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A ADDITIONAL EXPERIMENTS

A.1 MOTIVATION FOR THE SPECIFIC USER’S DEFINED FAILURE MODE DEFINITION

In this section, we provide the motivation, theoretical justification, and practical effectiveness of the failure mode definition
based on mutual nearest neighbor graph1 on embedding space.

• We make a similar assumption with d’Eon et al. [2022] and Sohoni et al. [2020] that the classifier’s activations layer
contains essential information about the semantic features used for classification. The proximity between two points in
this embedding space could indicate their semantic similarity. Hence, issuing an edge between two points as in the
mutual nearest neighbor graph likely guarantees that two connected points have much more semantic similarity than
other pairs. This would ensure semantic cohesion for the points within a failure mode according to our definition.

• Regarding the theoretical aspect, we use the mutual nearest neighbor graph, which is effective in clustering and
outliers detection (see Song et al. [2022b], Song et al. [2022a] and Brito et al. [1997]). Moreover, Brito et al. [1997,
Theorem 2.2] stated that with the reasonable choice of knn, connected components (a.k.a. maximally connected
subgraphs) in a mutual knn-graph are consistent for the identification of its clustering structure.

• In terms of more visual representation, we show images of four failure patterns of dataset id_1 in Figure A.1 to show
the effectiveness of this definition on detecting semantic-cohesion clusters. We can observe that each failure pattern has
a common concept recognizable by humans and includes images that are all misclassified. The top-left mode includes
images of blonde-haired girls with tanned skin. The top-right mode includes images of girls wearing earrings. The
bottom-left mode contains photos with tilted angles, and the bottom-right mode contains images with dark backgrounds.

A.2 DATASETS AND IMPLEMENTATION DETAILS

We describe fifteen datasets used in our work in Table 1.

Preprocessing: We single out 15 datasets from Eyuboglu et al. [2022], each includes three features: Activation, True Label,
and Pseudo Label. After that, we preprocess the data using a standard scaler for the Activation feature.

Ground truth generation: It is necessary to assign values of knn and M to each preprocessed dataset. The value of M
expresses the level of evidence required for confirming the failure patterns. A higher value of M indicates a greater emphasis
on the patterns that exist most frequently in the dataset. As M decreases to 1, the problem transforms into identifying
misclassified data points, where each failure data point constitutes a pattern. Moreover, the users choose M so that they
can perceive the shared concept of M samples. If M is too small, then the concept may not be distinctive enough between
clusters, while if M is too large, the users may have a bottleneck in identifying the shared concept. The value of knn signifies

1A mutual knn-nearest neighbor graph is a graph where there is an edge between xi and xj if xi is one of the knn nearest neighbors
of xj and xj is one of the knn nearest neighbors of xi.
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Figure A.1: Failure patterns existing in dataset id_1. One can observe four distinct failure patterns in this dataset.

Table 1: The description of 15 datasets that are used in the numerical experiments.

Dataset DcBench Noise Magnitude SNR M knn Sample size Number of misclassified samples
id_1 p_72799 Low 0.15 10 7 6088 572
id_2 p_122144 Low 0.22 10 7 6103 1076
id_3 p_121880 Low 0.38 10 7 5969 1259
id_4 p_122653 Low 0.47 10 7 6019 1088
id_5 p_118660 Low 0.47 10 8 5994 1019
id_6 p_122145 Medium 0.69 10 11 6135 1141
id_7 p_121753 Medium 0.96 10 10 6138 1612
id_8 p_122406 Medium 1.17 10 16 6072 937
id_9 p_118049 Medium 1.38 10 12 5979 1051

id_10 p_122150 Medium 1.39 10 10 6107 1304
id_11 p_121948 High 1.75 10 15 6027 1438
id_12 p_122417 High 1.85 10 19 6035 1096
id_13 p_122313 High 1.91 10 15 6048 1011
id_14 p_121977 High 2.19 10 17 6117 1153
id_15 p_121854 High 3.78 10 24 6017 1554

the coherence required for data points within a pattern. The users choose a smaller knn if they need strong tightness between
samples in a failure mode. Brito et al. [1997] recommended choosing knn of order log(N) for consistent identification
of the clustering structure. A smaller value of knn imposes a more stringent condition to create an edge in the knn graph.
When knn = 0, each data point is only connected with itself. If knn is sufficiently high, all misclassified data points merge
to form a single failure pattern. From Figure A.2, we notice that as the increase of knn and SNR, there is a tendency to
appear big patterns with a large number of data points. We could explain it as follows. When increasing knn, more edges
are additionally created, which could initially connect separate patterns or augment more data points into the patterns. In
practical applications of this problem, it is important to note that the two parameters knn and M rely heavily on the users,
the machine learning tasks, and the nature of the dataset. In this study, we have established a fixed value of M equal to 10
for all datasets, and we have varied the value of knn to generate diverse scenarios of Signal-to-Noise Ratio (SNR). With
the defined value of knn, we have constructed the knn graph of the re-scaled Activation feature. Subsequently, we have
employed a simple Depth First Search algorithm on the sub-graph of only misclassified data points to collect all maximally
connected components with cardinality greater than M . These components represent patterns that are the focus of the
recommending algorithms. We add one additional feature named Pattern to each data point which indicates the pattern of it
or −1 if it does not belong to any patterns.

Finally, the complete dataset for our problem consists of four information: Activation, True Label, Pseudo Label, and Pattern.
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Figure A.2: The 2-D visualization of the Activation feature in four datasets. To downsample from a 512-dimension vector to
a 2-dimension vector, we utilize the Supervised Dimension Reduction technique introduced by McInnes et al. [2018].



Table 2: Benchmark of Effectiveness (at 10% of sample size) on different noise magnitudes. Larger values are better. Bolds
indicate the best methods for each dataset.

Dataset US DS_0.0 DS_0.25 DS_0.5 DS_0.75 DS_1.0 Coreset BADGE
id_1 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
id_2 0.00±0.00 0.25±0.00 0.00±0.00 0.25±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
id_3 0.00±0.00 0.14±0.00 0.14±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
id_4 0.00±0.00 0.00±0.00 0.33±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
id_5 0.00±0.00 0.12±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
id_6 0.00±0.00 0.33±0.00 0.17±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
id_7 0.00±0.00 0.25±0.00 0.25±0.00 0.25±0.00 0.25±0.00 0.00±0.00 0.00±0.00 0.00±0.00
id_8 0.01±0.03 0.17±0.00 0.00±0.00 0.17±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
id_9 0.00±0.00 0.20±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

id_10 0.00±0.00 0.25±0.00 0.50±0.00 0.50±0.00 0.25±0.00 0.00±0.00 0.00±0.00 0.00±0.00
id_11 0.00±0.00 0.33±0.00 0.00±0.00 0.00±0.00 0.33±0.00 0.00±0.00 0.00±0.00 0.00±0.00
id_12 0.01±0.04 0.25±0.00 0.25±0.00 0.25±0.00 0.25±0.00 0.00±0.00 0.00±0.00 0.00±0.00
id_13 0.00±0.00 0.33±0.00 0.33±0.00 0.33±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
id_14 0.01±0.04 0.50±0.00 0.00±0.00 0.25±0.00 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00
id_15 0.07±0.17 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Overall 0.01±0.05 0.24±0.14 0.17±0.18 0.17±0.18 0.14±0.18 0.00±0.00 0.00±0.00 0.00±0.00

A.3 ADDITIONAL NUMERICAL RESULTS

In the main paper, we present the numerical results for groups categorized into three levels of Signal-to-Noise Ratio
(SNR). In this section, we offer a comprehensive breakdown of the results for each individual dataset in Tables 2, 3, and 4,
respectively.

We also provide charts that illustrate the progress of algorithms over iterations in dataset id_10, as depicted in Figure A.3.
The blue line represents the percentage of queried samples, which appears linear due to the fixed size of the queried batch at
each iteration. The orange line indicates the percentage of detected misclassified samples out of the total misclassified ones
in the dataset. The green line represents the percentage of detected failure modes out of the total number of failure modes in
the dataset. It is evident that the orange line, corresponding to methods that incorporate our exploiting component (Gaussian
process component) such as DS_0.0, DS_0.25, DS_0.5, and DS_0.75, consistently outperforms the blue lines significantly.
This trend clearly demonstrates the effectiveness of our exploiting term in identifying misclassified samples.

However, DS_0.0 shows inferior performance, as evidenced by the green line consistently falling below the blue line
throughout the iterations, despite its effectiveness in identifying misclassified samples. In contrast, DS_0.25, DS_0.5, and
DS_0.75 exhibit superb performance in detecting all failure patterns within approximately 100 iterations (40% of the dataset
samples). This difference can be attributed to the absence of the exploration term in DS_0.0 when dealing with a high SNR
level in dataset id_10.

A.4 ANALYSIS OF SAMPLING COMPLEXITY

Each iteration in our framework consists of two main phases. The first phase determines which samples to be labeled next,
the most costly computation in this phase is the matrix inversion and computing matrix determinant. The maximum size of
the matrix is N , so the time complexity is O(N3). If we use the optimized CW-like algorithm for matrix inversion, then
the complexity can be as low as O(N2.373). The second phase includes updating information and confirming detected
failure modes. Updating information involves matrix inversions and multiplications, with cost O(N2.373). A low-cost Depth
First Search is implemented to check detected failure modes, which costs O(N). In conclusion, the cost of an iteration is
O(N2.373).



Table 3: Benchmark of Effectiveness (at 20% of sample size) on different noise magnitudes. Larger values are better. Bolds
indicate the best methods for each dataset.

Dataset US DS_0.0 DS_0.25 DS_0.5 DS_0.75 DS_1.0 Coreset BADGE
id_1 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.000±0.000
id_2 0.01±0.04 0.25±0.00 0.00±0.00 0.25±0.00 0.25±0.00 0.00±0.00 0.00±0.00 0.000±0.000
id_3 0.00±0.00 0.29±0.00 0.14±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.000±0.000
id_4 0.01±0.06 0.67±0.00 0.33±0.00 0.33±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.000±0.000
id_5 0.00±0.00 0.25±0.00 0.00±0.00 0.12±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.000±0.000
id_6 0.00±0.00 0.67±0.00 0.17±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.000±0.000
id_7 0.02±0.08 0.25±0.00 0.25±0.00 0.25±0.00 0.25±0.00 0.00±0.00 0.00±0.00 0.000±0.000
id_8 0.01±0.03 0.17±0.00 0.17±0.00 0.17±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.000±0.000
id_9 0.02±0.06 0.20±0.00 0.20±0.00 0.20±0.00 0.20±0.00 0.00±0.00 0.00±0.00 0.000±0.000

id_10 0.05±0.10 0.25±0.00 0.50±0.00 0.75±0.00 0.75±0.00 0.25±0.00 0.00±0.00 0.005±0.100
id_11 0.06±0.12 0.33±0.00 0.33±0.00 0.67±0.00 0.33±0.00 0.00±0.00 0.00±0.00 0.003±0.100
id_12 0.12±0.12 0.25±0.00 0.50±0.00 0.25±0.00 0.50±0.00 0.00±0.00 0.00±0.00 0.000±0.000
id_13 0.04±0.11 0.33±0.00 0.67±0.00 0.67±0.00 0.33±0.00 0.00±0.00 0.00±0.00 0.000±0.000
id_14 0.11±0.12 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.25±0.00 0.25±0.00 0.100±0.120
id_15 0.48±0.09 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.50±0.00 0.00±0.00 0.150±0.230

Overall 0.06±0.14 0.33±0.18 0.28±0.21 0.31±0.24 0.24±0.23 0.07±0.14 0.02±0.06 0.020±0.090

Table 4: Benchmark of Sensitivity on different noise magnitudes. Smaller values are better. Bolds indicate the best methods
in each dataset.

Dataset US DS_0.0 DS_0.25 DS_0.5 DS_0.75 DS_1.0 Coreset BADGE
id_1 0.55±0.00 0.76±0.00 0.23±0.00 0.57±0.00 0.44±0.00 0.62±0.00 0.76±0.00 0.660±0.009
id_2 0.35±0.00 0.09±0.00 0.23±0.00 0.05±0.00 0.14±0.00 0.51±0.00 0.60±0.00 0.600±0.100
id_3 0.59±0.00 0.05±0.00 0.07±0.00 0.42±0.00 0.31±0.00 0.49±0.00 0.55±0.00 0.550±0.007
id_4 0.44±0.00 0.13±0.00 0.06±0.00 0.11±0.00 0.22±0.00 0.57±0.00 0.60±0.00 0.530±0.006
id_5 0.53±0.00 0.08±0.00 0.21±0.00 0.19±0.00 0.23±0.00 0.33±0.00 0.57±0.00 0.470±0.006
id_6 0.48±0.00 0.03±0.00 0.04±0.00 0.47±0.00 0.29±0.00 0.32±0.00 0.55±0.00 0.400±0.007
id_7 0.37±0.00 0.03±0.00 0.10±0.00 0.07±0.00 0.07±0.00 0.35±0.00 0.37±0.00 0.340±0.004
id_8 0.30±0.00 0.08±0.00 0.12±0.00 0.03±0.00 0.30±0.00 0.46±0.00 0.45±0.00 0.400±0.006
id_9 0.28±0.00 0.03±0.00 0.14±0.00 0.13±0.00 0.15±0.00 0.45±0.00 0.48±0.00 0.330±0.005

id_10 0.20±0.00 0.02±0.00 0.05±0.00 0.04±0.00 0.04±0.00 0.14±0.00 0.36±0.00 0.280±0.006
id_11 0.26±0.00 0.01±0.00 0.13±0.00 0.15±0.00 0.06±0.00 0.31±0.00 0.32±0.00 0.300±0.005
id_12 0.13±0.00 0.02±0.00 0.04±0.00 0.04±0.00 0.07±0.00 0.21±0.00 0.22±0.00 0.290±0.003
id_13 0.22±0.00 0.05±0.00 0.05±0.00 0.04±0.00 0.19±0.00 0.29±0.00 0.40±0.00 0.340±0.006
id_14 0.18±0.00 0.03±0.00 0.11±0.00 0.10±0.00 0.03±0.00 0.11±0.00 0.18±0.00 0.230±0.004
id_15 0.23±0.00 0.02±0.00 0.05±0.00 0.05±0.00 0.04±0.00 0.19±0.00 0.26±0.00 0.210±0.003

Overall 0.34±0.14 0.10±0.18 0.11±0.07 0.16±0.17 0.17±0.12 0.36±0.15 0.44±0.16 0.400±0.150
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Figure A.3: The percentage of misclassified detected samples, the percentage of detected patterns, and the percentage of
queried samples along with queried iterations in dataset id_10



A.5 PRINCIPAL HYPER-PARAMETERS AND USER-DEFINED HYPER-PARAMETERS

Our proposed framework is applied to human-machine cooperation systems. Therefore, some terms depend on the user such
as the failure mode definition which is defined by two factors: (i) how to determine whether two samples have a common
concept; (ii) what the structure of a failure pattern is. In our experiments, we consider the case that the user defines an edge
(common concept) by using the mutual knn-graph under the Euclidean distance on the embedding space. The connectivity
criterion is maximally connected subgraphs (a.k.a. connected components). With this indication, the user also provides two
hyper-parameters knn and M . The meaning of knn and M are mentioned in Appendix A.2. From the algorithmic viewpoint,
our approach depends mainly on one main hyper-parameter ϑ. The parameter ϑ regulates the exploration-exploitation
trade-off in the sampling procedure (ϑ = 0 means pure exploitation, ϑ = 1 means pure exploration). We experimented with
five values of ϑ throughout the paper.

B PROOFS

B.1 PROOFS OF PROPOSITION 6.1

Proof of Proposition 6.1. We first show that the value of δ should be upper-bounded by
√
N − 1. To see this, note that

K(hX , hY) is a Gram matrix, so its diagonal elements are all ones, and the off-diagonal elements are in the range (0, 1]. We
have an upper bound that:

∥K(hX , hY)− IN∥F ≤
√
N(N − 1).

To ensure the existence of hX , hY , the value of δ must fulfill:

δ∥IN∥F <
√
N(N − 1) =⇒ δ <

√
N − 1.

Next, we show that condition for hX and hY . Squaring both sides of (8) gives

∥K(hX , hY)− IN∥2F ≥ δ2∥IN∥2F = δ2N.

Because the diagonal elements of K(hX , hY) are all ones, the above condition is equivalent to

∑
i>j

exp
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h2
X

−
∥µ̂ŷi

− µ̂ŷj
∥22 + ∥Σ̂ŷi

− Σ̂ŷj
∥2F

h2
Y

)
≥ δ2N

2
. (1)

Using Jensen inequality for the exponential function, which is convex, we have the following lower bound:

1(
N
2

) ∑
i>j

exp
(
− ∥xi − xj∥22

h2
X
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)
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(
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∑
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(
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∑
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h2
Y
(
N
2

) )
.

Therefore, if hX and hY satisfy

exp
(
−

∑
i > j∥xi − xj∥22

h2
X
(
N
2

) −
∑

i>j ∥µ̂ŷi
− µ̂ŷj

∥22 + ∥Σ̂ŷi
Σ̂ŷj

∥2F
h2
Y
(
N
2

) )
≥ δ2

N − 1
,

then they also satisfy the condition (1). Defining the quantities DX and DY as in statement of the proposition, we find that
hX and hY should satisfy

⇔ DX

h2
X

+
DY

h2
Y

≤ ln
N − 1

δ2
.

This completes the proof.



B.2 TAYLOR EXPANSION FOR VALUE-OF-INTEREST VOI

We first use a second-order Taylor expansion to approximate f(X) = VoI(X) = (1 + exp(−g(X))−1 around the point
X = µ:

f(X) = f(µ) + (X − µ)⊤∇f(µ) +
1

2
(X − µ)⊤∇2f(µ)(X − µ) +O(∥∆X∥3)

= f(µ) + (X − µ)⊤∇f(µ) +
1

2
Tr[∇2f(µ)(X − µ)(X − µ)⊤] +O(∥∆X∥3).

Moreover, we set µ as the expected value E[X], and taking expectations on both sides of the above equation gives

E[f(X)] = E
[
f(µ)

]
+ E

[
(X − µ)⊤∇f(µ)

]
+

1

2
E
[
Tr[∇2f(µ)(X − µ)(X − µ)⊤]

]
+O(∥∆∥3)

= f(µ) +
1

2
Σ∗

t,i∇2f(µ) +O(∥∆∥3),

where the second equality follows from the relationship

E
[
(X − µ)⊤∇f(µ)

]
= E

[
(X − µ)

]⊤∇f(µ) = (E[X]− µ)]⊤∇f(µ) = 0,

and from the definition of the covariance matrix

E
[
(X − µ)(X − µ)⊤

]
= Σ∗

t,i.

It now suffices to verify the expressions for αi and βi. Note that αi = f(µ) = (1 + exp(−µ))−1 and βi is the second-order
derivative

βi = ∇2f(µ) = αi(1− αi)(1− 2αi),

where the second equality follows from the property of the sigmoid function.

C SOCIAL IMPACT

One important social impact of this research lies in its potential to improve the accuracy and reliability of machine learning
classifiers. By identifying misclassification patterns, the framework enables the refinement and improvement of classifiers,
reducing the likelihood of wrong predictions in various domains. This can have wide-ranging implications, such as improving
the performance of automated systems in critical areas where accurate classification is of utmost importance like healthcare
diagnosis [Shaban-Nejad et al., 2021, Rudin and Ustun, 2018, Albahri et al., 2023], or autonomous vehicles [Glomsrud
et al., 2019, Wagner and Koopman, 2015].

Another significant social impact of this research is its potential to address biases and fairness issues in machine learning
systems [Caton and Haas, 2020, Mehrabi et al., 2021, Pessach and Shmueli, 2022]. By identifying misclassification patterns,
the framework can shed light on potential biases in the data or algorithmic models. This knowledge is crucial for developing
fairer and more equitable machine learning systems which are obligatory for bringing machine learning models to practical
implementations.

Moreover, the collaborative nature of the framework promotes human-machine interaction, fostering a symbiotic relationship
that combines human expertise and algorithmic capabilities. This approach not only empowers human annotators by
involving them in the decision-making process but also allows them to contribute their domain knowledge and intuition [Wu
et al., 2022, Xin et al., 2018].
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