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Abstract

Deep kernel processes are a recently introduced
class of deep Bayesian models that have the
flexibility of neural networks, but work entirely
with Gram matrices. They operate by alternately
sampling a Gram matrix from a distribution over
positive semi-definite matrices, and applying a de-
terministic transformation. When the distribution
is chosen to be Wishart, the model is called a deep
Wishart process (DWP). This particular model is
of interest because its prior is equivalent to a deep
Gaussian process (DGP) prior, but at the same time
it is invariant to rotational symmetries, leading to a
simpler posterior distribution. Practical inference
in the DWP was made possible in recent work (“A
variational approximate posterior for the deep Wis-
hart process" Ober and Aitchison, 2021a) where
the authors used a generalisation of the Bartlett de-
composition of the Wishart distribution as the vari-
ational approximate posterior. However, predictive
performance in that paper was less impressive than
one might expect, with the DWP only beating a
DGP on a few of the UCI datasets used for compar-
ison. In this paper, we show that further general-
ising their distribution to allow linear combinations
of rows and columns in the Bartlett decomposition
results in better predictive performance, while in-
curring negligible additional computation cost.

1 INTRODUCTION

Deep kernel processes (DKPs) [Aitchison et al., 2021] are
a class of deep Bayesian models which have the flexibil-
ity of neural networks (NNs), but work entirely with Gram
matrices. NNs have many tuneable parameters which al-
low them to automatically adapt to problems, and therefore

*These authors contributed equally to this work.

learn good top-layer representations, which turns out to be
very important for complex tasks like image classification
[Krizhevsky et al., 2012]. On the other hand, most kernels
only have a very small number of tuneable hyperparameters,
meaning that the kernel matrices they produce are compar-
atively rigid, and do not have the ability, that NNs have,
to learn flexible top-layer representations. DKPs solve this
problem by alternately taking the kernel matrix from the
previous layer, and sampling from a distribution over posit-
ive semi-definite matrices, centred on the previous kernel.
Since DKPs never sample features (except for the final out-
puts), they are distinct from e.g. deep Gaussian processes
[Damianou and Lawrence, 2013] (DGPs), which sample
features at every layer.

A particular DKP, called the deep Wishart process (DWP),
is of particular interest since Aitchison et al. [2021] showed
that its prior is equivalent to the DGP prior. However, they
were unable to perform inference in the DWP due to the
lack of a sufficiently flexible yet tractable distribution over
positive semi-definite matrices to use as an approximate
posterior. The first solution to this problem was posed by
Ober and Aitchison [2021a], who developed a generalisation
of the Bartlett decomposition of the Wishart distribution,
and used it as the basis of their approximate posterior in
a series of experiments that compared DWPs to DGPs. In
theory, purely kernel-based methods should have an advant-
age over feature-based methods, since Gram matrices are
invariant to certain symmetries to which feature-based meth-
ods are not, leading to simpler posteriors (see Appendix
D2 in Aitchison et al. 2021). However, the experiments
in Ober and Aitchison [2021a] showed only minor advant-
ages over DGPs on a fraction of the datasets they tested.
In this paper, we extend the generalised (singular) Wishart
distributions proposed by Ober and Aitchison [2021a] by
introducing parameters that rotate, stretch, and mix the rows
and columns of the Bartlett decomposition, and show that
this added flexibility in the approximate posterior allows
DWPs to consistently match or outperform DGPs on UCI
datasets, while adding negligible computation cost.
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2 CONTRIBUTIONS

Concretely, our contributions are:

• We propose the A-generalised (singular) Wishart
and AB-generalised (singular) Wishart distributions,
two flexible distributions over positive semi-definite
matrices, and we provide full derivations for the dens-
ities of these distributions in Appendix A.

• We prove both analytically and empirically that the
A/AB-generalised (singular) Wishart families are
proper supersets of the generalised (singular) Wishart
family proposed by Ober and Aitchison [2021a].

• We show experimentally that our proposed approxim-
ate posteriors provide significant performance benefits
on UCI datasets, while adding negligible computation
cost.

3 RELATED WORK

Perhaps the closest prior work is Ober and Aitchison
[2021a], which introduces generalised (singular) Wishart
approximate posteriors for the deep Wishart process. How-
ever, the performance in that paper was less impressive than
one might have expected, indicating that there may be room
to further improve the family of approximate posteriors
over Gram matrices. We provide such an improvement by
introducing A and AB-generalised (singular) Wishart ap-
proximate posteriors, which exhibit considerably improved
performance over the original approximate posterior from
Ober and Aitchison [2021a].

The deep kernel process line of work emerged from
Aitchison et al. [2021]. While they introduced the deep Wis-
hart process prior, they were not able to perform inference,
as they did not have a suitable approximate posterior (that
approximate posterior was developed in Ober and Aitchison
2021a). Instead, they were able to do inference in the altern-
ative deep inverse Wishart process, which (unlike the deep
Wishart process) does not have any equivalences to DGPs.

The deep kernel process research direction was originally in-
spired by work showing that infinite-width Bayesian neural
networks have GP-distributed outputs [Lee et al., 2017, Mat-
thews et al., 2018, Novak et al., 2018, Garriga-Alonso et al.,
2018]. However, this limit is problematic in that the result-
ing GP kernel is a fixed, deterministic function of the inputs
that cannot be learned from data. Thus, this limit elimin-
ates representation or feature learning, which is perhaps the
key mechanism behind the excellent practical performance
of neural networks [Yang and Hu, 2020, Aitchison, 2020].
Deep kernel processes [Aitchison et al., 2021] were inspired
by infinite width NNs but designed specifically to retain
flexible, learned kernels.

Another related approach that enables representation learn-

ing in infinite-width NNs is the deep kernel machine
(DKM) [Yang et al., 2023, Milsom et al., 2023]. DKMs
differ from DKPs slightly because they are deterministic
and correspond directly to an infinitely wide DGP with an
infinitely wide top layer [Yang et al., 2023].

4 BACKGROUND

In order to understand deep Wishart processes, it is neces-
sary to first define the Wishart distribution. Our implement-
ation of deep Wishart processes further requires a flexibile
approximate posterior. This motivates our proposed A/AB-
generalised (singular) Wishart distributions, which in turn
are obtained by considering the Bartlett decomposition.

4.1 WISHART DISTRIBUTION

The Wishart distribution is a generalisation of the
gamma distribution to positive semi-definite matrices.
Suppose we take a matrix F ∈ RP×ν whose columns
fλ ∈ RP ∼ N (0,Σ) are multivariate Gaussian distributed
vectors with λ ∈ {1, . . . , ν} and Σ ∈ RP×P , where P is
the number of datapoints. Then,

W := FFT =

ν∑
λ=1

fλf
T
λ (1)

is said to be Wishart distributed, denoted
W ∈ RP×P ∼ W(Σ, ν), with positive definite scale
matrix Σ and degrees of freedom ν.

4.2 DEEP WISHART PROCESS

The deep Wishart process is a specific instantiation of a deep
kernel process [Aitchison et al., 2021]. Moreover, DGPs can
be reframed as deep Wishart processes. Consider a DGP
model, which samples features F` ∈ RP×ν` at each layer
sequentially from a Gaussian process,

P (F` | F`−1) =

ν∏̀
λ=1

N (f `λ; 0,K(F`−1)). (2)

The columns f `λ are IID multivariate Gaussian ran-
dom variables, where we apply a kernel function
k(·, ·) : Rν` × Rν` → R pairwise to the previous layer to
form the covariance matrix K(F`−1) ∈ RP×P .

With deep kernel processes, instead of working with features
F`, we work with Gram matrices G`,

G` =
1

ν`
F`F

T
` . (3)

With F` defined by Eq. (2), G` is sampled using the same
generative process that defines the Wishart distribution
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(Sec. 4.1), so we have,

G` | F`−1 ∼ W
(

1

ν`
K(F`−1), ν`

)
. (4)

The final ingredient for defining a deep Wishart process is
the fact that we can often compute the kernel matrix K from
G`−1, without having to know F`−1. This is true for many
common kernels, including isotropic kernels, which only
depend on the average squared euclidean distance R`−1ij

between datapoints,

R`ij =
1

ν`

ν∑̀
λ=1

(F `iλ − F `jλ)2 (5a)

=
1

ν`

ν∑̀
λ=1

(F `iλ)2 − 2F `iλF
`
jλ +

(
F `jλ
)2

(5b)

= G`ii − 2G`ij +G`jj . (5c)

(see Aitchison et al., 2021 for further details). Hence we can
use K (G`−1), eliminating features to work entirely with
gram matrices, defining our deep Wishart process like so,

P (G` | G`−1) =W
(

G`;
1

ν`
K(G`−1), ν`

)
, (6a)

P (FL+1 | GL) =

νL+1∏
λ

N
(
fL+1
λ ; 0,K(GL)

)
, (6b)

where L is the number of hidden layers, G0 = 1
ν0

XXT for
input data X ∈ RP×ν0 , and at the output layer (Eq. 6b) we
sample features that can be provided to a likelihood function
P (Y | FL+1), e.g. a Gaussian likelihood for regression, or
a categorical likelihood for classification.

4.3 VARIATIONAL INFERENCE IN DWPs

As is the case with almost all Bayesian models of reason-
able complexity, the true posterior P (G1, · · · ,GL | X,Y)
is intractable. We therefore use variational inference (VI),
which replaces the true posterior with an approximate pos-
terior Q (G1, · · · ,GL). This distribution is taken from a
variational family of distributions with parameters φ, which
are optimised to maximise a lower bound on the marginal
log-likelihood of the data.

We consider approximate posteriors that factorise layerwise,

Q (G1, · · · ,GL) =

L∏
`=1

Q (G` | G`−1) , (7)

where each term Q (G` | G`−1) is a distribution over posit-
ive definite matrices. Note that although the prior of each
layer is Wishart distributed, the posterior is not Wishart
distributed in general. The seemingly obvious choice for
this variational family is the Wishart family itself, but as
Aitchison et al. [2021] argued, this is not flexible enough.

For G ∼ W(Σ, ν) (particularly in the case where ν is fixed),
the mean and variance cannot be independently specified
since we have

E[G] = νΣ, (8a)

V[Gij ] = ν(Σ2
ij + ΣiiΣjj). (8b)

The ability to independently specify the variance is critical
for an approximate posterior to be able to capture potentially
narrow true posteriors, so we need an alternative. Aitchison
et al. [2021] also suggested that a non-central Wishart dis-
tribution would be flexible enough to use as an approxim-
ate posterior, but its density is too expensive to evaluate
as part of the training loop. Hence Aitchison et al. [2021]
ultimately did not perform inference in the DWP, instead
opting to change the model. In a subsequent work, Ober
and Aitchison [2021a] introduced the generalised (singular)
Wishart distribution, which finally allowed practical infer-
ence in DWPs, and which our work builds upon. In order to
define that distribution, we first need to recap the Bartlett
decomposition.

4.4 THE BARTLETT DECOMPOSITION

The Bartlett decomposition [Bartlett, 1933] is a factorisation
for Wishart random variables. Specifically, if W ∼ W(I, ν)
is a standard Wishart random variable (that is, it has identity
scale matrix, Σ = I), then we have,

W = TTT , (9)

where T is lower triangular, with the square of its diag-
onals Gamma-distributed, and its off-diagonals Gaussian-
distributed,

T =

T11 · · · 0
...

. . .
...

TP1 · · · TPP

 , (10a)

P
(
T 2
ii

)
= Gamma

(
T 2
ii;

ν−i+1
2 , 12

)
, (10b)

P (Ti>j) = N (Ti>j ; 0, 1) , (10c)

In particular each element of T is independent. For Wis-
hart distributions with non-identity scale matrices, we can
compute the Cholesky decomposition Σ = LLT , so that
W = LTTTLT (this follows from the canonical definition
of the Wishart using Gaussian vectors).

4.5 GENERALISED (SINGULAR) WISHART
DISTRIBUTION

As shown by Ober and Aitchison [2021a], a generalisation
of the Wishart distribution can be obtained by allowing the
Bartlett decomposition to be more flexible (and by allowing
singular matrices [Srivastava, 2003], since the Wishart or-
dinarily only supports positive definite matrices). Namely,
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we can introduce parameters αj , βj , µij , σij such that the
decomposition T has distribution,

T =


T11 · · · 0

...
. . .

...
Tν1 · · · Tνν

...
. . .

...
TP1 · · · TPν

 , (11a)

Q
(
T 2
ii

)
= Gamma

(
T 2
ii; αi, βi

)
, i ∈ {1, . . . , ν},

(11b)

Q (Ti>j) = N
(
Ti>j ; µij , σ

2
ij

)
(11c)

where, in the singular case of ν < P , T is now a (tall)
rectangular matrix, with the upper square block being lower
triangular. This more flexible distribution defines a standard
generalised (singular) Wishart random variable, denoted
TTT ∼ GW (I, ν,α,β,µ,σ). For the more general case
of Σ 6= I, we compute the cholesky decomposition Σ =
LLT and obtain W ∼ GW (Σ, ν,α,β,µ,σ) as W =
LTTTLT .

For the general case W = LTTTLT , Ober and Aitchison
[2021a] showed that the density of W is

Q (W) =

 P∏
j=1

1

L
min(j,ν)
jj


ν̃∏
j=1

Gamma
(
T 2
jj ; αj , βj

)
TP−jjj LP−j+1

jj

P∏
i=j+1

N
(
Tij ; µij , σ

2
ij

)
.

(12)

5 METHODS

5.1 A-GW AND AB-GW DISTRIBUTIONS

Whilst the generalised (singular) Wishart distribution repres-
ented a big step for approximate inference in DWPs, the ex-
perimental results in Ober and Aitchison [2021a] indicated
much room for improvement. Despite the theoretical advant-
ages that DWPs have over DGPs due to their invariance to
certain posterior symmetries, the DGP still outperformed
the DWP in a few cases. By contrast, the A-generalised /
AB-generalised (singular) Wishart distributions we intro-
duce in this paper allow the DWP to match or outperform
the DGP on all datasets we tested.

One issue with the generalised (singular) Wishart distribu-
tion is that it is unclear how flexible it is with respect to lin-
ear transformations. Suppose W ∼ GW (Σ, ν,α,β,µ,σ)
and consider the mapping W 7→ W′ = RWRT , where
R ∈ RP×P is some invertible matrix. With W constructed
as in Section 4.5, i.e. W = LTTTLT , where TTT ∼
GW (I, ν,α,β,µ,σ) and Σ = LLT , we have W′ =
RLTTTLRT . However, since RL is not in general lower

triangular, there is no obvious form that suggests W′ is
in general distributed as a generalised (singular) Wishart.
To remedy this, we introduce more flexibility into the gen-
eralised (singular) Wishart distribution. In particular, in-
stead of parameterising the distribution in terms of Σ,
and multiplying T by the Cholesky of Σ, we both para-
meterise the distribution and multiply T with an arbit-
rary invertible matrix of parameters A ∈ RP×P . We write
W = AT(AT)T ∼ A-GW (A, ν,α,β,µ,σ) and say that
W is A-generalised (singular) Wishart distributed. If W is
A-generalised (singular) Wishart distributed, it is clear that
for any transformation R, the associated Gram matrix W′

remains in the same family of distributions; in particular,
W′ = RWRT ∼ A-GW (RA, ν,α,β,µ,σ).

We can understand A in W = AT(AT)T as mixing
the rows of T by linear combinations. This mixing
means that the elements of AT have a more complex
dependency structure than the elements of T. It also raises
the question of whether we could introduce a more complex
dependency structure still. We propose that this can be done
by additionally mixing the columns of T with a matrix
B, via TB, suggesting an additional generalisation of
the generalised (singular) Wishart distribution. We write
W = ATB(ATB)T ∼ AB-GW (A,B, ν,α,β,µ,σ),
where B ∈ Rν×ν is lower triangular and invertible, and say
that W is AB-generalised (singular) Wishart distributed.

To use the A-GW and AB-GW distributions for VI, it is
necessary to obtain expressions for their densities. Since this
is non-trivial, the derivations are provided in the Appendix
A.7, and we simply quote the results here. The density for
the A-GW distribution is,

A-GW (W; A, ν, α, β, µ, σ)

=
|W:ν̃,:ν̃ |(ν−N−1)/2

|A|ν |(CA):ν̃,:ν̃ |(ν−N−1)/2
ν̃∏
j=1

Gamma
(
T 2
jj ; αj , βj

)
TN−jjj

N∏
i=j+1

N
(
Tij ;µij , σ

2
ij

)
, (13)

where ν̃ = min {ν,N}, CA = TTT , and the notation
X:a,:b means the submatrix of X obtained by taking the
first a rows and b columns. The density for the AB-GW
distribution is,

AB-GW (W; A,B, ν, α, β, µ, σ)

=
|W:ν̃,:ν̃ |(ν−N−1)/2

|A|ν |(CAB):ν̃,:ν̃ |(ν−N−1)/2
ν̃∏
j=1

Gamma
(
T 2
jj ; αj , βj

)
TN−jjj B

2(N−j+1)
jj

N∏
i=j+1

N
(
Tij ;µij , σ

2
ij

)
, (14)

where CAB = (TB)(TB)T is defined for notational con-
venience. Notice that the densities are defined in terms of
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Figure 1: A probability plot comparing the probability dens-
ity of the top-left element of an A-GW distributed matrix
to the density of the top-left element of a GW distributed
matrix. If the two were identically distributed, all the points
would lie on the diagonal line. We sampled the top-left ele-
ment of the A-GW distributed matrix 10,000 times using
Eq. (18), Eq. (19) and Eq. (21). We compared this distri-
bution against the closest fitting Gamma distribution, as
the top-left element of a GW distributed matrix is Gamma-
distributed (Sec. 5.3). We used µ = 3, σ2 = 1 in Eq. (18).
In this probability plot, the “Fitted Gamma quantiles” are
the exact quantiles of the closest fitting Gamma distribu-
tion, while the “AGW quantiles” are the sample quantiles
from the top-left element of the A-GW distribution (i.e. the
samples ordered by size). The plot shows a clear mismatch
between the two distributions, confirming the theoretical
result that a Gamma distribution does not capture general
non-central chi-squared distributions.

both W and T. Since W = (ATB)(ATB)T , we can see
that T can be recovered by first computing (TB)(TB)T =
A−1WA−T , from which we can compute TB as the
cholesky decomposition. Thus T is recovered by simply
right-multiplying TB by B−1.

5.2 A-GW AND AB-GW APPROXIMATE
POSTERIORS

As discussed in Section 5.1, the A and AB-generalised (sin-
gular) Wishart distributions give us more flexible distribu-
tions over Gram matrices, which ought to be useful for
VI. The approximate posterior used by Ober and Aitchison

[2021a] was,

QGW (G` | G`−1)

= GW
(
G`; (1− q`) 1

ν`
K (G`−1) + q`V`V

T
` ,

ν`, α`, β`, µ`, σ`
)
, (15)

where {V`,α`,β`,µ`,σ`, q`}L`=1 are the learned vari-
ational parameters. Notice that V` provides flexibility, since
q` allows us to control the relative influence of the kernel
from the previous layer, K(G`−1), and an arbitrary, learn-
able positive (semi-) definite matrix, V`V

T
` .

To use the A and AB generalised (singular) Wishart distribu-
tions as approximate posteriors, we obtain A` by combining
an arbitrary invertible matrix of parameters, A′`, with the
Cholesky of (1−q`) 1

ν`
K (G`−1)+q`V`V

T
` to give across-

layer dependencies similar to those in the previous GW
approximate posterior (Eq. 15),

A` = chol
(

(1− q`) 1
ν`

K (G`−1) + q`V`V
T
`

)
A′` (16)

where chol(·) returns the lower triangular Cholesky factor.
The A-GW and AB-GW approximate posteriors are then
written in terms of this A`:

QA-GW (G` | G`−1) (17a)

= A-GW
(
G`; A`, ν`, α`, β`, µ`, σ`

)
,

QAB-GW (G` | G`−1) (17b)

= AB-GW
(
G`; A`, B`, ν`, α`, β`, µ`, σ`

)
.

Here, the variational parameters are
{A′`,V`,α`,β`,µ`,σ`, q`}L`=1 for the A-GW approxim-
ate posterior, and {A′`,B`,V`,α`,β`,µ`,σ`, q`}L`=1 for
the AB-GW approximate posterior.

5.3 A-GW IS MORE FLEXIBLE THAN GW

To further motivate the utility of the proposed distributions,
we now demonstrate that the A-GW family of distributions
(Eq. 13) is a proper superset of the GW family (Eq. 12).
The fact that it is a superset can be seen by noting that if we
take A to be lower triangular, and use Σ = AAT , then the
A-GW distribution reduces to the GW distribution. Note
that the AB-GW distribution also reduces to the previous
GW distribution if we take A to be lower triangular and
B = I. We do not make the claim that the AB-GW distri-
bution is strictly more flexible than the A-GW distribution
(though it clearly contains the A-GW by just setting B = I),
and instead leave this to future work.

In order to show that the A-GW family contains a proper
superset of GW , we must show it contains distributions
which the GW cannot capture. To this end, consider a toy
setting where P = 2 and ν = 1, so, T ∈ R2×1. We choose
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Table 1: ELBOs, test log-likelihoods, and test root mean square error for UCI datasets from [Gal and Ghahramani, 2016] for
a five-layer network. All metrics are quoted as the mean, plus or minus one standard error, over the splits. Better results are
highlighted; see Appendix B for other depths and additional information.

DWP
Dataset DGP QGW QA-GW QAB-GW

BOSTON -0.45 ± 0.00 -0.37 ± 0.01 -0.36 ± 0.00 -0.36 ± 0.00
CONCRETE -0.50 ± 0.00 -0.49 ± 0.00 -0.45 ± 0.00 -0.45 ± 0.00

ENERGY 1.38 ± 0.00 1.40 ± 0.00 1.42 ± 0.00 1.41 ± 0.00
KIN8NM -0.14 ± 0.00 -0.14 ± 0.00 -0.11 ± 0.00 -0.11 ± 0.00

ELBO NAVAL 3.92 ± 0.04 3.59 ± 0.12 3.97 ± 0.02 3.63 ± 0.22
POWER 0.03 ± 0.00 0.02 ± 0.00 0.03 ± 0.00 0.03 ± 0.00

PROTEIN -1.00 ± 0.00 -1.01 ± 0.00 -1.00 ± 0.00 -1.00 ± 0.00
WINE -1.19 ± 0.00 -1.19 ± 0.00 -1.19 ± 0.00 -1.19 ± 0.00

YACHT 1.46 ± 0.02 1.59 ± 0.02 1.79 ± 0.02 1.79 ± 0.02

BOSTON -2.43 ± 0.04 -2.38 ± 0.04 -2.39 ± 0.05 -2.38 ± 0.04
CONCRETE -3.13 ± 0.02 -3.13 ± 0.02 -3.07 ± 0.02 -3.08 ± 0.02

ENERGY -0.71 ± 0.03 -0.71 ± 0.03 -0.70 ± 0.03 -0.70 ± 0.03
KIN8NM 1.38 ± 0.00 1.40 ± 0.01 1.41 ± 0.01 1.41 ± 0.01

LL NAVAL 8.28 ± 0.04 8.17 ± 0.07 8.40 ± 0.02 8.10 ± 0.19
POWER -2.78 ± 0.01 -2.77 ± 0.01 -2.76 ± 0.01 -2.76 ± 0.01

PROTEIN -2.73 ± 0.01 -2.72 ± 0.01 -2.71 ± 0.01 -2.70 ± 0.00
WINE -0.96 ± 0.01 -0.96 ± 0.01 -0.96 ± 0.01 -0.96 ± 0.01

YACHT -0.73 ± 0.07 -0.58 ± 0.06 -0.22 ± 0.09 -0.18 ± 0.07

BOSTON 2.81 ± 0.14 2.82 ± 0.17 2.77 ± 0.16 2.81 ± 0.17
CONCRETE 5.49 ± 0.10 5.53 ± 0.10 5.26 ± 0.11 5.24 ± 0.11

ENERGY 0.49 ± 0.01 0.48 ± 0.01 0.48 ± 0.01 0.48 ± 0.01
KIN8NM 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.00 0.06 ± 0.00

RMSE NAVAL 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
POWER 3.88 ± 0.04 3.84 ± 0.04 3.80 ± 0.04 3.80 ± 0.04

PROTEIN 3.77 ± 0.02 3.76 ± 0.02 3.73 ± 0.02 3.70 ± 0.01
WINE 0.63 ± 0.01 0.63 ± 0.01 0.63 ± 0.01 0.63 ± 0.01

YACHT 0.57 ± 0.05 0.50 ± 0.04 0.37 ± 0.03 0.38 ± 0.03

this matrix to be,

T :=

(
g
n

)
∼
(
N (0, 1)
N
(
µ, σ2

)) (18)

so that g2 ∼ χ2 (1) = Gamma
(
1
2 , 2
)
. Then we have,

W = AT(AT)T ∼ A-GW
(

A, 1,
1

2
, 2, µ, σ2

)
(19)

where W ∈ R2×2 and A ∈ R2×2 is any invertible matrix.
We shall show that, for certain choices of A, W has a
distribution that cannot be captured by the GW distribution.
Firstly, we have,

TTT =

(
g2 gn
gn n2

)
, (20)

and taking A to have concrete value,

A =

(
1 1
0 1

)
, (21)

we obtain,

(AT) (AT)
T

=

(
g2 + 2gn+ n2 gn+ n2

gn+ n2 n2

)
. (22)

We need only consider the distribution of the top-left ele-
ment. We have g2 + 2gn + n2 = (g + n)2 = X2 where
X ∼ N

(
µ, σ2 + 1

)
, since g and n are normally distributed.

Hence if we choose µ 6= 0, the top-left element, X2, is
noncentral chi-squared distributed.

To conclude the proof, we show that the top-left element of a
GW-distributed matrix is restricted to a Gamma distribution,
which does not contain noncentral chi-squared distributions.
In particular, taking Σ = LLT to be the cholesky decom-
position of Σ, any GW-distributed matrix,

W′ = (LT′)(LT′)T ∼ GW
(
Σ, ν′,α′,β′,µ′,σ

′2
)
,

(23)
can be written according to the generalised Bartlett decom-
position in Eq. 11. To obtain the top-left element of W′, we
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Table 2: Average runtime (seconds) for an epoch of BOSTON and PROTEIN. Error bars were negligible and are excluded.

{dataset} - {depth} DGP QGW QA-GW QAB-GW

BOSTON - 2 0.463 0.200 0.203 0.202
5 1.292 0.358 0.373 0.370

PROTEIN - 2 0.903 0.843 0.854 0.869
5 2.012 1.806 1.846 1.839

first explicitly write down the first element of LT′,

LT′ =

(
L11 0
L21 L22

)(
T ′11
T ′21

)
=

(
L11T

′
11

. . .

)
, (24)

where we avoid writing down the second element because it
will not be needed. Then, we can explicitly write down the
top-left element of the GW distributed W′,

W′ = LT′(LT′)T =

(
L11T

′
11

. . .

)(
L11T

′
11

. . .

)T
=

(
L2
11(T ′11)2 . . .
. . . . . .

)
. (25)

By Eq. 11b, we have (T ′11)2 ∼ Gamma (α′1, β
′
1), and so

the top-left element of W has distribution

W ′11 = L2
11(T ′11)2 ∼ Gamma

(
α′1,

β′1
L2
11

)
. (26)

Since the Gamma distribution is not capable of capturing
noncentral chi-square distributions, we conclude that the
A-GW family is strictly larger than the GW family.

Figure 1 shows a probability plot to empirically demon-
strate that the GW distribution is not capable of capturing
the A-GW distribution. Specifically, we consider the same
A-GW top-left element as in our counter-example above,
using µ = 3, σ2 = 1 in Eq. 18, and take samples from it.
We then fit a Gamma distribution to these samples, and show
that there is a clear mismatch.

6 RESULTS

To compare our A-GW and AB-GW approximate pos-
teriors to the GW approximate posterior from Ober and
Aitchison [2021a], we trained multiple DWPs on UCI data-
sets [Gal and Ghahramani, 2016] using the same architec-
tures, only varying the approximate posterior. The algorithm
for a DWP with an AB-GW approximate posterior is shown
in Algorithm 1. The algorithm for a DWP with an A-GW
approximate posterior is recovered by fixing B` = I. The
algorithm is similar to Algorithm 1 from Ober and Aitchison
[2021a], but the step for sampling the inducing Gram matrix
has changed (since we are using a different approximate
posterior).

We also trained DGPs with the same architectures, where
we used global inducing point methods from Ober and
Aitchison [2021b]. All models were trained with 20 000
gradient steps using the ADAM optimizer [Kingma and Ba,
2015], with no pre-processing of the data other than normal-
izing inputs and outputs. An initial learning rate of 10−2

was used, and after 10 000 steps it was set to 10−3. RMSE,
ELBO and log likelihood are all reported plus or minus one
standard error, calculated over 20 splits (apart from the PRO-
TEIN dataset, where 5 splits were used). Results are shown
for a 5-layer architecture in Table 1, and results for 2, 3, and
4 layers can be found in Appendix B. Layer widths νl in all
layers were set to the number of features in the input data.

Taking the standard errors into account, we see that A-GW
and AB-GW approximate posteriors are uniformly as good
or better than GW approximate posteriors across all metrics
in the 5-layer case, and this is the case for almost all the
experiments we ran (see Appendix B). Notably, A-GW
and AB-GW approximate posteriors are able to achieve
higher ELBO and log likelihoods (this is expected since
they provide more flexible approximate posteriors). The
largest improvements in ELBO are for YACHT and NAVAL,
and in the case of YACHT this leads to a large gain in RMSE.

Note that the dataset size varies, with the smallest being
YACHT with 308 observations, and the largest being PRO-
TEIN with 45730 observations. Training times per epoch for
a large and a small dataset, PROTEIN and BOSTON (506
observations) can be found in Table 2. The results show
that training time for the models with A-GW and AB-GW
approximate posteriors is very similar to that of previ-
ous DWPs with GW approximate posteriors in Ober and
Aitchison [2021a], so the additional computational cost in-
curred by adding the new parameters A and B is negligible.
All DWP models tested trained faster than the equivalent
DGP models.

7 CONCLUSION

We extended the generalised (singular) Wishart distribu-
tion, GW , introduced by Ober and Aitchison [2021a] to the
A-GW and AB-GW distributions, which we proved (both
analytically and empirically) to be strictly more flexible than
the GW distribution. These A- and AB-generalisations of
the Wishart distribution are effective when used as approx-
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Algorithm 1 Computing predictions/ELBO for a DWP with
AB-GW variational posterior.

Hyperparameters: {ν`}L`=1

Learned Q parameters:
{A′`,B`,V`,α`,β`,µ`,σ`, q`}L`=1

Other learned parameters: Xi
Inputs: Xt; Targets: Y

X =
(
Xi Xt

)
G0 = 1

ν0
XXT

for ` in {1, . . . , L} do
S← 1

ν`
K(G`−1)

apply Eq. (16)
Al ← chol

(
(1− q`)Sii + q`V`V

T
`

)
A`
′

sample inducing Gram matrix
(A`T`B`) (A`T`B`)

T
= G`

ii ∼ Q
(
G`

ii|G
`−1
ii

)
update ELBO
L ← L+ log P

(
G`

ii|G
`−1
ii

)
− log Q

(
G`

ii|G
`−1
ii

)
sample full Gram matrix from conditional prior
Stt·i ← Stt − STit S

−1
ii Sit

F`i ← A`T`B`

F`t ∼MN
(
STti S

−1
ii Fi,Stt·i, I

)
G` =

(
G`

ii F`i (F
`
t )
T

F`t (F
`
i )
T F`t (F

`
t )
T

)
end for
sample GP inducing outputs and update ELBO
FL+1

i ∼ Q
(
FL+1

i |GL
ii

)
L ← L+ log P

(
FL+1

i |GL
ii

)
− log Q

(
FL+1

i |GL
ii

)
sample GP predictions conditioned on inducing points
FL+1

t ∼ Q
(
FL+1

t |GL,FL+1
i

)
add likelihood to ELBO
L ← L+ log P

(
Y|FL+1

t
)

imate posteriors for DWPs, as shown by the near-universal
improvement in predictive performance on UCI datasets,
both over similar DGP models, and over DWP models that
use the less flexible GW distribution for their approximate
posteriors. Furthermore, we showed that this increased flex-
ibility comes at a negligible additional cost in computation.
As a result, this is the first DWP work to achieve equal-or-
better predictive performance than comparable DGPs on
UCI datasets (and it is also cheaper to train). This is signific-
ant as DGP priors are equivalent to DWP priors [Aitchison
et al., 2021], but DWP posteriors are invariant to certain
types of posterior symmetries that affect DGPs, meaning
they should in theory be easier to capture under variational
inference, but until this work practical results had not shown
this to be the case.
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