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A DERIVATION OF A-GW AND AB-GW DENSITIES

We briefly provide further background on the Wishart distribution, the Barlett decomposition, and discuss how to de-
rive Jacobians for matrix transformations. Then we use this machinery to derive densities for the A-GW and AB-GW
distributions.

A.1 THE WISHART DISTRIBUTION

The Wishart distribution, W (S, v), is a distribution over positive semi-definite P x P matrices, where S € RP*P isa
positive definite covariance matrix, and v > 0 is an integer-valued degrees-of-freedom parameter. The Wishart distribution
is most straightforwardly interpreted as a sum of outer products of multivariate Gaussian random variables. That is, if we
define a random matrix W such that,

f)\ NiidN(Ovs)v)‘E{lw"aV}v (l)
W = fif], 2
A=1

then we say that W is Wishart distributed, and write W ~ W (S, v). Equivalently, W = FFT, where F € RP*P ig
defined by stacking the vectors £y, F = (f;  ---  f)). We say that W is standard Wishart distributed if S = I.

It is easy to generate Wishart random matrices from only standard Gaussian samples. Take L = chol(S) to be the Cholesky
of Sand £, ~iiq N (0,I), then L&, ~iiq N (0, S). It follows that,

L (Z ggf) LT =LEE"LT ~ W (S,v), 3)
A=1
where E is the matrix of stacked vectors &, such that E = (&, --- £,). From (3), it can be observed that

E[W] = L(vI)L” = vS. Additionally, H = EE” is standard Wishart distributed, therefore (@) also gives us a way
to transform a standard Wishart into a Wishart with covariance parameter S: H ~ W (I,v) = LHLT ~ W (S,v).

Finally, note that the density of the Wishart distribution is given by,
v (v—P)/2

~ PSPl T, (%)

P (W) (W] etr (—S7'W/2), (4)

where 7 = min(v, P), and I';; is the multivariate gamma function [Srivastaval [2003].
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A.2 THE BARTLETT DECOMPOSITION AND SOME GENERALISATIONS

Suppose W ~ W (I,v), and v > P, then the Bartlett decomposition [Bartlett, [1933]] allows for efficient sampling of W
(the constraint v > P refers to the fact that W almost surely has full rank). Rather than sampling v P? Gaussian random
variables to construct W (which can become prohibitively costly when v is large), the Bartlett decomposition allows us
to sample only P(P — 1)/2 Gaussian random variables, and P Gamma random variables. In particular, if T is a random
matrix distributed according to,

Ty - 0
T=| : B I (5a)

Tpy -+ Tpp
P (T7;) = Gamma (T7;; =}, 3), (5b)
P (Tjsr) =N (Tjr; 0,1), (5¢)

then TTT ~ W (I, v). The utility of (3)) can be extended in two ways. Firstly, we can use (3)) to sample from non-standard
Wisharts, since L(TT?)L” ~ W (LL”, v). Secondly, Srivastava| [2003] extends the Bartlett decomposition to allow for
sampling of singular Wisharts. Suppose v < P, and take T to be distributed according to,

Ty - 0
T = Tul e TI/V ) (63)
Tpr -+ Tpy
P (T2) = Gamma (T3; “=4H 1) i e {1,..., v}, (6b)
P (TL>J) = N (Tl>_}7 Oa 1) ) (6C)

then TTT ~ W (I, v).

We arrive at the A- and AB-generalised (singular) Wishart distributions by generalising the (singular) Barlett decomposition
in (6). Concretely, we borrow the form of (6), but allow the parameters of the Gaussian and gamma distributions to be
arbitrary,

Ty - 0
T = Tul e TVI/ ) (73)
Tpr - Tpy
P (T}) = Gamma (T3; oy, 3;) , i € {1,...,v}, (7b)
P(Tisj) = N (Tisj; pij, 03;) - (7c)

For any invertible matrix A € RP*P and any invertible lower triangular B € RY*”, we write
ATTTAT ~ A-GW (A, v, a0, B, u,0) and ATBBTTTAT ~ AB-GW (A, B, v, o, B, u, o). Given the necessary para-
meters, it is straightforward to sample matrices from the A-GW and AB-GW families using (7). However it is non-trivial to
write down the corresponding densities — the rest of this section is dedicated to this task.

A.3 JACOBIANS FOR MATRIX TRANSFORMATIONS

We want to obtain the densities of W4 := ATTTAT and W45 := ATBBTTT AT, where we know the density of T.
Ultimately, we will use the change of variables formula,

oT

Qw) - | 7. ®




where |0T /OW/| is the Jacobian determinant of the transformation.

For a vector-vector transformation y = f(x), where x € R™ and y € R™, the Jacobian Jy/0x can be calculated by
evaluating Jy; /0z; fori € {1,...,m},and j € {1,...,n}. Itis less simple to calculate the Jacobian for matrix-matrix
transformations, but it can be done by stacking the columns of our matrices into a long vector, and then calculating the
associated vector-vector Jacobian. We demonstrate this with a simple example for 2 x 2 matrices. Consider,

Yipn Yo _ A A (X1 Xio ©)
Yo Yo Ag1 Az ) \Xo1 Xoo)
Y A X
We ‘vectorise’ Y and X to obtain,
Y A A 0O 0 X1
Yoo | _ [A2r A2z O 0 Xo1 (10)
Yio 0 0 A Ap X2 |
Yoo 0 0 Ay Ap Xoo
A*

The Jacobian of this transformation is clearly,

ay .
87X7A’ (1D

and the associated Jacobian determinant is therefore,
oY 9
— | =|A|". 12
x| = A 12

We now consider how to calculate some Jacobian determinants that are relevant in calculating the A-GW and AB-GW
densities.

A4 JACOBIAN FOR THE PRODUCT OF A LOWER TRIANGULAR MATRIX WITH ITSELF

Consider the transformation G = AAT, where A € R”*P and A is lower triangular. (Ober and Aitchison|[2021a] showed
that the Jacobian determinant is,

0G| 4 4
il I HZAﬁ_H—l‘ (13)
9 -11

They also showed that the same transformation, G = AAT but in the case A € RP*¥ has Jacobian determinant,

1

oG —
R
i=1
where 7 = min{ P, v}.

A.5 JACOBIAN FOR THE PRODUCT OF TWO DIFFERENT LOWER TRIANGULAR MATRICES

Consider the transformation T ++ A = LT, where T € R”*¥ and is lower triangular, and L € R”*? is also lower
triangular. |Ober and Aitchison|[2021a]] showed that the Jacobian determinant is,
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We also need the Jacobian determinant for a right linear transformation. Therefore, consider also the transformation

T + A = TB, where again T € RP*” but B € R”*" and is invertible lower triangular. It is helpful to write down the
matrices explicitly,

All e 0 Tll e 0
z : s | (B 0
Al/l Aw/ — Tl/l Tw/ ) (16)
z : s [ \Bu 0 B
Ap1 APV TPl TPV
and consider the rows of A. For the first row, we have
(A11) = (T11) (Bu1),
or equivalently,
A =T1.1B1,1.
Similarly, for rows up to the v row, i.e. for i < v, we have,
B 0
(Air Aii) = (T; Ti) | : s
B By;
which can be written as
Aii =T;5Bu
For rows beyond the v row, ie., i > v, the expression becomes,
By - 0
(Ail Aw) = (Tz T; ) )
Bl/l Bl/l/

which again can be written as,
Ai,:y = Ti,:l/B:l/,:l/ = Ti,:B-

To calculate the Jacobian, we proceed by taking the transpose of each of the rows and stacking them, giving,

AI:l B:—;,:l 0 0 0 0 TI:l
AJ 0 B, 0 o 0 T,
A, 0 o --- BT o0 0 b
Al—l—+1,:u 0 0 e 0 BT 0 TVJrl,:V
AL, 0 0 0 o0 BT Tp.,

Since the square matrix is upper triangular, its determinant is simply the product of the elements of its diagonal. This gives

the Jacobian determinant,

OA| .
il B_}?*ZJrl .
‘ 8T X3
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A.6 JACOBIANFOR C = AAT + D = ACA”, WHERE A IS AN INVERTIBLE MATRIX

Now consider the transformation C = AAT — D = ACAT, where A € RP*” is lower triangular with rank v, and
A € RP>*P s invertible. This Jacobian is difficult to derive from scratch; however, we can obtain it using the density of the
singular Wishart. In particular, the probability density function of D ~ W(S, v) is given by,

ov(7=P)/2

20P/2 |82 T (%) |

P, (D) = D.;.|“ " % etr (-S7'D/2),

where 7 = min (v, P) as before. Note that D.; .; is almost surely full rank. For C ~ W(Ip, v), this simplifies to,

oV(5=P)/2

e _ _|(v=P=1)/2 _
2VP/2F[, (%) |C:IJ,:I/‘ etr( C/Q) .

Py(C) =

Using these densities, we can use the identity,

oC
Pi(D)=P5(C)|=—
(D)= P2(0) 5.
to obtain the desired Jacobian determinant,
(v—P-1)/2 (v—P-1)/2
v/2 |Cip .l v |C 5]
(C)/P1(D |AAT| — e — Al P03 (18)

‘ |D:17,:17|( )/ |D:17,:17|( )/

We can now put these Jacobian determinant results together to derive the densities for the A- and AB-generalised (singular)
Wishart distributions.

A7 THE A-GENERALISED (SINGULAR) WISHART DENSITY

In Section[5.1] we said that G = AT(AT)” ~ A-GW (A, v,a, B, p,0) if A € RP*P is invertible and T € R”*" is
distributed according to (TT). If we define C such that G = ACAT = ATTT AT, then by the change of variables formula
for probability densities,

o1-acn| 5
By combining the density of T,
7 P
Q(T)=2" H T;; Gamma (Tij§ o, B;) H N (Tij;/‘ijvo'?j) ; (20)
j=1 i=j+1
the result from (14),
’ TP j+17 (21)
and the result from (T8,
V |Cl, V|(l/ P— 1)/2
56| = A G e @
we obtain the A-generalised (singular) Wishart density,
G., .|V P~V 2 Gamma (T2; aj, ;)
Q(G) = Sl (D 00, ) [T WV (Tijs wig, o) - (23)

—P-1)/2 P—j
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A.8 THE AB-GENERALISED (SINGULAR) WISHART DENSITY

The derivation for the AB-generalised (singular) Wishart is similar to that of the A-generalised (singular) Wishart, with
the addition of one extra step. Namely, as the AB-generalised (singular) Wishart defines G = ATB(ATB)T, we define
A =TBand C = AAT, so that,

@@ - a5 o)

This first Jacobian determinant can be obtained using (17),

” 1
BP 7+17

whereas the second,
v

' 1 1 H 1
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l/ A (3 21/ Py T“ k3 B” (3
arises from (I4). The remaining Jacobians remain unchanged in form, so that our final density is given by,

v—P— o p
|G157:D|( P-1)/2 Gamma (TJQJ; ozj,ﬁj) . ;
A" [Cop |72 I V(T g, 0) - (24)

Q(G) =

TP- JBQ(P J+1)
Jj=1 jJ i=j+1

B DETAILED EXPERIMENTAL RESULTS

All models were trained on the UCI splits from |(Gal and Ghahramani| [2016], of which there are 20 for each
dataset apart from PROTEIN. The datasets and the splits are available at https://github.com/yaringal/
DropoutUncertaintyExps/tree/master/UCI_Datasets. Deep Wishart processes with the three kinds of
approximate posterior (GW, A-GW, and AB-GW) were trained, with number of layers £ € {2,...,5}, and width v, fixed
to the number of input features. We applied the squared exponential kernel as a non-linearity at each layer, with automatic
relevance determination (ARD, |Williams and Rasmussen| [2006]) in the first layer only. The DGPs trained reflected this
architecture, with each GP layer returning features with dimension equal to the number of input features. In particular the
DGPs were trained using global inducing point methods [Ober and Aitchison}2021b]. The final layer of the DWP also uses
a global inducing approximate posterior [Ober and Aitchison}|2021b].

All models were trained using the same scheme. 20 000 gradient steps were used to train each model, with the ADAM
optimizer [Kingma and Bal [2015]]. We began with an initial learning rate of 10~2, and then stepped the learning rate down
to 10~ after 10000 gradient steps. The KL was annealed using a factor increasing linearly from 0 to 1 over the first
1000 gradient steps. No pre-processing of the data was performed, other than normalizing inputs and outputs. To train, 10
samples were drawn from the approximate posterior, and to test 100 samples were drawn. For the smaller datasets (BOSTON,
CONCRETE, ENERGY, WINE, YACHT), training was performed on a CPU (Intel Core 19-10900X), and for the other (larger)
datasets, an internal cluster of machines was used, with NVIDIA GeForce 2080 Ti GPUs.

B.1 TABLES

Tables [T|to A report the ELBOs, test log likelihoods, and RMSEs from our UCI experiments respectively. In all cases, we
give the mean of each metric (plus or minus one standard error), and highlight the model with the best mean value in bold
for each configuration (unless all are equal).


https://github.com/yaringal/DropoutUncertaintyExps/tree/master/UCI_Datasets
https://github.com/yaringal/DropoutUncertaintyExps/tree/master/UCI_Datasets

Table 1: ELBOs per datapoint. We report mean plus or minus one standard error over the splits. Bold numbers correspond to
the best models overall.

DWP
{Dataset}-{Depth} DGP ng QA.gW QAB_gW

BostToN-2 -038£0.01 -033+0.00 -0.32£0.01 -0.32+0.00
3 -040+£0.00 -034+0.01 -0.33+0.00 -0.33+0.01

4 -0434+0.00 -0.354+0.00 -0.344+0.01 -0.34 4 0.01

5 -0454+0.00 -0.37+0.01 -0.36+0.00 -0.36+0.00
CONCRETE -2 -0454+0.00 -042+0.00 -0.40+£0.00 -0.39 4 0.00
3 047+000 -043+0.00 -0.41-+0.00 -0.41-+0.00

4 -0494+000 -0.46+0.00 -0.43+0.00 -0.43-+0.00

5 -0.50+0.00 -0.494+0.00 -0.45+0.00 -0.45-+0.00
ENERGY-2 143+000 1.46+0.00 1.46-+0.00 1.46=+0.00
3 1.4240.00 144 £0.00 1.45+£0.00 1.45+0.00

4 1.40 £+ 0.00 1.42 + 0.00 1.43 £+ 0.00 1.43 + 0.00

5  1.38 +0.00 1.40 £0.00 1.42+0.00 1.41 £0.00

KiN8NM -2 -0.154+0.00 -0.16 £0.00 -0.14 +0.00 -0.14 + 0.00
3 -0.14+000 -0.15+£0.00 -0.13+0.00 -0.13-+0.00

4 -0.144+000 -0.144+0.00 -0.114+0.00 -0.11-+0.00

5 -0.144+000 -0.144+0.00 -0.11=+0.00 -0.11+0.00
NAVAL-2 3934005 3.824+0.09 3.80+0.13 3.844+0.10
3 383+£006 371%£0.12 386006 3.99 £ 0.04

4 3914+0.05 3.66+0.13 3.754+0.11 3.854+0.09

5 3924+0.04 3594+0.12 3.974+0.02 3.63+022
POWER-2 0.034+0.00 0.034+0.00 0.04 =0.00 0.04 &= 0.00
3 0.03+000 0.03£+000 0.03+000 0.03+0.00

4 0.034+000 0.034+0.00 0.034+0.00 0.034+0.00

5 0.03+0.00 0.024+0.00 0.03+0.00 0.03+0.00
PROTEIN-2 -1.06 =0.00 -1.07 £0.00 -1.06 & 0.00 -1.06 & 0.00
3 -1.04£000 -1.04£000 -1.03£0.00 -1.03=+0.00

4 -1.02£000 -1.024+0.00 -1.00+0.00 -1.01=+0.00

5 -1.00+0.00 -1.01 +£0.00 -1.004+0.00 -1.00 =+ 0.00

WINE-2 -1.18+0.00 -1.18+0.00 -1.18+0.00 -1.18+ 0.00

3 -1.19+000 -1.18+0.00 -1.18+0.00 -1.18-+0.00

4 -1194+000 -1.18+0.00 -1.18+0.00 -1.18+0.00

5 -1.19£000 -1.1940.00 -1.19+£0.00 -1.19+£0.00
YACHT-2 1.88+0.03 2.02+0.01 2.07 £0.01 2.07 £0.01
3 1.62£0.01 1.86 £0.02 2.02£0.01 2.03£0.01

4 147 4+0.02 1.73+£0.02  1.93 +0.01 1.91 +0.01

5  1.46 +0.02 1.59+0.02 1.79+0.02 1.79 £+ 0.02




Table 2: ELBO differences per datapoint. We report mean differences plus or minus one standard error over the splits.

{Dataset}-{Depth}  Qagw —Qgw  Qapow —Qow  Qagw — Qasow

BOSTON -2 0.01 £ 0.01 0.01 + 0.00 0.00 £ 0.01
3 0.01 £ 0.01 0.01 £0.01 0.00 £ 0.01

4 0.01 £ 0.01 0.01 +£0.01 0.00 £ 0.01

5 0.01 +0.01 0.01 +£0.01 0.00 £ 0.00
CONCRETE - 2 0.02 + 0.00 0.03 + 0.00 -0.01 £ 0.00
3 0.02 + 0.00 0.02 + 0.00 0.00 £ 0.00

4 0.03 £ 0.00 0.03 + 0.00 0.00 £ 0.00

5 0.04 + 0.00 0.04 + 0.00 0.00 = 0.00

ENERGY -2 0.00 + 0.00 0.00 £+ 0.00 0.00 £ 0.00
3 0.01 £ 0.00 0.01 £ 0.00 0.00 £ 0.00

4 0.01 £ 0.00 0.01 £ 0.00 0.00 £ 0.00

5 0.02 + 0.00 0.01 + 0.00 0.01 £ 0.00

KIN&NM - 2 0.02 + 0.00 0.02 + 0.00 0.00 = 0.00
3 0.02 + 0.00 0.02 + 0.00 0.00 £ 0.00

4 0.03 £ 0.00 0.03 + 0.00 0.00 £ 0.00

5 0.03 + 0.00 0.03 + 0.00 0.00 £ 0.00

NAVAL - 2 -0.02 £ 0.16 0.02+0.13 -0.04 £ 0.16
3 0.15+0.13 0.28 £0.13 -0.13 £ 0.07

4 0.09 + 0.17 0.19 £ 0.16 -0.10 £ 0.14

5 0.38 £ 0.12 0.04 £0.25 0.34 £0.22

POWER - 2 0.01 £ 0.00 0.01 £ 0.00 0.00 £ 0.00
3 0.00 = 0.00 0.00 £ 0.00 0.00 £ 0.00

4 0.00 + 0.00 0.00 £+ 0.00 0.00 £ 0.00

5 0.01 £ 0.00 0.01 £ 0.00 0.00 £ 0.00

PROTEIN - 2 0.01 £ 0.00 0.01 + 0.00 0.00 £+ 0.00
3 0.01 £ 0.00 0.01 £ 0.00 0.00 £ 0.00

4 0.02 + 0.00 0.01 £ 0.00 0.01 = 0.00

5 0.01 £ 0.00 0.01 + 0.00 0.00 £ 0.00

WINE - 2 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00

3 0.00 + 0.00 0.00 £ 0.00 0.00 £ 0.00

4 0.00 + 0.00 0.00 £+ 0.00 0.00 £ 0.00

5 0.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00

YACHT - 2 0.05 + 0.01 0.05 +£0.01 0.00 £ 0.01
3 0.16 + 0.02 0.17 £ 0.02 -0.01 £ 0.01

4 0.20 + 0.02 0.18 £ 0.02 0.02 £ 0.01

5 0.20 + 0.03 0.20 +0.03 0.00 £ 0.03




Table 3: Average test log likelihoods. We report mean plus or minus one standard error over the splits. Bold numbers
correspond to the best models overall.

DWP
{Dataset}-{Depth} DGP Qgw Qagw Qap-gw

BOSTON-2 -243£0.05 -240+0.05 -237=£0.05 -2.37+0.05

3 -239+£0.04 -238+0.05 -235+0.04 -2.35+0.04
-241+£0.04 -238+0.04 -237+0.04 -2.37+0.04
-243+£0.04 -238+0.04 -239+005 -2.38=+0.04

-3.10£0.02 -3.12+£0.02 -3.08+£0.02 -3.08+0.02
-3.08£0.02 -3.10+£0.02 -3.06+0.02 -3.07=£0.02
-3.13£0.02 -3.12+£0.02 -3.07 £0.02 -3.07 £ 0.02
-3.13£0.02 -3.13£0.02 -3.07+£0.02 -3.08+0.02

-0.70£0.03 -0.70£0.03 -0.70+0.03 -0.70 £ 0.03
-0.70£0.03 -0.70£0.03 -0.70 £0.03 -0.70 £ 0.03
-0.70 £0.03 -0.70£0.03 -0.70 +0.03 -0.70 £ 0.03
-0.71£0.03 -0.71 £0.03 -0.70 £ 0.03 -0.70 £+ 0.03

CONCRETE -

ENERGY -

KIN8NM - 1.35£0.00 135+£000 1.36+0.00 1.36+0.00
1.37+0.00 137+£0.00 1.38+0.00 1.38+0.00

1.38£0.00 1.39£0.01 1.40 £0.00 1.40 £ 0.00

1.38£0.00 140+£001 141+£0.01 1.41+0.01

NAVAL - 824+0.06 823+008 818+£0.11 8.18+0.13
8.15+0.06 8.18+0.07 8.27+0.05 8.38 £ 0.03

828+0.04 8.17+0.11 814+£0.13 8.32+0.06

828 £0.04 817007 8.40+0.02 810£0.19

POWER - -278 £0.01 -277£0.01 -2.76 £0.01 -2.76 £ 0.01
-277+£0.01 -2.76 £0.01 -2.76 +£0.01 -2.76 £ 0.01

-278£0.01 -277+£0.01 -2.75+0.01 -2.75+£0.01

-278 £0.01 -277+0.01 -2.76 +0.01 -2.76 £ 0.01

PROTEIN - -2.82+£0.00 -2.81+0.00 -2.81+0.00 -2.81=+0.00
-278 £0.00 -2.77£0.00 -2.76£0.00 -2.76 + 0.00

-275+£0.00 -273£0.00 -2.724+0.00 -2.73+£0.01

-273£0.01 -272+£0.01 -271+£0.01 -2.70 £ 0.00

WINE - -0.96 £0.01 -096=£0.01 -0.96=+0.01 -0.96=+0.01

-0.96 £0.01 -096=+0.01 -0.96=+0.01 -0.96+0.01
-0.96 £0.01 -096+0.01 -0.96+0.01 -0.96=+0.01
-0.96 £0.01 -096=£0.01 -0.96+0.01 -0.96=+0.01

YACHT-2 -029+£0.12 -0.04+0.10 -0.04+0.08 -0.08=£0.10
3 -063+£004 -013+0.07 0.12+£0.07 0.14 + 0.06
4 -077£0.07 -026=+0.07 -0.04=£0.09 -0.04+0.09
5 -073£0.07 -058+0.06 -022+£0.09 -0.18 4+ 0.07

N AW NP, LWD UV, WLWND [ ONE WD NP WD VR WD |WUNRE LD OV




Table 4: Root mean square error. We report mean plus or minus one standard error over the splits. Bold numbers correspond
to the best models overall.

DWP
{Dataset}-{Depth} DGP Qgw Qagw Qap-gw

BoSTON-2 2.724+0.14 2.67+0.14 260+0.12 2.59 +0.13
3 2734+0.14 266+0.13 2.62+0.13 2.63+0.13

4 276+£0.14 274+£0.15 2.71+£0.14 2.68+0.14

5 281+0.14 2824017 2.77+0.16 2.81+0.17
CONCRETE-2 541+0.10 550+0.12 5.29+0.12 530+0.12
3 531+011 532+£0.10 522£0.12 523£0.12

4 554+£0.10 543+£0.11 524+£0.13 5.22+0.13

5 5494010 553+£0.10 526+0.11 5.24+0.11

ENERGY -2 048 £0.01 048 £0.01 048 £0.01 048+£0.01
3 048+0.01 0484001 048+0.01 048 +0.01

4 048+£0.01 048+£001 048+0.01 0.48=+0.01

5 049+001 048+0.01 048+0.01 0.48+0.01

KINgNM -2 0.06 £0.01 0.06+£0.01 0.06 £0.00 0.06 £ 0.00
3 0.06+0.01 0.06=+001 0.06+£0.00 0.06=£0.00

4 0.06£0.01 0.06£0.01 0.06+£0.00 0.06=+0.00

5 0.06+0.01 0.06=£0.01 0.06+0.00 0.06=£0.00
NAVAL-2 0.00+0.00 0.00+0.00 0.00+0.00 0.00=+0.00
3 0.00£0.00 0.00£0.00 0.00£0.00 0.00=£0.00

4 0.00£0.00 0.00+£0.00 0.00=+£0.00 0.00=+£0.00

5 0.00+£0.00 0.00+0.00 0.00+0.00 0.00=£0.00
POWER-2 3.87+£0.04 3.83+0.04 382+004 3.81+0.04
3 3874003 382+0.04 3.81+0.04 3.81=+0.04

4 389+£0.04 384+£0.04 3.78+£0.04 3.78-+0.04

5 388+0.04 3.84+£0.04 3.80+0.04 3.80=+0.04
PROTEIN-2 4.08£0.01 4.06+0.01 4.05=£0.02 4.05=x0.01
3 3924+0.02 390+0.01 3.88+0.01 3.87+0.01

4 382+£001 379+£0.01 3.75+£0.01 3.79+0.02

5 377002 376+0.02 373+£0.02 3.70+0.01

WINE-2 0.63£0.01 0.63+0.01 0.63£001 0.63+0.01

3 063+£001 063£0.01 063£0.01 0.63=£0.01

4 063+£001 0.63+001 0.63+001 0.63+0.01

5 063+0.01 063£001 0.63+0.01 0.63+0.01
YACHT-2 041+0.04 033+0.03 033+0.03 0.33=+0.03
3 053+0.03 035+£0.03 0.31+0.03 0.30=+0.03

4 058+£0.05 041+£0.04 033+£0.03 0.33-+0.03

5 057+£005 050+004 037+0.03 038+0.03
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