and learning
an optimal DAG.

3.1 ALGORITHMIC SOLUTION

In order to solve (12), we first need to model the local
conditional probability distributions:

pθ
(
Y |∆Y

G

)
,∀G ∈ G3 ,∀Y ∈ Y . (14)

Given G, for any Y ∈ Y, let ∆Y
d = ∆Y

G \ Xc be the set
of all discrete variables in ∆Y

G. Let ΠY
d be the set of all

configurations of ∆Y
d . Hence, each local distribution (14) is

represented by |ΠY
d | distributions

pθ (Y |π,Xc) ,∀π ∈ ΠY
d . (15)

Thus, the optimization problem (12) becomes

(G∗, θ∗) ∈ arg max
(G,θ)∈P3

∑
Y ∈Y

∑
π∈ΠYd

log
∏

(x,y)∈Dπ

pθ (y |π,xc) ,

with Dπ ..= {(x,y) ∈ D|πdy = π}. A key point is the sepa-
ration of discrete conditionals π and continuous conditionals
xc. Such separations were used in learning BNs optimizing
the likelihood function [Atienza et al., 2022] Moreover, we
have max(G,θ)∈P3 C(pGθ | D)

= max
G∈G3

∑
Y ∈Y

∑
π∈ΠYd

max
θ∈Θ

C(pθ |Y, π,D) , (16)

where C(pθ |Y, π,D) = log
∏

(x,y)∈Dπ pθ (y |π,xc).
This means that we can reformulate the optimization prob-
lem (12) as a two-phase optimization problem: (P1) for any
tuple (Y, π) ∈ Y×ΠY

d (considering the possible ∆Y
d ), learn

the optimal parameter set θ∗ of each distribution (15) which
optimizes the local CLL function, i.e.,

θ∗Y,π ∈ arg max
θ∈Θ

C(pθ |Y, π,D), (17)

and then (P2) learn the best DAG G∗ ∈ G3 which maxi-
mizes the CLL function: G∗ = arg maxG C(pGθ∗ | D) and

C(pGθ∗ | D) =
∑
Y ∈Y

∑
π∈ΠYd

C(pθ∗Y,π |Y, π,D). (18)

Problem (P1) can be solved for each tuple (Y, π) ∈ Y×ΠY
d ,

for each possible ∆Y
p ∈ FY independently (where FY is a

set of candidate parent sets for Y ). (P2) can be cast as the
structure learning for BNs, so we can leverage the research
on that topic [Kitson et al., 2023]. The elephant in the room
here is the size of FY (for each Y ), which will be discussed
in Section 3.4.

In this paper, we solve (18) using GOBNILP [Bartlett and
Cussens, 2017, Cussens et al., 2017] which is a state-of-the-
art anytime globally optimal algorithm and can be easily
adapted to handle regularized variants of CLL function as
presented in Section 3.4. Intuitively, GOBNILP, which was
designed for generative learning of Bayesian networks, can
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be instead used to reformulate the problem (P2) as learning
a collection of parent sets {∆Y

d : Y ∈ Y} which opti-
mizes the CLL function (18) and together satisfy the DAG
properties. It uses the local scores: ∀Y ∈ Y,∀∆Y

p ∈ FY :

C(Y,∆Y
d ) =

∑
π∈ΠYd

C(pθ∗Y,π |Y, π,D) , (19)

where we simplified the notation by removing θ and D,
since parameters have been already learned via (17) and
data are fixed. Problem (P2) can be expressed as an Integer
Programming (IP) problem:

Maximize
∑
Y ∈Y

∑
∆Y
d ∈FY

γ(∆Y
d ) · C(Y,∆Y

d ) , (20)

Subject to
∑

∆Y
d ∈FY

γ(∆Y
d ) = 1 ,∀Y ∈ Y ,

∑
Y ∈Y′

∑
∆Y
d ∈F

Y

∆Y
d ∩Y

′=∅

γ(∆Y
d ) > 1 ,∀Y′ ⊆ Y , |Y′| > 1 ,

γ(∆Y
d ) ∈ {0, 1} ,∀Y ∈ Y,∀,∆Y

d ∈ FY .

The implementation is given in Algorithm 1, which returns a
(G∗, θ∗) ∈ P3 of (12). We call this type of model defined by
(G∗, θ∗) a generalized Bayesian Network classifier (GBNC).
Note that the loops starting in lines 2 and 3 can be easily
parallelized since the local distributions (15) can be learned
independently.

Algorithm 1 Learning a GBNC of (12)

1: Input: Data D, Probabilistic hypothesis spaces.
2: for Y ∈ Y do
3: for ∆Y

d ∈ FY do
4: for π ∈ ΠY

d do
5: Solve (17) and store it in a proper data structure
6: end for
7: Compute C(Y,∆Y

d ) by (19) using stored values
8: end for
9: end for

10: Find a best collection {∆Y
d : Y ∈ Y} which optimizes

(20) using GOBNILP
11: Output: A GBNC (G∗, θ∗) ∈ P3 of (12)

The optimality of the proposed framework can be derived
as a consequence of Proposition 3.1–3.3.

Corollary 3.4. Assume the chain rule of probability holds.
Assume the parameter learning problem is optimally solved.
The procedure to learn a classifier (G∗, θ∗) by Algorithm 1
is universal (for distributions in P0).

3.2 REPRESENTATIONAL CAPACITY

To represent the joint conditional probability distribution
p(Y |X), we need a set of probabilistic classifiers p′ :

Xc −→ Yk to estimate the local conditional probability
distributions (15). Local models p′ are trained with what
we call base learners. Note that discrete variables are not
included in the input for p′ (they are dealt with through
the DAG optimization), which also facilitates learning and
representational capacity.

First, it allows us to represent the distribution p(Y |X)
where X can contain both continuous features and discrete
features without requiring any preprocessing transformation
either before or during the training phase. We never face
the problem of representing qualitative data for use as input
as deep learning does [Hancock and Khoshgoftaar, 2020].
Besides, representing qualitative data for use as input is
arguably the most critical obstacle for generalizing Classi-
fier Chains (CCs) [Dembczyński et al., 2010, Read et al.,
2021], which is a state-of-the-art multi-label classification
framework, to cope with MDC. Moreover, we naturally over-
come a bottleneck in the development of Multi-dimensional
Bayesian network classifiers (MDBNCs) [Gil-Begue et al.,
2021] that is a shortage of classifiers for the cases of contin-
uous features, and mixed features.

Second, the probabilistic classifier inducing p′ can be freely
chosen according to our needs. It can be as intuitive as k-NN
classifiers [Cover and Hart, 1967] and can be as counter-
intuitive as ensembles of deep networks [Ganaie et al., 2022].
This allows us to employ sophisticated probabilistic classi-
fiers to encode complex probabilistic relationships within
p′Y,π

..= pθ (Y |π,Xc), ∀π ∈ ΠY
d . For example, when each

image is encoded using an x, a convolutional network [Le-
Cun et al., 2015] can be employed to encode p′Y,π. If one
seeks for more accurate GBNCs, there should be no restric-
tion on the use of ensemble learning methods, except the
availability of computational resources. This flexibility of
the framework is remarkably different from existing prob-
abilistic MDC approaches [Gil-Begue et al., 2021, Jia and
Zhang, 2022]. Roughly speaking, so long as you train good
local models p′Y,π : Xc −→ Yk (for which you can use all
toolsets available in the literature for “standard” single-class-
variable classification), the framework in this paper does the
rest to combine them optimally into an MDC solution.

3.3 INTERPRETABILITY

GBNCs are interpretable at both the population and individ-
ual levels. At the population level, the structure G provides
a compact representation of the qualitative probabilistic rela-
tionships among feature and class variables. This graph rep-
resentation is easy to interpret to end users when compared
to an exponential number of masses provided by CP [Jia
and Zhang, 2021] and the (infinitely) many joint conditional
distributions associated with the set of marginal probability
distributions provided by BR [Jia and Zhang, 2021]. At the
individual level, the structure G and its parameters specified
by θ under the particular value of an individual x form a
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compact representation of the qualitative and quantitative
probabilistic relationships within p(Y |x), which can be
seen as a BN over the class variables.

As an example, we provide in Figure 1 a DAG over class
variables learned from the PASCAL VOC 2007 data set
whose description is given in Section 5.

Y 1 (Person) Y 2 (Animal)

Y 4 (Indoor) Y 3 (Vehicle)

Figure 1: A DAG over class variables learned from the
PASCAL VOC 2007 data set.

3.4 REGULARIZATION

While Algorithm 1 helps to find an optimal GBNC which
maximizes the CLL function, the next proposition suggests
that this best GBNC may not always be the one we want,
especially with regard to overfitting.

Proposition 3.5. Assume local models have parameters
optimally learned. Then ∀Y ∈ Y and ∀∆,∆′ ∈ FY such
that ∆d ⊂ ∆′d, we have

C(Y,∆d) ≤ C(Y,∆′d) . (21)

Therefore, at least one optimal solution of the Algorithm 1
is a fully connected DAG G.

Over-complex DAGs can happen frequently, especially
when the local classifiers are learned without enforcing
regularization terms. To seek for a better generalization, we
propose a regularized variant of the CLL function:

S(pGθ | D) = C(pGθ | D)−
∑
Y ∈Y

pen(|∆Y
d |, |D|) , (22)

where pen(∆Y
d , |D|) can be the penalty term of any decom-

posable scoring function [Liu et al., 2012]. Even a mild
penalty can already help to reduce model complexity, but
we leave this study to future work.

Algorithm 1 can be revised to learn GBNCs of regularized
variants (22) as presented in Appendix C.1 and C.2. More-
over, as shown in Appendix C.2, pruning rules [de Campos
et al., 2018] can be employed to find GBNCs which opti-
mize regularized variants (22) without losing any optimality.
This helps to greatly reduce the learning time because for
each Y ∈ Y, large candidate parent sets ∆Y

d ∈ FY are
often pruned due to high penalties [de Campos et al., 2018].
Finally, for a very large number of class variables, it is not
unreasonable to expect the treewidth of the true distribu-
tion to be limited, so that one can bound the size of FY

and use the scalability of (approximate) bounded-treewidth
learning [Scanagatta et al., 2016].

4 INFERENCE

The learned function p (defined via G and θ) provides,
given an x ∈ X , a conditional joint probability distribution
p(Y|x) which is used to find the Bayes-optimal prediction
(BOP) ŷ w.r.t a target loss function ` : Y × Y −→ R+:

ŷ ..= o(p(Y|x)) ∈ argmin
y∈Y

∑
y∈Y

`(y,y)p(y |x) . (23)

Yet, different loss functions may call for different BOPs (23)
[Dembczyński et al., 2012, Gil-Begue et al., 2021, Nguyen
and Hüllermeier, 2021, Waegeman et al., 2014]. Knowledge
about the probability distribution p(Y|x) is necessary for
finding BOP (23) of any loss function. The complexity of
finding BOP can greatly depend on the nature of the chosen
loss function. This problem has been studied rarely in the
MDC setting. An exception is [Bielza et al., 2011, Gil-Begue
et al., 2021]. Notably, in these works, finding BOP (23) of
some commonly used loss functions is shown to be equiva-
lent to computing the most probable explanations (MPEs) of
class variables when the classifier is an MDBNC. This is an
interesting finding because it implies that the complexity of
finding BOP (23) depends on the nature of both the chosen
loss function and the classifier. While this finding allows
us to directly employ any current/future developments on
exact/approximate MPE inference [Gil-Begue et al., 2021]
to find BOP (23) of some loss functions, one cannot get rid
of the computational burden introduced by large numbers
of features when working with MDBNCs.

In our framework, we can also show that finding BOP (23)
of some loss functions is computing the MPEs of class vari-
ables. In the following, we describe the problem of finding
BOP (23) of two commonly used loss functions4 which are
the Hamming loss (24) and the subset 0/1 loss (25):

`H(y, ŷ) ..=
1

K

K∑
k=1

Jyk 6= ŷkK , (24)

`S(y, ŷ) ..= Jy 6= ŷK . (25)

The indicator JAK equals 1 if the A is true and 0 otherwise.
Thus, both losses generalize the standard 0/1 loss in binary
classification. As noted in [Bielza et al., 2011], finding a
BOP of `H and `S are respectively equivalent to finding K
marginals (26) and equivalent to finding one MPE (27):

ŷk ∈ argmax
yk∈Yk

p(yk |x) ,∀k ∈ [K] , (26)

ŷ ∈ argmax
y∈Y

p(y |x) . (27)

4We defer intensive studies on finding BOPs of other loss
functions [Gil-Begue et al., 2021][Section 4] to future work.
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Hence, the model does not require retraining to allow for
different BOP. Exact MPE and marginal inferences are NP-
hard problems [de Campos, 2020, Roth, 1996, Shimony,
1994]. However, in our framework, the complexity of MPE
and marginal inferences only depend on the number of class
variables. Thus, we do not encounter the computational
burden introduced by large numbers of features, making the
framework usable in practice in spite of that. Moreover, one
can control the graph complexity among class variables by
employing bounded-treewidth learning [Nie et al., 2017].

5 EXPERIMENTS

This section presents a set of experiments to assess the
usefulness of our proposal.

5.1 EXPERIMENTAL SETTING

We compare two instantiations of GBNCs (GBNC-S which
optimizes (22) and produces BOP (27) of `S , and GBNC-H
which optimizes (22) and produces BOP (26) of `H ) with
three probabilistic competitors found in the literature on
20 tabular data sets [Jia and Zhang, 2021] and one image
data set [Everingham et al., 2010]. The number of instances
varies from 154 to 28779, the number of features varies
from 10 to 1536, and the number of class variables varies
from 2 to 16. It also contains 3 data sets with mixed discrete
and continuous features.

We utilize an MDC version of the PASCAL VOC 2007 data
set [Everingham et al., 2010]. We encode the objects found
in that data set using 4 class variables: Person (Yes and
No), Animal (No animal, Bird, Cat, Cow, Dog, Horse and
Sheep), Vehicle (No vehicle, Aeroplane, Bicycle, Boat, Bus,
Car, Motorbike, Train) and Indoor (No indoor object, Bottle,
Chair, Dining table, Potted plant, Sofa, TV/Monitor).

For tabular data sets, we compare GBNCs with BR and PC
[Jia and Zhang, 2021][Section II], and CC [Jia and Zhang,
2021][Section III]. Because of the limitations of competitors
to deal with mixed data, we follow the suggestion of [Jia and
Zhang, 2021] and convert discrete features/variables into
continuous variables using one-hot encoding whenever they
appear as parts of input of local classifiers of BR, PC and CC.
Because we are not aware of any refinement of CC which
can handle image data sets, we eliminate it from our com-
parison on the PASCAL VOC 2007. For tabular data sets,
we use logistic regression (LR) [Menard, 2002] and Naive
Bayes (NB) classifiers [Domingos and Pazzani, 1996] to
estimate the local distributions (15) (one can use more com-
plex models, but as we see in the remainder, these choices
already yield state-of-the-art results, so we decided that
further tuning would go beyond our scope). For the image
data set, distributions (15) are estimated using ResNet-18
[He et al., 2016] with the weights pre-trained on ImageNet

[Deng et al., 2009], which are calibrated using tempera-
ture scaling [Guo et al., 2017]. Following the suggestion of
[Zhang et al., 2017], we also employ mixup to improve the
generalization of ResNet-18.

In our experiments, pen(|∆Y
d |, |D|) is the penalty term of

the Bayesian Information Criterion (BIC) [Schwarz, 1978].
The experimental setting is detailed in Appendix E.1. The
source code has been made public at https://github.
com/yangyang-pro/probabilistic-mdc.

5.2 RESULTS

Overall, the results suggest the superiority of our framework
against existing probabilistic MDC frameworks (See Table
1–3, and Figure 2). On the image data set, GBNCs indeed
provide the most promising `H and `S (See Table 1).

Table 1: Results (mean ± std.) on the image data set.

Hamming loss (`H )
GBNC-H BR CP

11.41 ± 0.35 12.51 ± 1.71 21.81 ± 7.62
Subset 0/1 loss (`S)

GBNC-S BR CP
37.31 ± 0.84 41.57 ± 5.16 56.57 ± 13.28

GBNCs yield the best average ranks over the 20 tabular
data sets, both for `H and `S . Furthermore, Friedman tests
[Demšar, 2006] on the ranks yield small p-values, and
strongly suggest performance differences between the clas-
sifiers. We also conduct Nemenyi post-hoc test [Nemenyi,
1963] and Conover post-hoc test [Conover, 1999, Conover
and Iman, 1979] (see Table 3) to see if there are significant
differences between pairs of classifiers. For each combina-
tion (among the 12 combinations) of competitor, loss and
local models, we find at least one test where GBNCs is
significantly better than that competitor in almost all cases.

Table 2: Average ranks and p-values of Friedman tests.

The cases of Hamming loss (`H )
Learner GBNC-H BR CC CP p-value
LR 1.43 1.98 2.60 4.00 1.1e-09
NB 1.40 2.70 2.95 2.95 1.8e-04

The cases of Subset 0/1 loss (`S)
Learner GBNC-S BR CC CP p-value
LR 1.55 2.20 2.38 3.88 1.2e-07
NB 1.73 2.80 2.28 3.20 1.6e-03

Even if the Nemenyi post-hoc test may be too conservative,
has low power, and may not detect existing differences when
Friedman’s test rejects the null hypothesis (as elaborated in
[Ulaş et al., 2012] and also elsewhere), it already informs
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(a) Base learner: Logistic Regression.
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(b) Base learner: Naive Bayes.

Figure 2: Tabular data sets: Performance differences to GBNCs (negative means better than GBNCs). Data sets (x-axis) are
ordered by number of class variables.

significant differences. Table 3 suggests that the use of both
LR and NB as local models (i.e. base learners) leads to im-
provements with respect to other approaches. Actually, LR
performs better with more class variables, while NB with
fewer (these differences can be appreciated in the Appen-
dices). Yet, it is not the goal of this work to answer this
question. The experiments with two different local mod-
els (LR and NB) have the purpose of demonstrating the
capabilities of the overall idea.

Our experimental results are in agreement with the results
found in literature. First, CC can hardly be a state-of-the-art
MDC approach [Jia and Zhang, 2021]. Second, BR may
provide competitive performance, especially when the num-
ber of class variables is not large [Wu and Zhu, 2020]. On

the other hand, our experiments suggest a very interesting
result that GBNC-H which estimates the joint conditional
distribution and extracts marginal distributions using Defini-
tions (2) often outperforms BR which directly estimates the
marginal distributions. This suggests that capturing the de-
pendency relationships can lead to more accurate estimates
of the marginal probability distributions.

Although comparing ranks [Demšar, 2006] of classifiers
is a common practice when one seeks short summaries of
the performances, there is no golden rule about how the
classifiers should be ranked. In this case, ranking the losses
can not tell us whether there is any visible gain/loss. To
gain more insights into the differences between classifiers,
we make scatter plots for the losses provided by pairs of
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Table 3: Post-hoc tests: p-values.

The cases of `H : p-values < 0.05 are given in bold

H0
Nemenyi Conover

LR NB LR NB
GBNC-H = BR 0.529 0.008 0.184 0.002
GBNC-H = CC 0.021 0.001 0.006 3.9e-04
GBNC-H = CP 0.001 0.001 4.6e-08 3.9e-04
BR = CP 0.001 0.9 7.0e-07 0.545
CC = CP 0.003 0.9 0.001 1
BR = CC 0.42 0.9 0.132 0.545

The cases of `S : p-values < 0.05 are given in bold

H0
Nemenyi Conover

LR NB LR NB
GBNC-S = BR 0.384 0.042 0.118 0.01
GBNC-S = CC 0.180 0.528 0.049 0.178
GBNC-S = CP 0.001 0.002 4.9e-07 5.6e-04
BR = CP 0.001 0.735 1.4e-04 0.326
CC = CP 0.001 0.106 5.5e-04 0.026
BR = CC 0.9 0.563 0.671 0.198

classifiers (See Figure 4–7 in Appendix E.2). In all cases,
GBNC-H and GBNC-S are rarely worse than others with vis-
ible differences, and visible gains of GBNC-H and GBNC-S
are observed in all cases. Again, those figures suggest that
GBNC-H and GBNC-S can consistently provide promising
performance. In practice, we would expect to see approaches
which take into account dependencies among the class vari-
ables brings more advantages when the number of class
variables K increases and the base learner is accurate. To
show this ability of GBNCs, we make scatter plots for the
losses provided by pairs of classifiers on 11 data sets with
K ≥ 7 with LR as the base learner (which is often more
accurate than NB on these data sets). Figure 3 confirms that
GBNCs indeed provide visible gains on these data sets.

Finally, we acknowledge that one can devise creative ideas
to tackle MDC indirectly via other approaches, so one might
ask to which extent our experiments yield state-of-the-art
performance in a broader sense. We emphasize that our goal
is to improve on probabilistic MDC itself and to demon-
strate the usefulness of this framework which has proven
optimality properties and is very flexible to work with many
other (off-the-shelf) classifiers as internal local models (i.e.
base learners). If one embraces the framework and chooses
strong local models, this is likely (based on the theoretical
results) to perform very well for MDC.

6 CONCLUSION

We propose a formal framework for probabilistic multi-
dimensional classification (MDC) in which learning an
optimal multi-dimensional classifier can be decomposed
into learning a set of probabilistic classifiers and learning
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Figure 3: `H and `S with K ≥ 7 (base learner: LR)

an optimal Bayesian network (BN) structure. We discuss
how single-class-variable probabilistic classification and BN
learning can be directly integrated into the framework with
respect to optimality, representational capacity and scalabil-
ity. We present algorithmic solutions for the learning and
inference problems and discuss on their complexity. Finally,
a set of experiments highlights the usefulness of the MDC
framework. We hope that this paper can open doors for
further research on all these strongly related topics.
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Krzysztof Dembczyński, Willem Waegeman, Weiwei
Cheng, and Eyke Hüllermeier. On label dependence and
loss minimization in multi-label classification. Machine
Learning, 88(1):5–45, 2012.

Janez Demšar. Statistical comparisons of classifiers over
multiple data sets. The Journal of Machine learning
research, 7:1–30, 2006.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Proceedings of the 2009 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 248–255. Ieee, 2009.

Pedro M Domingos and Michael J Pazzani. Beyond in-
dependence: conditions for the optimality of the simple
Bayesian classifier. In Proceedings of the Thirteenth In-
ternational Conference on Machine Learning (ICML),
pages 105–112, 1996.

Charles Elkan. The foundations of cost-sensitive learning.
In Proceedings of the 17th International Joint Conference
on Artificial intelligence (IJCAI), pages 973–978, 2001.

Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The Pascal visual
object classes (VOC) challenge. International Journal of
Computer Vision, 88(2):303–338, 2010.

Nir Friedman. The Bayesian structural EM algorithm. In
Proceedings of the Fourteenth Conference on Uncertainty
in Artificial Intelligence (UAI), pages 129–138, 1998.

Nir Friedman, Dan Geiger, and Moises Goldszmidt.
Bayesian network classifiers. Machine Learning, 29(2):
131–163, 1997.

Mudasir A Ganaie, Minghui Hu, AK Malik, M Tanveer,
and PN Suganthan. Ensemble deep learning: A review.
Engineering Applications of Artificial Intelligence, 115:
105151, 2022.

1531



Santiago Gil-Begue, Concha Bielza, and Pedro Larrañaga.
Multi-dimensional Bayesian network classifiers: A survey.
Artificial Intelligence Review, 54(1):519–559, 2021.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In Proceed-
ings of the 34th International Conference on Machine
Learning (ICML), pages 1321–1330, 2017.

John T Hancock and Taghi M Khoshgoftaar. Survey on
categorical data for neural networks. Journal of Big Data,
7(1):1–41, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the 29th IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778, 2016.

Christoph Jansen, Georg Schollmeyer, and Thomas Au-
gustin. Quantifying degrees of e-admissibility in deci-
sion making with imprecise probabilities. In Reflections
on the Foundations of Probability and Statistics: Essays
in Honor of Teddy Seidenfeld, pages 319–346. Springer,
2022.

Bin-Bin Jia and Min-Ling Zhang. Decomposition-based
classifier chains for multi-dimensional classification.
IEEE Transactions on Artificial Intelligence, 3(2):176–
191, 2021.

Bin-Bin Jia and Min-Ling Zhang. Multi-dimensional clas-
sification via selective feature augmentation. Machine
Intelligence Research, 19(1):38–51, 2022.

Neville Kenneth Kitson, Anthony C Constantinou, Zhigao
Guo, Yang Liu, and Kiattikun Chobtham. A survey of
Bayesian network structure learning. Artificial Intelli-
gence Review, pages 1–94, 2023.

Adrienne Kline, Hanyin Wang, Yikuan Li, Saya Dennis,
Meghan Hutch, Zhenxing Xu, Fei Wang, Feixiong Cheng,
and Yuan Luo. Multimodal machine learning in precision
health: A scoping review. NPJ Digital Medicine, 5(1):
1–14, 2022.

Daphne Koller and Nir Friedman. Probabilistic graphical
models: principles and techniques. MIT Press, 2009.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep
learning. Nature, 521(7553):436–444, 2015.

Uri Lerner, Eran Segal, and Daphne Koller. Exact inference
in networks with discrete children of continuous parents.
In Proceedings of the Seventeenth Conference on Un-
certainty in Artificial Intelligence (UAI), pages 319–328,
2001.

Zhifa Liu, Brandon Malone, and Changhe Yuan. Empiri-
cal evaluation of scoring functions for Bayesian network
model selection. In BMC Bioinformatics, volume 13,
pages 1–16. Springer, 2012.

Scott Menard. Applied logistic regression analysis. Sage,
2002.

Thomas Mortier, Marek Wydmuch, Krzysztof Dem-
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