
Size-Constrained k-Submodular Maximization in Near-Linear Time
(Supplementary Material)

Guanyu Nie1 Yanhui Zhu1 Yididiya Y. Nadew1 Samik Basu1 A. Pavan1 Christopher John Quinn1

1Computer Science Deptartment, Iowa State University, Ames, IA, USA

A THRESHOLD GREEDY – INDIVIDUAL SIZE CONSTRAINTS

In this section, we will prove Theorem 5. We first recall the statement.

Theorem 5: Algorithm 2 runs in O(knε−1 log(Bε−1)) and guarantees a (1/3− ε)-approximation.

Proof. We first prove the run-time and then the approximation ratio.

Run-time: The for loop runs over all item-type pairs that could feasibly be added to S, thus taking O(nk) time each call.
The number of times the outer while loop is called is equal to the smallest integer t′ such that (1− ε)t

′
d ≤ (1−ε)εd

3B . Let t
denote the value where equality holds, so t′ = ⌈t⌉. Rearranging, t satisfies

t log(1− ε) = log(1− ε)− log(3Bε−1)

⇐⇒ t = 1− log(3Bε−1)

log(1− ε)
(log(1− ε) < 0)

≤ 1 +
log(3Bε−1)

ε
(using the fact that log(1− x) < −x for x < 1)

⇐⇒ t′ = ⌈t⌉ ≤ 2 +
log(3Bε−1)

ε
.

Thus, with O(ε−1 log(Bε−1)) calls of the outer while loop, the total run time is O(nkε−1 log(Bε−1)).

Approximation Guarantee: The analysis for Algorithm 2’s performance with individual size (IS) constraints will, broadly
speaking, resemble the analysis of Algorithm 1’s performance for total size (TS) constraints. Like in the proof for Theorem 4,
we will construct a sequence of feasible solutions and relate objective value differences between successive pairs of solutions
to the marginal gains achieved with each item-type pair added in Algorithm 2. However, the construction will require more
care as the swapping pairs must respect the constraints of each type, not simply the cardinality of B. Note that while we will
reuse “B” as B ←

∑k
i=1 Bi.

We will first consider the case that Algorithm 2 outputs a maximal solution, one that for each type i ∈ [k] has Bi elements
assigned that type. We will then consider the general case. Also, we consider that OPT is also maximal, |Ui(OPT)| = Bi

for all i ∈ [k]. This is without loss of generality as the monotonicity of f implies that if there is an optimal solution with less
than maximal cardinality, we can add in elements to it without a decrease in value.

Case 1: The final solution S◦ satisfies |Ui(S
◦)| = Bi for all i ∈ [k].

We reuse the notation (ej , ij) for the jth item-type pair that was added to S◦ = {(e1, i1), . . . , (eB , iB)} by Algorithm 2.
Similar to the total size case, we will again construct several sequences combining S and OPT to show inequalities resulting
in the stated approximation bound. We next let Sj denote S after j elements were added, so Sj := {(e1, i1), . . . , (ej , ij)}

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<nieg@iastate.edu>?Subject=Your k-submodular UAI 2023 paper
mailto:<yanhui@iastate.edu>?Subject=Your k-submodular UAI 2023 paper
mailto:<yididiya@iastate.edu>?Subject=Your k-submodular UAI 2023 paper
mailto:<sbasu@iastate.edu>?Subject=Your k-submodular UAI 2023 paper
mailto:<pavan@iastate.edu>?Subject=Your k-submodular UAI 2023 paper
mailto:<cjquinn@iastate.edu>?Subject=Your k-submodular UAI 2023 paper

and we set S0 := ∅ as the initial empty set. Thus by construction

f(Sj+1)− f(Sj) = f((ej+1, ij+1)|Sj).

We next index the item-type pairs in the optimal solution OPT = {(e′1, i′1), . . . , (e′B , i′B)}. If the item ej in the jth pair
(ej , ij) ∈ S◦ of the output is also in a pair (ej , i′) in OPT, the latter pair should have the same index. For other pairs in
OPT, the indexing is arbitrary. With this alignment of indices of pairs in S◦ and OPT that share a common item, we
construct a sequence of cardinality B sets O0, O1, . . . , OB . We will not be able to simply swap pairs in a single position, as
we did in the proof for Theorem 4, but will need to swap additional pairs to maintain feasibility of with respect to all type
constraints {Bi}ki=1. Like in the TS case, we will want the beginning and end of the sequence of feasible solutions to match
the optimal and output solutions,

O0 := OPT ={(e′1, i′1), (e′2, i′2), . . . , (e′B−1, i
′
B−1), (e

′
B , i

′
B)}

OB := S◦ ={(e1, i1), (e2, i2), . . . , (eB−1, iB−1), (eB , iB)}

We will construct the sequence beginning with O0 = OPT. If we construct O1 by replacing the first pair in O0 with the first
pair in S◦,

{(e1, i1), (e′2, i′2), . . . , (e′B−1, i
′
B−1), (e

′
B , i

′
B)},

if the types in those two pairs were different, i1 ̸= i′1, then since OPT already had Bi1 elements of type i1, it would now
have Bi1 + 1 elements of type i1, thus violating the constraint. To ensure that O1 is feasible, we first swap types for two
pairs in OPT to make sure the first pair has type i1, and then swap elements in the first pair to match S1. Let ℓ denote any
index of any pair in OPT with type i1 (even ℓ = 1 if we are in the safe case that the types already matched i1 = i′1; the
following inequalities will still hold). We introduce O0+1/2 that swaps types, before swapping elements to construct O1,

O0 := OPT ={(e′1, i′1), (e′2, i′2), . . . , (e′ℓ, i′ℓ = i1), . . . , (e
′
B , i

′
B)}

O0+1/2 :={(e′1, i′ℓ = i1), (e
′
2, i

′
2), . . . , (e

′
ℓ, i

′
1), . . . , (e

′
B , i

′
B)} (swap types of pairs 1 and ℓ)

O1 :={(e1, i1), (e′2, i′2), . . . , (e′ℓ, i′1), . . . , (e′B , i′B)}. (swap element in pair 1)

To construct O2, we will do a similar set of swaps. Let h ∈ {2, . . . , B} denote the index of a pair in O1 with type i2 (the
same type as the second element (e2, i2) added greedily to S◦ has).

O1 :={(e1, i1), (e′2, i′2), . . . , (e′ℓ, i′1), . . . , (e′h, i′h = i2), . . . , (e
′
B , i

′
B)}

O1+1/2 :={(e1, i1), (e′2, i′h = i2), . . . , (e
′
ℓ, i

′
1), . . . , (e

′
h, i

′
2), . . . , (e

′
B , i

′
B)} (swap types of pairs 2 and h)

O2 :={(e1, i1), (e2, i2), (e′2, i′2), . . . , (e′ℓ, i′1), . . . , (e′h, i′2), . . . , (e′B , i′B)}. (swap element in pair 2)

We continue in this fashion, while constructing Oj+1 for j ∈ {1, . . . , B − 1} looking for a pair in Oj with type ij+1 (i.e.
the same type as in the (j + 1)st pair added to S◦) among indices r ∈ {j + 1, . . . , B}. Since in swapping we match types to
align with the types in Sj+1, and S◦ was feasible, there will always be such an index r. As noted, if the types are already
aligned in position j + 1 in Oj , and r is chosen as j + 1, then Oj = Oj+1/2 and the following work will still hold (some
inequalities will be loose).

Note that by construction, for j ∈ {0, . . . , B − 1} we have Sj ⊆ Oj ∩Oj+1/2 ∩Oj+1.

We now consider the difference f(Oj)− f(Oj+1). This is not a marginal gain since neither set contains the other. However,
since the sets differ in the (j + 1)st index and possibly one more index r ∈ {j + 1, . . . , B}, we will be able to upper bound
the difference in terms of the marginal gain f(Sj+1) − f(Sj) achieved by Algorithm 2 in adding the (j + 1)st element
(ej+1, ij+1).

Let r ∈ {j + 1, . . . , B} denote the index of the pair in Oj that we swapped types with the (j + 1)st pair.

As types may have been changed in positions j + 1 and/or r multiple times due to previous swaps while constructing
{O1, . . . , Oj}, let (e′j+1, ĩj+1) and (e′r, ĩr) denote the pairs in those positions in Oj . Those pairs have the same items as in

O0 = OPT but the types may differ due to previous swaps. In general, we will have

f(Oj)− f(Oj+1) =
(
f(Oj ∩Oj+1) + f({(e′j+1, ĩj+1), (e

′
r, ĩr)}|Oj ∩Oj+1)

)
−
(
f(Oj ∩Oj+1)− f({(ej+1, ir), (e

′
r, ĩj+1)}|Oj ∩Oj+1)

)
(def. of marginal gains)

= f({(e′j+1, ĩj+1), (e
′
r, ĩr)}|Oj ∩Oj+1)

)
− f({(ej+1, ir), (e

′
r, ĩj+1)}|Oj ∩Oj+1)

)
(cancel common terms)

≤ f({(e′j+1, ĩj+1), (e
′
r, ĩr)}|Oj ∩Oj+1)

)
(by monotonicity marginal gains are non-negative)

≤ f({(e′j+1, ĩj+1)}|Oj ∩Oj+1)
)
+ f({(e′r, ĩr)}|Oj ∩Oj+1)

)
. (by submodularity)

≤ f((e′j+1, ĩj+1)|Sj) + f({(e′r, ĩr)}|Sj)
)
, (1)

Where the last inequality follows by submodularity and Sj ⊆ Oj ∩ Oj+1. We next determine that both (e′j+1, ĩj+1) and
(e′r, ĩr) were feasible pairs to add to Sj in Algorithm 2 when (ej+1, ij+1) was selected. Considering each of those terms,
we note that by construction, we aligned indices of pairs in OPT that included items that were in pairs in S◦. Thus, we
have that e′j+1 ̸∈ Sj and e′r ̸∈ Sj , meaning that both elements were still available for Algorithm 2 to pick. Additionally, by
construction (since we swap to align types between j + 1st pairs) neither type ĩj+1 nor ĩr = ij+1 had been exhausted when
Algorithm 2 selected (ej+1, ij+1) to add to Sj . Thus, since Algorithm 2 picked (ej+1, ij+1) instead of either (e′j+1, ĩj+1)

or (e′r, ĩr), the corresponding marginal gains could not have been much larger than that of (ej+1, ij+1). Namely, with τj+1

denoting the threshold when (ej+1, ij+1) was selected by Algorithm 2, then

f((ej+1, ij+1)|Sj) ≥ τj+1

and since the other two pairs were not selected in the previous round when the threshold was (1− ε)−1τj+1 (or, if τj = d,
the maximum marginal gain, then they are at most equal and the following still holds),

f((e′j+1, ĩj+1)|Sj) ≤ (1− ε)−1f((ej+1, ij+1)|Sj)

and

f((e′r, ĩr)|Sj) ≤ (1− ε)−1f((ej+1, ij+1)|Sj)

This allows us to continue (1):

f(Oj)− f(Oj+1) ≤ f((e′j+1, ĩj+1)|Sj) + f({(e′r, ĩr)}|Sj)
)

(by (1))

≤ 2(1− ε)−1f((ej+1, ij+1)|Sj). (2)

Using this relation, we can now lower bound f(S◦).

f(OPT)− f(S◦) =

B−1∑
j=0

(f(Oj)− f(Oj+1) (telescoping sum)

≤
B−1∑
j=0

2

1− ε
(f(Sj+1)− f(Sj)) (by (2))

=
2

1− ε
(f(S◦)− f(∅))

≤ 2

1− ε
f(S◦)

which for ε < 1 implies

f(S◦) ≥ 1− ε

3− ε
f(OPT)

≥ (
1

3
− ε)f(OPT). (3)

Case 2: The final solution S◦ satisfies |Ui(S
◦)| < Bi for some i ∈ [k]. Let ℓi = |Ui(S)| < Bi denote the number of items

with type i added. Let S̃ denote a set of cardinality B that Algorithm 1 would have selected if Algorithm 1 terminated only
when either (a) Bi pairs had been selected for any type i or (b) the marginal gains on all remaining elements evaluated as
zero. Without loss of generality, we only consider (a), as (b) would imply f(S̃) = f(OPT) and subsequently the same
bounds as we will show for (a). Thus, by construction S ⊂ S̃ and S̃ has

∑
i∈[k](Bi − ℓi) extra elements.

First, since S̃ has B elements selected according to decreasing thresholds, the result (3) from Case 1 holds for S̃, that for
ε < 1,

f(S̃) ≥ 1− ε

3− ε
f(OPT). (4)

Second, since S only accumulated
∑

i∈[k] ℓi elements before the terminal threshold bound of (1−ε)εd
3B was reached, then

the marginal gains of the remaining
∑

i∈[k](Bi − ℓi) elements in S̃ can be bounded, with the largest possible value of the
threshold τ in the last execution of the while loop being

(1− ε)−1 (1− ε)εd

3B
=

εd

3B
,

leads to

f(S̃)− f(S◦) ≤
∑

(e,i)∈S̃\S◦

f((e, i)|S◦) (using Lemma 1 in main paper)

≤
∑

(e,i)∈S̃\S◦

εd

3B

=
∑
i∈[k]

(Bi − ℓi)
εd

3B

≤ εd

3
(
∑

i∈[k](Bi − ℓi) ≤ B)

⇐⇒ f(S◦) ≥ f(S̃)− εd

3
. (5)

We note that since by construction S◦ ⊂ S̃, each of the item-index pairs in S̃\S◦ must have items not in U(S◦), the marginal
gains in the formulas above are well-defined.

Combining (4) and (5),

f(S◦) ≥ f(S̃)− εd

3
(by (5))

≥ 1− ε

3− ε
f(OPT)− εd

3
(by (4))

≥ 1− ε

3− ε
f(OPT)− εf(OPT)

3
(by submodularity and choice of d)

≥ (
1

3
− ε)f(OPT).

B OTHER RELATED WORKS NOT CONSIDERED AS BASELINE

There are some related works mentioned in Table 1 but not considered as baselines. We provide detailed reasons and
discussions here:

• [Qian et al., 2017]: The authors propose an evolutionary algorithm. They only proposed and analyzed the algorithm for
total size constraints, not for individual size constraints. We note that the algorithm runs continuously; the run time

shown in our Table 1 is only an expectation of time for the algorithm to obtain the desired approximation guarantee of
1/2. Their code is publicly available, though was implemented for sensor placement experiments using a small portion
of the data. We modified it to run for the whole data set, but those experiments are slow compared to other methods.
One fundamental reason is that the evolutionary algorithm cannot incorporate lazy evaluation. This is significant as in
the example of sensor placement with k = 3, total budget of 36, the greedy algorithm without lazy evaluation would
require 3,888 function evaluations (using lazy evaluation, only 1627 were required as shown in Figure 1c). Also, the
mutation process takes O(n) time even if the mutation is not accepted. While all the algorithms considered in the paper
run within minutes, the evolutionary algorithm did not finish a case for total budget B = 5 within 2 hours. As the main
purpose of the paper is to improve the time complexity of existing algorithms, the run time of the proposed evolution
algorithm is much worse than the greedy algorithm (even without lazy evaluation), so we do not include it.

• [Ene and Nguyen, 2022]: This paper considers the streaming setting, where base elements arrive one at a time in an
arbitrary (adversarial) order. We did not think it would be fair to compare it to offline methods like our threshold greedy
method, the stochastic greedy, or greedy methods.

• [Matsuoka and Ohsaka, 2021]: This paper does not propose a new algorithm. The authors analyze the greedy algorithm
(which we include in experiments). The authors prove the greedy algorithm achieves a better approximation ratio for
the sub-class of k-submodular functions with bounded curvature.

References

Alina Ene and Huy Nguyen. Streaming algorithm for monotone k-submodular maximization with cardinality constraints. In
International Conference on Machine Learning, pages 5944–5967. PMLR, 2022.

Tatsuya Matsuoka and Naoto Ohsaka. Maximization of monotone k-submodular functions with bounded curvature and
non-k-submodular functions. In Asian Conference on Machine Learning, pages 1707–1722. PMLR, 2021.

Chao Qian, Jing-Cheng Shi, Ke Tang, and Zhi-Hua Zhou. Constrained monotone k-submodular function maximization using
multiobjective evolutionary algorithms with theoretical guarantee. IEEE Transactions on Evolutionary Computation, 22
(4):595–608, 2017.

	Threshold Greedy – Individual Size Constraints
	Other Related Works Not Considered as Baseline

